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Abstract: In this work, we prepared and investigated two series of polymer composites, wherein the
matrix was either an amorphous polystyrene (PS) or a semicrystalline high-density polyethylene
(HDPE) filled with expandable graphite (EGr) at relatively high loadings within the range 5–55 wt %.
For the investigation we employed a thermogravimetric analysis and differential scanning calorimetry
to assess the thermal transitions and evaluate the various polymer fractions (crystalline (CF), mobile
(MAF) and rigid amorphous (RAF)) in addition to broadband dielectric spectroscopy and a laser
flash analysis to evaluate the EGr effects on electrical conductivity, σ, and thermal conductivity, λ,
respectively. In PS, EGr was found to impose an increase of the glass transition temperature and a
systematic decrease of the corresponding heat capacity change. The latter was rationalized in terms
of the formation of an interfacial RAF. No glass transition was recorded for HDPE whereas the fillers
increased the CF moderately. As expected, σ increased with the filler loading for both matrices, up
to 10−3–10−2 S/cm, resulting in a conductive percolation threshold for electrons at > 8 wt % EGr.
Simultaneously, the λ of PS and HDPE were strongly increased, from 0.13 and 0.38 W·K–1·m–1 up
to 0.55 and ~2 W·K–1·m–1, respectively. λ demonstrated an almost linear EGr loading dependence
whereas the semicrystalline composites exhibited a systematically higher λ.

Keywords: expandable graphite; polystyrene; polyethylene; polymer composites; thermal conduc-
tivity; electrical conductivity

1. Introduction

Over the last decades, polymer composites and nanocomposites (PNCs) [1,2] have
been under extensive investigation and have found use in a wide range of applications from
industry, biochemistry and biomedicine to our everyday life. Several types of inclusions
can be employed as a means for improving properties (reinforcing). The inclusions may
differ either in shape/dimensionality (for example, nanotubes (e.g., carbon nanotubes
(CNT)) [3,4], nanoplatelets (e.g., graphene, nanoclays) [5,6] and spherical nanoparticles
(e.g., silica and titania) [7]) or in surface chemistry [8–10].

The main benefits of PNCs compared with neat polymers and traditional macro-
composites are the improved properties and performance achieved at very low filler
loadings [1,3,11]. This is due to the high surface to volume ratio of the fillers arising from
their nanodimensions [12], which provides a large potential for interfacial interactions
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between the filler and the polymer. What actually happens at the interfacial zone is still in
debate as it is believed that the structure-density-chain topology dynamics of the polymer
at the interface are altered compared with that in the bulk [13–17]. The polymer fraction
located at the interfaces is generally called the interfacial polymer or rigid amorphous
fraction (RAF or RAFfiller) [18,19] (Scheme 1a,b). The alternations seem to correlate with, if
not being mainly responsible for, specific changes of the performance of the materials such
as the mechanical strength [1,2,20], small molecule permeation or charges diffusion [21]
and heat transport [22,23]. PNCs can be categorized also from the point of view of the
polymer type, e.g., rubbery or thermoplastic, amorphous or semicrystalline [11,12,24].
Thus, the imposed filler-related improvements can be both direct such as in the case of
electrical conduction [3,25] and indirect, e.g., via altering crystallinity and the semicrys-
talline morphology (Scheme 1) [26,27]; for example, on the elastic modulus [28,29] and
heat transport [22,23,30]. In the last decade, importance has been considered within the
performance of PNCs of the role of amorphous crystal interfaces (RAFcrystal) [22,31,32] due
to their special structure following partly the lamellae ordering (Scheme 1a).

Electrical conductivity, σ, in PNCs [3,33,34] is developed mainly by two mechanisms;
namely, via the transport of ions or/and electrical charges (including defects) through the
polymer in a rubbery state [35] and via the oriented transport of free electrons (hopping and
tunneling effects) in the case of electrically conducting fillers [3,25] (Scheme 1b). The most
known conducting fillers are the CNTs [4,25], carbon fibers [36], graphene, graphite [5] and
metallic particles (Ag, Au, Cu) [37]. The role of crystallinity on σ is indirect as, for example,
the formation of crystals may reduce ionic σ via the polymer by disturbing/cutting a few
amorphous polymer pathways [23,38] or/and reducing the number of percolating filler
pathways due to filler rearrangements upon crystallization [39] (Scheme 1c).

Thermal diffusivity, α, and conductivity, λ (or k), in polymer-based systems [40–42]
is the transport of energy from one point to another by energy carriers and is developed
mainly via the mechanism of phonon diffusion via the polymer [43]. In the case of conduct-
ing fillers that percolate (which happens for quite high filler loadings [40]), the thermal
conductivity is strongly enhanced [33,44] due to the transport of free electrons and phonons.
As expected in neat polymers, heat transport occurs via a weak diffusion of phonons and
thus results in low α and λ. The situation improves with the implementation of polymer
crystals [45,46]. A variety of effects mainly concerning scatterings of the thermal carriers at
interfaces, i.e., polymer-fillers and filler-fillers are also involved in PNCs [40,41,47,48]. In
the case of PNCs, the numbers and total area of interfaces are actually greater compared
with micro and macrocomposites, which are not always in favor of thermal conductivity.
Recently, we explored the role of interfaces in PNCs based on amorphous and semicrys-
talline polymers filled with moderate amounts of CNTs and graphene oxide and showed
that the role of the interfacial polymer around the fillers and that around the crystals was
diverse as they, respectively, hinder and facilitate the heat transport (Scheme 1c) [22,23].
Such findings provide support to another open debate in the literature on the differences
in the structuring of the two types of RAF; namely, RAFcrystal exhibiting a level of chain
ordering [49–52] compared with RAFfiller (Scheme 1c).

In the present study, we synthesized and investigated two series of polymer compos-
ites based on an amorphous polystyrene (PS) and a semicrystalline high-density polyethy-
lene (HDPE) reinforced by expanded graphite (EGr) at concentrations between 5 and
55 wt %. The choice of the said polymers arose from the fact that both are widely known
commodity plastics with known properties/performance in addition to exhibiting different
thermal behaviors, e.g., the glass transition temperature and degree of crystallinity. The
composite materials were targeted at applications involving temperature management
devices (thermal stability and conductivity) and, as a next step, flame retardance; EGr
being particularly known for such a type of application [53–55]. Next to the application
point of view, i.e., thermal/electrical performance in general, these systems in comparison
with each other offered basic research; for example, evaluating direct and indirect effects
on heat and electron transport imposed by the fillers and/or the polymer crystals [22,23].
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For this investigation, we employed the following experimental methods: thermogravi-
metric analysis (TGA), differential scanning calorimetry (DSC) of the conventional and the
temperature modulation mode (TMDSC), broadband dielectric spectroscopy (BDS) and
laser flash analysis (LFA). The results were evaluated and discussed employing widely
accepted models.
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Scheme 1. Schematic models for the polymer (bulk, interfacial)/filler/crystal distribution in the composites under inves-
tigation based on (a) an amorphous matrix [18] (here polystyrene) and (b) a semicrystalline one [56] (here polyethylene).
(c) shows a simplified view of the electrical (electrons, e-) conduction and the heat transport (phonons, electrons) in
(left) amorphous and (right) semicrystalline polymer composites and nanocomposites (PNCs), wherein the matrix was
filled with conductive inclusions (here expandable graphite (EGr)) that partly percolated with each other [3,22,23,33] (and
references therein).

2. Materials and Methods
2.1. Materials

PS of high quality with a typical molar mass of Mn~170 k or Mw~350 k was purchased
from Aldrich (441147) whereas HDPE under the trade name mPE M5510 EP (Metallocene
Polyethylene Lumicene) with a melt flow index of 1.2 g/10 min (ISO 1133) and mass
density of ρ~0.955 g/cm3 was supplied from Total Petrochemicals (Feluy, Belgium). As a
temperature control and thermal conductive agent for the composites, expandable graphite
(EGr) was used [55]. EGr was purchased from G.H. LUH, GmbH (Walluf, Germany), GHL
PX 95 N, with 5% ash. max., 5% moisture and a volume expansion of ~250 cm3/g with
a starting temperature 180–220 ◦C and an average particle size of ~300 µm. Prior to the
synthesis of the composites, the EGr was heated in an oven at 400 ◦C for 5 min in order to
expand and to achieve the exfoliation of the flakes for preparing the composites after melt
mixing with neat polymers.

The composites were prepared via a relatively simple melt-compounding method.
A mixture of HDPE or PS (Scheme 1a,b) and the respective amount of graphite (between
~5 and 55 wt %) were physically mixed for the preparation of the composites. Thereafter,
the mixture was fed into a Haake Buchler Reomixer (model 600) of 69 cm3 volumetric
capacity with twin roller blades operating at 180 ◦C and a rotation speed of 30 rpm for
5 min. The obtained composites were molded to form cylindrical specimens (thin disks) by
compression at 180 ◦C using a thermal press (Paul-Otto Weber GmbH, Germany) and a
homemade mold. The prepared disks were ~2 cm in diameter and ~1.5 mm in thickness.

2.2. Techniques and Methodology
2.2.1. Thermogravimetric Analysis (TGA)

TGA thermograms were recorded employing a Setaram SETSYS TG-DTA 16/18
instrument. Samples of 3 ± 0.5 mg were placed in alumina crucibles and measured in
dynamic conditions in the temperature range from 26 to 600 ◦C at the heating rate of
20 K/min under a N2 flow of 50 mL/min.
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2.2.2. Differential Scanning Calorimetry (DSC)

The thermal events for all samples were recorded by DSC in high purity nitrogen
(for PS) and helium (for HDPE) atmospheres (99.9995%) in the overall temperature range
from –160 to 170 ◦C by means of a TA Q200 DSC apparatus (TA Instruments, New Castle,
USA) calibrated with indium for temperature and enthalpy and with sapphires for the heat
capacity, cp. Samples of 7–8 mg in mass cut from the prepared disks were closed in Tzero
aluminum TA pans. In order to erase the thermal history of the samples, a first heating
scan up to 170 ◦C was performed (scan 1). The samples were then cooled from the melt
state down to 20 ◦C (for PS) and –160 ◦C (for HDPE) at 10 K/min and, subsequently, a
heating scan up to 170 ◦C was performed at 10 K/min (scan 2).

The crystalline fraction, CF, in the case HDPE (semicrystalline) was calculated from
the measured enthalpy of melting, ∆Hm, normalized to the polymer content (∆Hm,n)
employing Equation (1):

CF =
∆Hm

wpol · ∆HPE,100%
=

∆Hm,n

∆HPE,100%
(1)

where wpol was the wt polymer content and ∆HPE,100% was the melting enthalpy of 100%
crystalline PE taken equal to 293 J/g [57].

Glass transition was observed in all PS-based samples only whereas HDPE samples
did not exhibit a recordable glass transition in the temperature range of the measurements.
This is expected for PE, in particular here where the CF was quite large (>50%, details are
given later). For PS, the glass transition temperature, Tg, was estimated via the half cp
method whereas the change in heat capacity during glass transition, ∆cp, was estimated at
Tg. ∆cp was then normalized to the amorphous polymer mass according to Equation (2).

∆cp,n =
∆cp

wpolymer(1− CF)
. (2)

In order to check the recordings on the glass transition of HDPE and accurately
estimate cp, the special DSC technique of Temperature Modulation (TMDSC) [56,58,59] was
employed on fresh samples of ~12 mg in mass. TMDSC measurements were performed in
the temperature range between –90 ◦C and 80 ◦C for HDPE and between 0 ◦C and 130 ◦C
for PS at the heating rate of 2 K/min with a modulation period of 60 s and a temperature
amplitude of 1 K.

2.2.3. Broadband Dielectric Spectroscopy (BDS)

The electrical conductivity was determined at 20 ◦C employing the BDS technique [35]
by means of a Novocontrol (GmbH, Germany) apparatus; namely, an Alpha frequency
response analyzer (FRA) combined with a BDS-1200 sample cell on disk-like samples of
20 mm in diameter and ~1.5 mm in thickness. An alternate voltage was applied to the
sample and the complex dielectric permittivity, ε* = ε′ − iε′ ′, was recorded isothermally as
a function of the frequency, f, in the range from 10–1 to 106 Hz. The electrical conductivity
as a function of f, σ*, was calculated from the measured ε* by Equation (3):

σ∗(ω) = i ·ω · ε0 · ε∗(ω) (3)

where ω = 2π·f was the angular frequency and ε0 was the dielectric permittivity of the
vacuum [35].

2.2.4. Laser Flash Analysis (LFA)

The thermal diffusivity, α, was determined at 20 ◦C (~RT) employing the LFA tech-
nique [60] by means of a NETZSCH LFA 467 HyperFlash apparatus (NETZSCH, Selb,
Germany). The measurements were performed in a nitrogen atmosphere on samples of a
cylindrical form of ~1.5 mm in thickness and 12.7 mm (half inch) in diameter. Graphite was
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spray coated onto the top and bottom sides of the samples following the manufacturers’
instructions. α was measured almost directly from an average of five samples per composi-
tion and four light pulse shots (of 600 µs in duration) per sample from the heat transmission
at a spot size of 8.9 mm via an InSb infra-red detector. A Cowan plus pulse-correction
model [61] was fitted to the signal of the detectors and α was estimated via the widely
employed half-time method and via Equation (4):

α = 1.38 · L2/(π · t1/2) (4)

where L was the sample thickness and t1/2 was the required time for reaching half of the
maximum temperature rise of the rear surface [60]. Subsequently, thermal conductivity, λ,
was calculated via Equation (5):

λ = α · ρ · cp (5)

where ρ was the sample density and cp was the specific heat. In our case, ρ was estimated
from accurate measurements of the sample mass and volume whereas cp was calculated
by two methods, i.e., directly from LFA software by comparing with a reference sample
(pyroceram) as suggested by the manufacturer and additionally by TMDSC at 20 ◦C.

3. Results and Discussion

Figure 1 shows the results by TGA. From the remaining mass at the highest temper-
ature, we determined the EGr weight fraction in the composites. Please note that neat
polymers (0% EGr loading) resulted in 1–1.3 wt % remaining mass upon decomposition.
This amount was considered when estimating the EGr loading. From the methodological
point of view, we would like to report that the final amount of EGr in the composites was
slightly lower (i.e., by ~1–2 wt %) than that weighted prior to the mixing with the polymers.

The TGA results also showed in general a slight temperature hysteresis for the initi-
ation of polymer decomposition in the composites (elevation of the onset temperature).
To further evaluate that we created Figure 1c. Therein, we compared the two series of
composites in terms of the TGA temperature corresponding to a 5 wt % mass loss, T5%. In
the inset to Figure 1c, the absolute T5% increased in general in the composites but laying on
different temperature ranges; namely, 390–401 (± 0.4) ◦C for PS and 424–444 (± 0.3) ◦C for
HDPE. The exception to this behavior was the case of HDPE + 55 wt % EGr (Figure 1c),
wherein the EGr distribution within the HDPE matrix may not have been good (extended
aggregation of EGr [18]). When comparing directly the T5% of the composites with that
of the corresponding unfilled matrix polymer, ∆T5%, in Figure 1c, we observed that ∆T5%
was in general larger for HDPE than PS.

These effects could be rationalized by the concept of formed interactions between the
polymers and the fillers, probably larger in strength or/and degree (number of contact
points) [7,10,18] for HDPE/EGr than PS/EGr. The interfacial interactions were considered
to most probably lead to the formation of more rigid polymers in the composites; i.e.,
an interfacial RAF [18] and a tighter MAF with increased Tg. These points were further
followed below in the light of findings by DSC.

3.1. Thermal Transitions (DSC)

To record the thermal transitions and, in a next step, to evaluate the polymer fractions
existing in the composites, we employed DSC. The samples were subjected to a first
heating scan at a high temperature (170 ◦C and 160 ◦C for HDPE- and PS-based systems,
respectively) to erase any thermal history (not shown).

In Figure 2 we presented the DSC heating curves of the second scan (scan 2) for the
PS-based samples.
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Figure 2. Differential scanning calorimetry (DSC) curves during heating at 10 K/min for the PS-based
systems under investigation during scan 2. The heat flow values were normalized to the sample
mass. The dot-dashed lines were added as representatives of the baselines of the curves before and
upon glass transition.
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The PS samples were all amorphous; therefore, the only thermal transition recorded
was that of the glass transition. The characteristic temperature, Tg, was evaluated via the
half cp increase method. Tg equaled 93 ◦C for neat PS and systematically increased up to
96 ◦C upon EGr addition. These results are shown in the comparative diagrams of Figure 3a.
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At the same time, the glass transition strength was reflected to the change in heat
capacity, ∆cp. Upon normalization with the polymer mass (Equation (2) where CF = 0 for
PS), ∆cp,n equaled 0.35 J/gK for the unfilled PS matrix and dropped to 0.32–0.33 J/gK in
the composites (Figure 3a). Both results, Tg and ∆cp,n, suggested that the fillers acted as
obstacles to the mobile polymer chains, hindering their diffusion (mobility). Simultane-
ously, the suppression in ∆cp,n has been widely considered [16,18,22,56] to originate on
the immobilization of polymer chains at the surface of the fillers, producing the so-called
RAFfiller. The fraction of the polymer that contributes to the glass transition is the so-called
mobile amorphous fraction, MAF [18,56]. The MAF and RAFfiller can be estimated in the
frame of a two phase model [18] by the following equation, Equation (6):

RAFf iller = 1−MAF = 1− ∆cPNC
p,n /∆cmatrix

p,n . (6)

The results for the RAFfiller and MAF are shown in Figure 3b. The RAFfiller equaled
0.06 for almost all composites while it was larger (0.09) for 8 % EGr. Compared with
PNCs with smaller nanoparticles finely dispersed throughout the matrix, the RAFfiller here
seemed quite low [10,18,22,23,56,62,63], especially when considering the heavy loadings of
12 and 33% EGr. The effect was compatible with the large fillers involved, as two of their
dimensions were of hundreds of µm whereas the almost constant values of the RAFfiller
suggested a strong EGr agglomeration [18,22,24] probably forming many EGr continuous
paths. This was actually desired and will be discussed later.

In Figure 4 we presented the DSC results for the systems based on HDPE during
heating of scan 2. Therein at about 130 ◦C, the endothermal peaks recorded in all HDPE
samples corresponded to the melting of crystals. The temperature of the peak maximum,
Tm, equaled 132 ◦C for the unfilled matrix and exhibited weak changes at the addition of
the fillers; namely, slightly increasing for 5 and 8 wt % EGr (133–134 ◦C, Figure 3a). The
melting enthalpy, ∆Hm, was evaluated using proper TA software and was found to equal
163 J/g for neat HDPE. For the composites and upon normalization to the polymer mass
fraction by Equation (1), ∆Hm,n varied between 159 and 209 J/g (Figure 3a). Based on these
values, we calculated the CF of the matrix (Equation (1)) to equal 0.56 wt. The CF increased
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in general in the composites up to 0.72 wt for 55% EGr (Figure 3b). The values for CF were
quite high compared with other semicrystalline polymers; however, these were expected
for HDPE [22,45].
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Figure 4. DSC curves during heating at 10 K/min for the HDPE-based systems under investigation.
Results refer to scan 2; i.e., upon erasing any thermal history. The heat flow was normalized to the
sample mass. The dot-dashed lines were added as representatives of the baselines of the curves
before and after melting.

Regarding the glass transition in HDPE, a corresponding step could not be resolved.
This could be due to the high CF. To suppress crystallization, we performed measurements
involving more intense cooling at ~100 K/min. These experiments proved unable to sup-
press crystallinity therefore they are not shown here. Following previous work [58,64,65],
in order to clear the DSC signal from several contributions and search for any weak glass
transition steps of HDPE, we performed TMDSC. Selected results by TMDSC are shown in
Figure 5. Figure 5a shows the total cp curve along with its two contributions; i.e., the revers-
ing (real) and non-reversing (imaginary) parts for unfilled HDPE. The glass transition step
was sought within the reversing (real) part of cp (Figure 5b). The glass transition was again
absent in all HDPE-based samples at least at the temperature range investigated. Therefore,
we concluded that any amorphous polymer chains were mainly immobile (bound) either
around the crystals or at EGr interfaces.
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Thus, we expected that polyethylene in bulk and in composites consisted of two
phases; namely, CF and RAF due to crystals, RAFcrystal. Employing again a two phase
model (1 = CF + RAFcrystal), we estimated RAFcrystal to equal 0.44 in neat HDPE and to
systematically decrease with the EGr addition down to 0.28. The data have been included
Figure 3b. Taking into account all of the data on Tm, CF and RAFcrystal together, we
concluded that the crystals formed in the composites compared with the unfilled matrix
should have been of a similar quality (lamellae thickness, similar Tm) but of a larger average
size (CF elevated, RAFcrystal dropped). The effects could be checked by proper microscopy
experiments, e.g., polarized optical microscopy [66,67]. Nevertheless, due to the heavy
loadings of such large particles (dark), such investigations could be precluded.

3.2. Electrical Conductivity (BDS)

The data by BDS are shown in Figure 6a in the form of the frequency dependence of the
real part of the complex electrical conductivity σ(f ) at 20 ◦C for all systems. We recalled that
EGr is an electrically conducting material while our polymers were insulators. At 20 ◦C,
PS was also at the glassy state whereas HDPE was mainly crystalline and rigid. Depending
on the EGr fraction, two distinct behaviors were observed in σ(f ) in Figure 6a. On the one
hand, for the composites with compositions between 0 and 8 wt % EGr, the AC conductivity
increased almost linearly with f. This was typical behavior for insulating materials. On
the other hand, for the larger EGr loadings, σ increased by many orders of magnitude (to
10–4–10–2 S/cm, Figure 6a) and the composites demonstrated the so-called DC plateau
wherein σ became independent from f.
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Figure 6. (a) Comparative broadband dielectric spectroscopy (BDS) spectra of the real part of electrical conductivity (in AC),
σ, versus frequency at 20 ◦C for the samples described on the plot. (b) The EGr loading dependence of σ at 100 mHz. The
marked area in (b) shows the expected range of EGr loading wherein the electrically conductive paths through EGr were
initially formed (electrical percolation, inset scheme).

To supply a more direct comparison between all samples, the σ values for the lowest
measured frequency (10–1 Hz) were plotted in Figure 6b against the EGr loading. In the
case of electrically conducting materials (the existence of the DC plateau), the said value of
σ represented the DC conductivity, σDC. It is clearly seen in Figure 6b that the transition
from the insulating to conducting phase took place between 8 and ~12 wt % EGr for PS and
between 8 and 25 wt % EGr for HDPE. The electrical conductivity of the high values 10–4–
10–2 S/cm was due to EGr in particular, screening the oriented transport of electrons via
the fillers (hopping and tunneling mechanisms, inset to Figure 6b) [3,25]. The lower value
of EGr loading for the formation of the first electrically conducting paths (inset scheme to
Figure 6b) throughout the whole sample, i.e., the so-called percolation threshold (pc), was
located between the two aforementioned values. The exact value could be calculated from
the percolation theory [34]; nevertheless, we did not proceed with such a calculation as
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more experimental data were necessary, especially for the HDPE-based samples. There
have also been significantly lower reported pc values in nanocomposites [3,25,68] (and
references therein) than those expected here.

It is interesting to mark from the methodological point of view that between the 8 and
12 wt % EGr we showed above in Figure 3 the thermal transitions and polymer fractions
also exhibited their most intense changes, which was partly correlated with the formation
of continuous filler paths (agglomerates) throughout both polymer matrices (such as those
schematically described in Scheme 1c).

3.3. Thermal Conductivity (LFA)

The focus can be turned now to the results by LFA. The raw LFA measurement results
at 20 ◦C are shown in Figure 7 in the form of the time evolution of the detector signal
along with the corresponding analysis for determining t1/2. The signal represented the
temperature of the top (rear) surface of the sample (inset to Figure 7a).
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Figure 7. Typical laser flash analysis (LFA) measurements at 20 ◦C for (a) neat HDPE and PE + 5–50 wt % EGr and (b) neat
PS and PS + 12 and 33 wt % EGr. The added dotted arrows describe the route for estimating t1/2. (to be used for the
calculation of α in Equation (4)). Included in (a) is a schematic that describes the measurement process in LFA and a
representative laser pulse profile.

From only a glance at Figure 7, it is obvious that the heat transfer response was
faster in the composites compared with the unfilled matrices. Subsequently, t1/2 was
reduced. Employing Equation (4), the LFA data of Figure 7 were evaluated in terms of α.
We noted that α is the direct thermal property obtained by the LFA technique. The data
for α are shown in Figure 8a. Therein, α varied between 0.11 mm2/s (i.e., in neat PS) and
1.41 mm2/s (i.e., in HDPE + 55% EGr), systematically increasing with the EGr loading.
A final comment on α refers to PS filled with EGr between 8 and 12 wt %. Between the two
latter compositions, a sudden increase in α occurred in Figure 8a. This might correlate with
the percolation of EGr expected at that concentration, as shown above for σ in Figure 6b.

Regarding heat transport, the physical property that is exploitable for processing and
applications is thermal conductivity. For the accurate evaluation of λ and according to
Equation (5), next to the easily measurable density, ρ, cp was necessary. cp was estimated
by the LFA measurement here in combination with properly chosen reference materials
and suitable software. Thus, λ was estimated here for PS-based systems between 0.13 and
0.55 W·K–1·m–1 and in the HDPE-based ones between 0.38 and 1.97 W·K–1·m–1, monoton-
ically increasing with EGr loading in Figure 8b. The absolute λ were calculated also by
employing the cp values obtained by TMDSC (Figure 5b) and the results were included in
Figure 8b. Therein, λ was in quite good agreement for the two calculation routes.
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Figure 8. The EGr loading dependence of (a) thermal diffusivity, α, and (b) thermal conductivity, λ. In (a), the values for
crystalline fraction (CF) were added for comparison and correspond to the vertical axis at the right. In (b), the open and
crossed data points correspond to λ estimated by the cp values obtained by LFA and TMDSC, respectively. The added
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the literature, [69,70], respectively. The inset schemes to (b) are simplified models for rationalizing a few differences in the
heat transport (arrows) between the amorphous and the semicrystalline composites.

In the HDPE-based systems compared with the PS-based ones, α and λ were larger
and this was most probably due to the implementation of polymer HDPE crystals at high
fractions [22,33,45,46,71]. In Figure 8a, the % increase in CF was not equal or similar to the
increase of α and λ. Therefore, the results suggested that the major contribution to heat
transport was via EGr and the synergetic contribution of crystals (Scheme 1c and inset
to Figure 8b).

Beside these facts, it is useful to compare our data on λ with those of the initial EGr.
To do so, we added data for neat EGr from the literature, both theoretical values mathe-
matically estimated [69] and experimental ones [70], as shown in Figure 8b. According to
these works and depending on the density of EGr (degree of packing/exfoliation), λ may
change from ~1 to 7 W·K–1·m–1 [69] or from 4 to 12 W·K–1·m–1 [70]. The measured values
can be also higher; for example, even up to 45 W·K–1·m–1 [70] depending on the method of
measurement, e.g., placing the used detector parallel or perpendicular to the direction of
the thermal stimulation.

Obviously, the larger λ for EGr occurred for the largest density [69,70]. In our case EGr
was exfoliated (at 400 ◦C) prior to the preparation of the composites and the exfoliation
(either extensive or not) was expected to be maintained in the composites due to the high
temperature of melt-compounding. Consequently, the apparent density of EGr in the
composites was also expected to be low. In this context, when extrapolating the linear
fitting of our results on λ in Figure 8b to the 100% EGr content we expected a coincidence
to the lower λ for the initial EGr. This was found to be true as far as the theoretical
values were concerned (region 1 in Figure 8b) but not for the experimentally estimated λ
(region 2). The lower values in general of our λ in the composites, moreover, even lower
for the amorphous PS-based ones, originated from the various factors that hindered the
transport of heat (Scheme 1c). First, considering the heat transport via the conducting
fillers, the hindering was due to the heat resistance at the individual filler contacts (contact
resistance) [40,41,54] and the interfacial thermal resistance at the filler-polymer interface
(interfacial thermal resistance) [40,47]. As far as the heat transport via the polymer was
concerned, this was quite poor in the amorphous polymers and became worse when
filler-polymer interfaces were involved [22,23]; the latter acting as heat scatterers. On
the contrary, the formation of crystals (ordered structures) is known to favor polymer-
through transport of hot phonons [45,46]. This was clear in our case when comparing the
amorphous and highly crystalline matrices in Figure 8. Quite recently, we showed that the



Appl. Nano 2021, 2 42

RAFcrystal can be used as measure of the crystals-through heat transport (insets to Figure
8b) [22] while on the other hand a measure of the amorphous polymer heat scattering at
the filler interfaces in composites has been proposed to be the amount of RAFfiller [22].
Both RAFs were estimated here (Figure 3b); however, their action as described above
cannot be evaluated here, at least not without serious assumptions. Furthermore, the
individual through-polymer contribution to λ was minor compared with the severely large
EGr-through contribution.

4. Conclusions

In summary, we prepared, by simple melt-compounding, and investigated polymer
composites consisting of amorphous PS or semicrystalline HDPE filled with 5–55 wt %
EGr. Complementary techniques, TGA, DSC-TMDSC, BDS and LFA, were employed to
explore the thermal transitions and evaluate the electrical and thermal conductivity. In
both types of polymer in the amorphous state based on TGA data, polymer-EGr interfacial
interactions seemed to be formed and, indirectly, led to hindered thermal decomposition.
The effect of decomposition hysteresis was larger in HDPE/EGr than PS/EGr, suggesting
stronger interfacial interactions in the case of HDPE. EGr fillers were found to slightly
hinder the PS chain mobility by increasing the Tg and produced a relatively low amount
of interfacial bound polymer (RAFfiller). On the other hand, the presence of EGr in the
highly crystalline HDPE matrix resulted in a further elevation of CF whereas based on
the absence of a glass transition step, it was considered that the non-crystallized part of
HDPE was all rigid; for example, around the crystals (RAFcrystal). The center of interest
here considering also the targeted applications were the effects of EGr on the electrical
and heat transport. BDS results showed that fillers formed free electron paths at >8 wt %
EGr loadings, producing high σ values up to 10–3–10–2 S/cm. On the other hand, a LFA
revealed the systematic and intensive increase of α and λ by the EGr addition with this
increase being almost linear. The quite large λ values (up to 1.97 W·K–1·m–1) suggested
that the thermal transport in the composites occurred severely via the percolation of the
EGr sheets. λ was systematically higher in HDPE than in PS, already in the case of the
unfilled matrices, which was indicative of the additional contribution of crystals to heat
transport. Overall, the effects recorded here on the thermal and the electrical conductivities
by the fillers as well as by the crystals indicated the successful preparation of materials
and, partly, their performance, envisaging the wanted applications. Moreover, the said
effects were expected to favor other improvements of properties such as the mechanical
performance, which was also wanted and could be checked in a future work.
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