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Abstract: The current paper presents the coating of harvested strawberries with edible nanoparticles
of Chitosan. The NPs were formed by the application of ultrasonic waves on an acidic solution of
chitosan. In a one-step process the nanoparticles were created and subsequent to their formation
they were deposited on the strawberries surface. The shelf life of the NPs coated was compared with
the deposition of the same amount of non-sonicated chitosan, i.e., coating of individual chitosan
molecules on the fruit. The characterization of the coated fruits was carried out by monitoring the
weight loss. TSS (total soluble solids), pH, TA (titratable acidity), and Vitamin C. Finally, the freshness
of the strawberries was determined by eye observation. In addition, the characterization of the
chitosan NPs was also conducted in this study by (DLS) dynamic light scattering and (SEM) scanning
electron microscopy.
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1. Introduction

Fruits and vegetables which are perishable soon after harvest, require proper pack-
aging and storing if not consumed immediately [1,2]. The high decayable fruits and
vegetables prompted researchers to look for new approaches to elongating shelf life [1].
Strawberries are considered a type of fruit with great economic importance worldwide
because of their taste and also their health benefits [3,4]. Strawberries have a significant
nutritional value because they contain minerals and vitamins, and a variety of flavonoids
and phenolic acids with biological properties, for instance antioxidant, anticancer, and
anti-inflammatory activities [5,6]. However, strawberries have a noticeably short life after
harvesting with a high rate of decay, which reflects a mechanical deterioration, softer tex-
ture, and contamination by pathogens during storage or transport [7]. Edible coatings have
essential importance in maintaining food quality and can be applied as a thin layer on the
surface of the food that acts as a barrier to gases (O2, CO2), vapors, and solutes. [2,8]. Edible
coatings can potentially extend the shelf life by controlling the mass transfer, moisture,
flavor, and aroma losses and by maintaining the external appearance of the food [9,10].
Modification of the metabolism of fruit tissues by controlling respiration rate, elongating
the shelf life during the storage period, firmness maintenance, and preventing microbial
growth which counts as an important functional advantage of using the edible coatings [11].
Edible coatings which are based on natural biopolymer such as lipids, polysaccharide,
and protein, constitute an innovative development on the concept of food preservation.
Chitosan (CS) a natural biopolymer (polyβ-(1,4)-acetyl-D-glucosamine) is considered as
cationic polysaccharide in its active form, biodegradable compound, non-toxic for human
health and eco-friendly material [12] CS is considered a highly-biocompatible substance
which is characterized by its biological uniqueness as a preservative for fruits and veg-
etables [13–15]. CS has antimicrobial activity against fungi, bacteria, and viruses which
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make it an alternative compound to conventional fungicides because of its capacity to keep
over fruit surfaces free of residues [16] Chitosan-based edible coatings are considered the
best conservative coatings for different types of fruits, which leads to structural protection
that prevents biological, chemical, and physical deterioration [17]. Coating Chitosan on
fresh produce plays an important role in maintaining the quality and safety of the modified
fruit [18]. Edible coatings depend on various parameters such as type, amount, viscosity,
and surface tension. Furthermore, the coating method also affects the quality and efficiency
of the coating [19–21]. Particles made of natural biopolymers can be prepared, ranging
in size from 10 to 1000 nm [22]. Particles have physical and chemical properties due to
their capacity to controlling the particle size up to the level of NPs and surface adhesion.
Nanoparticles have higher antibacterial activity than individual particles when they are
applied on the surface of fresh produce during the cold storage period [23]. This could
be due to the larger surface area of nanoparticles and their higher affinity for bacterial
cells [24]. CS NPs is a natural material with excellent physicochemical properties [25],
because one nanoparticle contains thousands of chitosan molecules. The sonochemical
method can be used to prepare CS NPs [26]. Moreover, the application of Ultrasonic waves
have been proven as an outstanding technique for coating surfaces with nanoparticles on
ceramic, cotton [27], polymeric, metallic, glass [28], textiles [29,30], and even paper [31].
The sonication of a solution, aqueous or organic, leads to the formation of nanoparticles
(NPs) of the solute. Moreover, in previous studies food preservation materials were used to
elongate the shelf life of strawberries coating with CMC-Guar gum-Ag◦NC (NanoCompos-
ite) films [32], or films of pectin (PEC) + nanoparticles [33], or eugenol (EG) loaded with
core-sheath PVP/shellac fibrous films which were prepared by coaxial electrospinning tech-
nology that was employed for this purpose [34]. Chitosan was already involved in this goal
where films with different molecular weight and chitosan/corn amylose/cinnamaldehyde
films were used for the packaging strawberries to extend their shelf life [35]. In addition,
strawberries were dipped in different aqueous solutions like CaCl2 or salicylic acid (SA) in
different concentrations, solution of N-succinyl chitosan (NSC) immobilized on lysozyme
and sodium alginate solution combined with ZnO NPs were applied as an edible coating
to increase the shelf life of post-harvest [36–39]. Also, techniques such as atmospheric
cold plasma (ACP) and electrostatic spraying (ES) were used as efficient techniques for
strawberry preservation [20,40,41]. The purpose of this study was to demonstrate the feasi-
bility of the sonochemical method to form chitosan NPs and to coat them on strawberries.
The sonochemical method employed in the current investigation was primarily aimed to
elongate the shelf life of strawberries. The coating of the nanoparticles of chitosan, organic
water-soluble compound was conducted without using any binding agents. The novelty of
the current study is in the formation of nanoparticles of the preservation material, and its
comparison with the same amount of separated chitosan molecules. In addition, a unique
coating method was used for this goal. The manuscript emphasizes the effects of edible
coating, chitosan NPs, on the quality and shelf life of strawberries as described in the
Scheme 1 below.
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2. Materials and Methods
2.1. Fruit Samples

Fresh strawberries (Fragaria ananassa) were purchased from a local market. These
strawberries were carefully selected for uniformity in size, color, external appearance,
and free of visible defects and decay. The fruits were transported to the laboratory and
coatings were applied.

2.2. Coating Compounds

Low molecular weight CS (Chitosan) (15 kDa) were purchased from Sigma Aldrich,
as well as 1% aqueous acetic acid (v/v), deionized water was used for preparation of
the solutions.

2.3. Preparation of the Edible Coating Solution

For the formation of Chitosan NPs, CS (300 mg) were dissolved in 30 mL of 1%
aqueous acetic acid solution and then deionized water were added to obtain 300 mL,
to form 0.1% (wt.) of chitosan solution. The solution was stirred by a magnetic stirrer until
fully dissolved of CS for 24 h. To prepare NPs of CS a high-intensity ultrasonic Ti horn
(20 KHz, 750 W at 30% efficiency) was immersed and operated for 30 min. The solution
was cooled to 45 ◦C under cooling condition during the sonochemical process and then
cooled to room temperature 25 ◦C before the coating takes place. The same process was
applied for distilled water as a reference coating.

2.4. Coating Method

The strawberries were washed with distilled water for 2 min and dried at room tem-
perature before the coating process of 2 h. The strawberries were then dipped in the edible
coating solution undergoing sonication for 30 secs to enable the chitosan nanoparticles to
be glued to the surface of the fruit and create a uniform film. For control the same process
of immersion is done for strawberries which have been dipped in distilled water. Also,
the same process is done with CS solution that did not undergo sonication, to check if
coating with NPs of chitosan have any advantage over the NPs in extending the shelf
life and maintaining the quality of the strawberries. The strawberries were dried at room
temperature for 3 h and were subsequently stored at 4 ◦C and 80–85% relative humidity
for 15 days of cold storage. Quality measurements were performed at 0, 3, 6, 9, 12, and
15 days, respectively. The samples assessment was done at least in triplicate.

2.5. Characterization of Chitosan Nanoparticles
2.5.1. Dynamic Light Scattering (DLS)

Particle size distribution of the NPs of chitosan after sonochemical process were
measured by a DLS instrument (Malvern, UK) to confirm the formation of CS NPs in the
solution [22]. The analysis was carried out at scattering angel of 90◦ at temperature of 25 ◦C
using nanoparticles dispersed in distilled water (300 mg of sample was dissolved in 300 mL
of 1% acetic acid solution and then sonication is done in a high-intensity ultrasonic Ti horn).
The average particle size of NPs is reported as well as the polydispersity index (PDI).

2.5.2. Scanning Electron Microscopy (SEM)

The morphology of the surface and the size of the nano-edible coating on the surface
of the strawberries was characterized by environmental scanning electron microscopy
(E-SEM) using (Quanta FEG 250 of FEI) device at 5 KV.

2.6. Physical and Chemical Properties of Strawberries

Weight loss was investigated by weighing the strawberry before and during the
storage period and weight loss percentage calculated by the following equation.

Weight Loss (%) =
Wi − Wf

Wi
× 100 (1)
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When Wi is the initial weight and Wf is the final weight of the tasted strawberry
during the storage period at time (t = 0, 3, 6, 9, 12, and 15 days). Group of strawberries
were homogenized by blender and measurement of Total soluble solids content (TSS, Brix)
was gauged by using a handheld refractometer (REF113 Brix/ATC 0–32%) which measure
the refractive index, and the results were expressed as 0Brix. Measurements of pH were
conducted with a pH-meter (Mettler Toledo Sevenmulti). Titratable acidity (TA) of the
samples were assessed using a pH-meter and a titration of each sample was performed with
0.1 M NaOH to an end point of 8.2 and the results were expressed as gr of citric acid per
100 g of sample. In addition, the L- ascorbic acid concentration in homogenized blended
strawberries was determined by redox titration using iodine solution and expressed as
ascorbic acid content in 100 g of sample [10,36,37].

2.7. Sensory Acceptance

Decay rate a damage that caused by deterioration symptoms such as, mold growth,
bacteria, and inhibition of enzymatic processes on fresh produce, were appreciated by visual
examination that based on general visual attraction, color and visible structural completeness,
according to the following scale: 1 = no damage; 2 = minor damage below 25%; 3 = moderate
damage between 25% and 50%; 4 = drastic damage between 50% and 75%; 5 = totally damage
between 75% to 100%. Strawberries scored below 2 was considered acceptable [3].

3. Results and Discussion

This paper aims to prove that embedding edible NPs of chitosan on the surface of
strawberries by a one-step ultrasound assisted procedure can increase their shelf life at
cold preservation.

Characterization of chitosan NPs- To verify the validity of prepared chitosan NPs, the
sonicated particles were characterized by DLS and SEM.

3.1. Dynamic Light Scattering

To certify the presence of the CS NPs in the solution and evaluate their size division,
the solution of CS NPs was analyzed by the DLS method after the sonication. The results
show that the chitosan particle size before sonochemical process ranged above 1000 nm
Figure 1A as compared to the size of CS NPs at selected concentration that ranged between
100–600 nm as shown in Figure 1B.

3.2. Scanning Electron Microscopy

The surface morphological structure of the strawberries coated with CSNPs was
examined by E-SEM method after performing the sonochemical process on the chitosan
1% solution as a coated sample and on the distilled water as a control sample. The results
show that the nanoparticles size of CS NPs that were distributed on the fruit surface was
around 200 to 600 nm Figure 2. In contrast, the control samples showed no nanoparticles
on the surface of the strawberries.

3.3. Physical and Chemical Properties

Strawberries weight loss is a significant index that reflects the respiration rate and
humidity between the strawberry and their surroundings. Weight loss increased through-
out the cold storage period also for the sample coated with chitosan NPs and uncoated
strawberry with significant differences between the two cases. As shown in Figure 3 CS NPs
coatings on strawberries significantly delays the weight loss comparing to the uncoated
samples (control). The weight loss of strawberries dipped in a non-sonicated chitosan
solution is also monitored and presented in blue curve of Figure 3. The comparison between
the three curves in Figure 3, demonstrate that the use of CS particles on the surface is the best
coating in terms of weight loss. The results show that during storage period strawberries
coated with CS NPs have the most effective trace in reducing weight loss 31.18% compared
to the control with 64.14%, and the individual CS with 37% weight loss.
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Figure 2. Scanning electron microscopy (SEM) images of (A) control sample of strawberry with-
out coating (magnification 500×), (B) control sample at (magnification 50,000×), (C) strawberry
coated with CS NPs after sonication (magnification 500×), (D) strawberry coated with chitosan (CS)
nanoparticles (NPs) at (magnification 50,000×).
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Figure 3. Effect of CS and CS NPs edible coatings on the mass loss of strawberries stored at 4 ◦C and
80–85% relative humidity (error bars indicate standard deviation).

Total soluble solid (TSS) are related to the degree of maturity and basic metabolic
reaction that increase the sugar content throughout storage period. TSS is substantial
parameter that affects the quality of postharvest fruit and acceptance of consumer. High
TSS value is preferred. The TSS of coated strawberries decreased slightly during the storage
while this parameter dropped sharply in control strawberries. The TSS content of coated
strawberries maintained a high value during the 15-day storage period (10.1 to 9.1%)
compared to control fruits (9.8 to 7.1%) (Figure 4).
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Figure 4. Changes in total soluble solids (TSS) of strawberries during the storage period at 4 ◦C (error
bars indicate standard deviation).

The pH reflects the changes of organic acid content in fresh fruit during storage. The
pH value increased during the storage period in general, which was corelated to fruit aging
and microorganisms growing in an acid substrate when their metabolic activity made the
medium less acidic with high pH value. The changes in pH value of strawberries coated
with CS NPs and uncoated strawberries during the 15 days of cold storage at 4 ◦C are
shown in Figure 5.

Titratable acidity (TA) reflects the change in the percentage of citric acid in fresh fruit
since citric acid constitutes a major part of the acid in strawberries. However, using of CS
NPs as an edible coating does not affect the TA of strawberries significantly during the
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storage period, but the TA of control (uncoated) strawberries decreased slightly at the end
of storage period Figure 6.
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Figure 5. Effect of edible CS NPs on the pH of strawberries stored at 4 ◦C (error bars indicate
standard deviation).
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 Figure 6. Effect of CS NPs edible coating on the titratable acidity (TA) of strawberries during the
storage at 4 ◦C (error bars indicate standard deviation).

L-ascorbic acid (Vitamin C) is a necessary nutrient needful to maintain human health.
Strawberries fruit have a comparatively high concentration of vitamin C, which is around
40–70 mg/100 g strawberries. However, vitamin C is easily degraded during storage
period. The L-ascorbic acid concentration in strawberries at this research ranged from 56.35
to 56.79 mg/100 g. Results shown in Figure 7 indicate a strong reduction of the L-ascorbic
acid in the uncoated (control) strawberries 20.03 mg/100 g, after 15 days of cold storage.
And after these time strawberries coated with CS NPs kept high value of L-ascorbic acid
43.54 mg/100 g.

Vitamin C consists of l-ascorbate and dehydro-l-ascorbic acid (DHA) is chemically
considered to be one of the simplest vitamins. Plants can synthesize ascorbate, accumulat-
ing it at up to millimolar concentrations. The oxidation reactions involved are effectively
reversible in plants owing to the presence of DHA reductase and monodehydroascorbate
reductase. DHA can then be further oxidized to a range of products or hydrolyzed to form
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diketogulonate (DKG), both these reactions representing a permanent loss of vitamin C
from the plant tissue which occurs with the strawberries as well [42].
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CS NPs edible coating showed a significant ability to inhibit mold growth during 15 days 
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Figure 7. The effect of CS NPs, on the content of L-ascorbic acid (Vitamin C) of strawberries during
the cold storage at 4 ◦C (error bars indicate standard deviation).

3.4. Sensory Acceptance

The Decay rate reflects the occurrence and severity of mold. In an initial evaluation
of coated CS NPs and uncoated strawberries presented source of 1, suggesting that the
strawberry will not be damage by molds and enzymatic processes. Nevertheless, decay rate
increased significantly in control fruits (decay rate = 4. 25), likewise, strawberries coated
with CS solution without sonication, show an increasing at decay rate (decay rate = 2) as
compared with strawberries coated CS NPs (decay rate = 1.5). It is worth mentioning that
the CS NPs stay stable throughout storage period Figure 8A. Moreover, CS NPs edible
coating showed a significant ability to inhibit mold growth during 15 days of storage as
shown in Figure 8B.
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Figure 8. (A) Effect of CS NPs edible coating on decay rate of strawberries stored at 4 ◦C. (B) Images
of decay rate of strawberries throughout the storage. Up: Strawberries coated CS NPs, Down: Control
strawberries (error bars indicate standard deviation).

4. Conclusions

The present study shows the effect of using sonochemical method in order to prepare
edible nanoparticles of low MW chitosan to extend the shelf life of strawberries at cold stor-
age of 4 ◦C. Indeed, Nano-chitosan coatings impart antibacterial and antimold properties
on fruit surfaces because they have a larger surface area and higher affinity with bacteria
cells than the chitosan particles. The E-SEM images show the change in the morphology of
the surface between coated and uncoated strawberries. The applications of edible nano
coating reduced mass loss, growth of molds and delayed alteration of TSS and color of
strawberries (red). Edible nano coating of chitosan helps at maintaining the L-ascorbic
acid content during the storage period. Strawberries coated with CS NPs control the decay
rate more significantly and efficiently compared to the control (uncoated strawberries).
Strawberries treated with edible CS NPs coating accomplished a shelf-life of 15 days at
cold storage. Thus, CS NPs have a great potential in strawberries preservation as an active
edible coating. This leads to opening up new perspectives in future research in searching
for an effective combination of CS NPs with other elemental forms to secure spacious
antibacterial activity, preserve the quality and extending the shelf life of fruits.
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