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Abstract: Water pollution has badly affected human health, aquatic life, and the ecosystem. The
purity of surface water can be measured in terms of dissolved oxygen (DO) measurements. Hence,
it is desirable to have a portable and simple-to-use dissolved oxygen sensor. One possible remedy
is an electrochemical sensor. Thus, we proposed an ITO-IrOx electrocatalyst for an effective and
interference-free DO sensor utilizing the principle of oxygen reduction reaction (ORR). The ITO-IrOx
was characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), electro-
chemical impedance spectrometry (EIS), X-ray photoelectron spectroscopy (XPS), and reflectance
spectroscopy-based techniques. Reflectance spectra of the ITO-IrOx electrode showed the photoresist
capability. The EIS spectra revealed lower charge transfer resistance for the ITO-IrOx electrode in
ORR. The IrOx film on ITO exhibited a quick (one electron, α = 1.00), and reversible electron transfer
mechanism. The electrode demonstrated high stability for oxygen sensing, having a limit of detection
(LOD) of 0.49 ppm and interference-free from some common ions (nitrate, sulphate, chloride etc.)
found in water.
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1. Introduction

A variety of anthropogenetic activities are threatening the cleanliness of the aqueous
systems over the globe. Water is continuously being contaminated by people. While
contaminants are present in water, different water parameters have deviated from their
standard values [1–3]. Three parameters are commonly used to indicate the quality of
surface water. For instance, dissolved oxygen (amount of oxygen present in surface water,
DO), biological oxygen demand (number of organic pollutants in water: the amount of
oxygen required to degrade organic pollutants by biological means), and chemical oxygen
demand (the quantity of organic and inorganic pollutants in surface water: the amount of
oxygen required to break down the pollutants by use of chemicals) [4–7].

The quality of water can be confirmed by monitoring dissolved oxygen in the water body.
Hence, scientists have paid considerable effort for developing DO measurement methods.
The most widely applied methods for DO measurement are Winkler, electrochemical, and
photometry [8–11]. The detection of DO may be obtained quickly and conveniently using
an electrochemical approach. In the electrochemical process, DO gets directly reduced at
the cathode and gives corresponding reduction current which is calibrated to determine
the amount of dissolved oxygen present. The most classical electrodes which are often
used for DO sensing are the Clark electrode and its modified forms [12,13]. Several other
electrodes have been reported for the oxygen sensor, particularly polymer-based cathode
modification [14–16]. Yun Zhao et al., used a composite material of fluorinated xerogel with
platinum porphyrin dye for the oxygen sensor [14]. Meng Li et al., reported an oxygen
sensor based on a polyaniline-modified gold surface [15]. Moreover, most reported oxygen
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sensors have some drawbacks such as interference of other ions and stability of the electrode.
As a result, scientists are improving the electrochemical DO measurement technique by
developing more sensitive, specific, interference-free, affordable, and stable electrodes.

Electrocatalysts based on transition metals can demonstrate excellent catalytic ac-
tivity [17–19]. Iridium is a d-block transition metal of group nine in the periodic table.
It has a high corrosion resistivity. Among all the transition metals in the periodic table,
compounds formed by iridium display oxidation states from −3 to +9, resulting in various
applications [20]. Additionally, recent advancements in the area of nanomaterials have
multiplied its use. Researchers have prepared iridium-based nanoparticles, particularly,
IrOx NPs and reported their application in different areas including ORR [21–26].

Indium tin oxide (ITO) is a very stable, durable substrate that may be applied to
electrochemical sensors. ITO is a quartz substance that has been widely used as a substrate
for catalyst deposition because it increases the electrical conductivity, has a large band
gap, and a low cost. It is the combination of In2O3 and Sn, where tin substitutes for the
indium site are incorporated as dopants in the lattice of In2O3. The ITO glass of a band gap
higher than 3 eV is extremely transmitting in the visible region and thus is desired in most
applications. In addition, a wide band gap is attractive for the use of the device for high-
temperature purposes. Several articles have been published describing the combination of
IrOx catalyst with ITO for different applications [27,28]. However, no article is published
yet which deals with oxygen reduction reaction (ORR) over ITO-IrOx.

Note that the ORR process involves a number of simple steps involving several reaction
intermediates. When molecular oxygen is reduced at the cathode, it occurs either via route
1, where H2O2 is the final product after accepting up two electrons (2e-transfer process)
or via route 2, where H2O is the final product after accepting four electrons (4e-transfer
process) as defined below.

Route 1: O2 + 2H+ + 2e− → H2O2

Route 2: O2 + 2H+ + 2e− → H2O2

H2O2 + 2H+ + 2e− → 2H2O

Overall: O2 + 4H+ + 4e− → 2H2O

In-situ hydrogen peroxide creation opens the door for dye degradation and wastew-
ater treatment by generating highly active free radicals during the process. Hydrogen
peroxide is also an oxidant and can be used in a fuel cell. Route 2 is often used in the
half-cell of any type of fuel cell. Yet, the electrolytes and electrode materials have a sig-
nificant impact on the ORR pathways. Hence, the majority of articles published on ORR
have researched the kinetics and number of electron transfers that are associated with ORR.
Based on the number of electron transfers, catalysts are proposed for suitable applications
such as wastewater treatment and/or fuel cell applications. For instance, Fernandes et al.,
prepared four different catalysts for ORR by placing phosphotungsate on four different
carbon materials such as graphene flakes, single-walled carbon nanotube, graphene doped
with nitrogen, and carbon nanotube doped nitrogen [29]. They reported the comparative
kinetics of four catalysts towards oxygen reduction reaction in an alkaline medium. As
three of them proceed four electron transfer process. Hence, the prepared electrodes were
suggested for fuel cell application. Yanyan Sun et al., described the synthesis procedure of
nitrogen and phosphorus dual-doped carbon nanosheets (NPCNS) [30]. They prepared
NPCNS by pyrolysis of chitosan and phytic acid. Because of the unique 2D nanostruc-
ture, the synergistic action of the nitrogen and phosphorus dopant in NPCNS showed
strong electrochemical ORR activity and selectivity toward H2O2 generation in an alkaline
medium. The high production of hydrogen peroxide was the main target of their research.
Islam et al., claimed that electroless deposition of Au does not occur on bare GCE [31].
Thus, in order to prepare GCE for the deposition of Gold NPs, GC was pretreated before
the deposition of gold. They were able to confirm through the analysis of hydrodynamic
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voltammograms that the electrochemical reduction of oxygen over GCE-AuNPs produced
peroxide. Hence, they used this to break down methylene blue using the electro-fenton
process. However, although a number of articles have been published recently on ORR,
none of them reports molecular oxygen sensing for environmental monitoring. It is crucial
since people frequently contaminate water. Recently, there was a severe pandemic, and
particularly in developing nations, medical waste was dumped into rivers and the ocean.
To maintain the survival of aquatic life, it is therefore vital to monitor the DO of water
bodies using a reliable sensor.

Thus, in this article, we have reported ORR catalysis over the ITO-IrOx electrode to
fabricate an oxygen sensor. We chose an alkaline medium for our experiment because most
industrial effluents are alkaline in nature. Congruently, we immobilized IrOx nanoparticles
on the ITO surface (ITO-IrOx) by electrodeposition and employed them for DO sensing
using molecular ORR in the alkaline medium. This study also reports the stability of the
electrode, ion interference, and kinetic analysis of the ORR.

2. Materials and Methods
2.1. Chemicals

Sodium hydroxide (NaOH), Potassium hexachloroiridate (K2IrCl6), potassium chlo-
ride (KCl), hydrochloric acid (HCl), and ethanol (C2H5OH) were purchased from Sigma
Aldrich. The supplied source of N2 and O2 was Lindy, Bangladesh. All of the chemicals
used in this study were analytical grade.

2.2. Preparation of Precursor Solution for Electrode Modification (Ir2O3·nH2O Colloid)

A precursor solution for electrode modification (Ir2O3·nH2O) was prepared following
the literature [32]. At first, solid K2IrCl6 (0.13 g) was dissolved in 0.1 M HCl (10 mL). After
that, C2H5OH (1.5 mL) was also added to the mixture. The subsequent solution was then
boiled at ~100 ◦C under stirred conditions. Water was added to maintain the volume of the
solution. After 2 h of constant heating, at every 10 min interval, 100 µL of C2H5OH was
added. In the interim time, the solution changed its colour to pale blue. Ethanol was added
until the solution had no colour effect. Then the excess ethanol was removed by boiling the
solution for 1 hr. After that, the final solution was cooled to 25 ◦C and the solution was made
alkaline (pH~12) by adding the required amount of NaOH (0.5 M). This solution was utilized
to modify electrodes (Ir2O3·nH2O colloidal suspension) at pH~12 under an N2 blanket.

2.3. Fabrication of Electrode and Electrochemical Measurements

Electrochemical workstations such as CHI 660 (CHI Instruments, Austin, TX, USA)
and Autolab 128 N (Herisau, The Netherlands) were used for the electrochemical studies
and IrOx immobilization on the ITO surface. A glass cell with three electrodes was used
for all of the electrochemical experiments. A platinum (Pt) wire, an ITO electrode with a
diameter of 3 mm and the Ag/AgCl (sat. KCl) electrode served as the counter electrode,
working electrode, and reference electrode, respectively.

Before the deposition, the ITO glass was cleaned by sonication with ethanol. Then the
cleaned ITO surface was dried for 2 h in an oven (70 ◦C). Then, 10 mL of prepared colloidal
suspension was taken in a cell fitted with ITO glass for electrodeposition. The potential
window for electrodeposition was used from 0 to +1.0 V vs. Ag/AgCl (sat. KCl) at a scan
rate of 100 mV s−1 for up to five cycles (Figure 1). The prepared electrode was cleaned
using distilled water and allowed to air dry. The modified electrode ITO-IrOx was then
employed as a working electrode for next investigations (characterization, ORR catalysis,
oxygen sensing, etc.).
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Figure 1. Schematic diagram of ITO-IrOx fabrication.

2.4. Surface Analysis

The scanning electron microscope (SEM, JEOL, JSM-7600F, Tokyo, Japan) was used to in-
vestigate the surface morphology of ITO-IrOx surface. The X-ray photoelectron spectroscopy
(XPS) with a K-α1 spectrometer (Thermo Scientific, K-α1 1066, Austin, TX, USA) and an
excitation radiation source (A1 K-α1, Beam spot size = 300.0 µm) was employed to investigate
the elemental properties of ITO-IrOx. The semiconducting property of IrOx film on ITO glass
was studied by Reflectance spectroscopy (Avantes, Apeldoorn, The Netherlands).

3. Results and Discussion
3.1. Spectroscopic Characterization

Figure 2A,B represented the SEM images of ITO and ITO-IrOx, respectively. It can be
seen from the SEM images that the particles of iridium oxide on ITO appeared as clusters
having no regular shape. The XPS of Ir 4f for ITO-IrOx is displayed in Figure 2C. Two
high-intensity peaks at binding energy 64.7 eV and 61.9 eV revealed the existence of Ir
4f5/2 and Ir 4f7/2 respectively [33–35]. In the case of Ir 4f7/2 and Ir 4f5/2, the binding energy
splitting of the spin-orbit doublet is 3.0 eV. Here, we found a binding energy difference of
2.8 eV with an intensity ratio of 4:3. The result is consistent with the literature [34,36,37].
Two minor peaks at binding energy 65.7 eV and 63.0 eV have been ascribed to the existence
of Ir (IV) and Ir (V) species, respectively [30,32,38]. Figure 2D shows the XPS of O 1s. Three
different forms of oxygen can be seen here. The peaks at high binding energy (532.5 eV)
and intermediate binding energy (531.5 eV) could be caused by the water oxygen atom
and OH−, respectively [38,39]. The lower binding energy peak (529.8 eV) is attributed to
IrOx [32,40,41]. The existence of different oxidation states of Ir is mainly responsible for
catalyzing various electrochemical reactions.

However, to obtain band gap energy, reflectance spectra of ITO-IrOx and plain ITO
electrodes were recorded. Band gap energy was determined by using the Kubelka-Munk
theory as follows (Equations (1) and (2))

α =
A
hϑ

(
hϑ− Eg)

n (1)

Here, A is a constant, α = absorption coefficient and hν = photon energy. The direct
band gap was obtained from the relation

αhϑ = A
(

hϑ− Eg)
1
2 (2)
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From the reflectance spectra (Figure 3A) of ITO-IrOx, it is seen that numerous bands
reflected the formation of a uniform film of IrOx on ITO. By extrapolation of the linear
portion on the abscissa, the band gap was calculated. The band gap energy of ITO-IrOx
(4.2 eV) was discovered to be more than plain ITO (3.4 eV). This means that, the modified
electrode would not be photosensitive. In other words, the developed electrode could be
employed without any interference from sunlight.
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3.2. Voltammetric Characterization of Oxide Thin Film

Figure 4A shows the CVs recorded in 0.1 M NaOH solution between −0.6 V and
−0.1 V at a variable scan rate (0.05 Vs−1 to 0.25 Vs−1) with the prepared ITO-IrOx electrode
substrate. The appearance of two symmetric peaks during forward and reverse scans
indicate the reversible behaviour of IrOx film immobilized on the ITO surface. From the
observation of XPS analysis, these reversible peaks can be assigned to Ir(III)/Ir(IV) sites on
the ITO film. Here, the peak separation of the redox peaks ∆Ep(= E pa− Epc) and the ipa/ipc
ratio were found to be 53 mV and ~1.0, respectively, for the electron transfers confined in
the electrode surface. The associated peak current vs. scan rate plot is shown in Figure 4B
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(data were taken from Figure 4A). The surface concentration (Γ) of IrOx film on the ITO
electrode was then determined from the slope of this plot using Equation (3).

ip =
n2F2 AΓv

4RT
(3)
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variable scan rate. (B) the plot of peak current (ip) vs. scan rate (v), (C) plot of peak potential (Ep) vs.
ln v. Where (i) and (ii) represent anodic and cathodic progress respectively.

Here, n (n = 1 here) is the number of electrons, R = gas constant (8.314 J K−1 mol−1),
T = temperature (293 K), A = electrode area (0.5 cm2), F = Faraday constant (96,485 C mol−1).
The active Ir site concentration (Γ) = 4.98 × 10−8 mol cm−2.

Conversely, Figure 4C shows plots of peak potential (Ep) vs. scan rate (v). The anodic
(Epa) and cathodic (Epc) peak potential changed linearly as a function of ln ν. With Laviron’s
Equation (4), the slope of Ep vs. ln ν plot can be used to determine the transfer coefficient
(α) value.

Ep = E◦ +
RT
αnF
− RT

αnF
lnv (4)

Here α, T, n, F, and R indicate the cathodic electron transfer coefficient, tempera-
ture (293 K), number of electrons, Faraday constant (96,485 C mol−1), and gas constant
(8.314 J K−1 mol−1), respectively. From the slope of the Epc vs. ln v plot, RT/αnF was evalu-
ated to be 0.0236. Therefore, α was calculated to be 1.00. A very high α value indicates a
reversible process as well as fast electron transfer [42]. The above observations suggest that
IrOx particles were well immobilized on the ITO surface providing features of thin film
electrochemistry. In a previous study, it was reported that IrO2 particles immobilized on
the ITO surface are capable of generating oxygen via water oxidation reactions [43]. In the
present circumstance, approaches were taken to check the possibility of sensing DO using
ITO-IrOx via reduction reactions.
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3.3. EIS Studies

As per the principle of EIS, the real (Z′) and imaginary parts (Z′ ′) of the impedance,
were used to represent the complex plane plot of the EIS spectrum. The ideal Randle’s circuit
has a series assembly of solution resistance (Rs) with a parallel combination of double-layer
capacitance (Cdl) and charge transfer resistance (Rct) among other components. Before
recommending modified electrode as an efficient catalytic material pertaining to ORR, it
was essential to draw how the electrochemical properties of modified electrodes differ with
and without the presence of DO.

Figure 5 displays the Nyquist plots of the ITO and ITO-IrOx electrode with and with-
out the presence of oxygen at−0.85 V in 0.1 M NaOH solution. The−Z′ ′ vs. Z′ relationship
suggests that in the absence of DO, both ITO and ITO-IrOx electrodes were highly polar-
izable. However, in the presence of DO, the resistivity of the electrodes decreased, and
least resistivity was observed for the ITO-IrOx electrode. This difference indicates that a
ITO-IrOx electrode is more capable of reducing oxygen than an ITO electrode alone.
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Figure 5. EIS spectra of ITO and ITO-IrOx with O2 saturated and N2 saturated in 0.1 M NaOH were
recorded at −0.85 V.

3.4. ORR Studies
3.4.1. Catalysis

Cyclic voltammograms were recorded with ITO and ITO-IrOx substrate in 0.1 M
NaOH solution with air-saturated O2 at 0.2 Vs−1 scan rate as shown in Figure 6A. An ITO
does not show any well-defined peak pertaining to oxygen reduction reaction. However,
the IrOx immobilized ITO electrode exhibited exclusive currents towards the reduction of
dissolved oxygen. The oxygen reduction reaction involves either a two-electron transfer
process generating H2O2 as an end product or a four-electron transfer process generating
hydroxide ions as the final product. In this study, the evolution of H2O2 was checked
by introducing a Pt-Pd catalyst to see the potential decomposition of evolved H2O2 after
2 h long bulk electrolysis of 100 mL air saturated 0.1 M solution following the procedure
mentioned in the literature [44]. However, no existence of H2O2 was noticed, implying that
the ITO-IrOx electrode reduced DO via a four-electron transfer process. The appearance
of a well-defined cathodic peak at ca. −1.10 V, establishes the efficiency of the ITO-IrOx
electrode concerning the electrocatalytic reduction of oxygen molecules dissolved in water.
The effect of scan rates (recorded between 0.025 Vs−1 and 0.5 Vs−1) for electrochemical
reduction of DO is demonstrated in Figure 6B. The gradual increase in reduction current
was observed in all cases with the increase in scan rate. Figure 6C exhibits a linear fit of
the peak current against the scan rate. This observation indicates a diffusion-controlled
reaction ORR process that took place at the ITO-IrOx surface.
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3.4.2. Sensing, Stability and Interference of Some Common Ion Study

Figure 7A illustrates the linear sweep voltammograms (LSVs) of 0.1M NaOH solution
recorded for DO concentration between 0.4 ppm and 11.7 ppm using the fabricated ITO-
IrOx electrode. To develop an efficient sensor for dissolved oxygen, we recorded the LSVs
of DO containing water using ITO-IrOx for calculating the limit of detection (LOD) as
shown in Figure 7B. It can be seen that the peak current increased linearly with the increase
in O2 concentrations (0 to 12 ppm). The limit of detection (LOD) of O2 reduction was found
as 0.49 ± 0.02 ppm by using equation 5 from triplicate experiments

LOD =
3× SDB

SC
(5)

where, SDB is the standard deviation of the blank solution and SC is the slope of the
calibration curve.

Electrochem 2023, 4, FOR PEER REVIEW 9 
 

 
Figure 7. (A) Linear sweep voltammograms (LSV) of O2 reduction on ITO-IrOx in 0.1 M NaOH 
solution, (B) a plot of peak current (ip) vs. concentration of O2. 

The stability and interference of several ions, usually present in surface water, were 
checked by batch injection analysis. In a batch injection analysis process, an amperomet-
ric curve is recorded at a fixed potential. During this process, an electrolysis zone is 
quickly established on the electrode after the injection of a specific concentration of ana-
lyte, and if the sensor reacts with the analyte, a transient signal is generated. In the pre-
sent case, a typical amperogram (i-t curve) was recorded at −1.1 V where different ana-
lytes (such as oxygen, nitrate ion, sulphate ion, chloride ion, carbonate ion, and metha-
nol) were injected at the ITO-IrOx electrode surface periodically for around 90 sec (Figure 
8). Here, short spikes specify the analyte other than oxygen and long spikes specify the 
analyte for oxygen. From Figure 8, it can be assumed that the electrode is highly stable 
and interference-free from several common ions. Thus, in terms of sensitivity, reproduc-
ibility, interference and stability, this sensor exhibited excellent behaviour for DO sens-
ing. 

 
Figure 8. The amperometric i-t curve at potential −0.85 V of ITO-IrOx electrode −1.1 V, for checking 
electrode stability for O2 reduction and testing different ion interference using equal concentrations 
as O2 concentration (nitrate, carbonate, methanol, sulphate and chloride). 

Finally, real sample analysis from a different source of water was performed using 
an amperometric method. The data are reported in Table 1. 

  

Figure 7. (A) Linear sweep voltammograms (LSV) of O2 reduction on ITO-IrOx in 0.1 M NaOH
solution, (B) a plot of peak current (ip) vs. concentration of O2.



Electrochem 2023, 4 153

The stability and interference of several ions, usually present in surface water, were
checked by batch injection analysis. In a batch injection analysis process, an amperometric
curve is recorded at a fixed potential. During this process, an electrolysis zone is quickly
established on the electrode after the injection of a specific concentration of analyte, and
if the sensor reacts with the analyte, a transient signal is generated. In the present case, a
typical amperogram (i-t curve) was recorded at −1.1 V where different analytes (such as
oxygen, nitrate ion, sulphate ion, chloride ion, carbonate ion, and methanol) were injected
at the ITO-IrOx electrode surface periodically for around 90 sec (Figure 8). Here, short
spikes specify the analyte other than oxygen and long spikes specify the analyte for oxygen.
From Figure 8, it can be assumed that the electrode is highly stable and interference-free
from several common ions. Thus, in terms of sensitivity, reproducibility, interference and
stability, this sensor exhibited excellent behaviour for DO sensing.
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electrode stability for O2 reduction and testing different ion interference using equal concentrations
as O2 concentration (nitrate, carbonate, methanol, sulphate and chloride).

Finally, real sample analysis from a different source of water was performed using an
amperometric method. The data are reported in Table 1.

Table 1. Quantification of DO in real samples with ITO-IrOx electrode.

Sample DO (ppm) 1 RSD 2 (%)

Pond water 6.5 3.2
Tap water 7.3 2.1

Drain water 0.9 10
Canal water 6.2 3.6

Paddy land water 5.3 1.4
1 Mean of the three repeated determinations (S/N = 3). 2 Relative standard deviation (RSD) value indicates
precision among three repeated determinations.

The results obtained for real sample analysis are consistent for DO determined with a
conventional DO meter (Milwaukee 600, Rumania). Thus, the fabricated ITO-IrOx electrode
could be recommended for DO measurements.

4. Conclusions

The present study showed an easy formation of Iridium oxide film on ITO. The band
gap energy study showed that the ITO-IrOx does not support photocatalytic activity. Iridium
oxide film exhibits a couple of peaks of Ir(III) and Ir(IV), which catalyse the ORR. Utilizing
the modified electrode, a systematic approach has been taken to examine the sensing, in-
terference, and kinetics of ORR. Excellent ORR activity with high stability and selectivity
from interference ions (nitrate, methanol, chloride, etc.) was demonstrated at ITO-IrOx. Thus,
ITO-IrOx could be employed for the dissolved oxygen sensor in the near future.
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