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Abstract: Several studies have shown the development of electrochemical biosensors based on
enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique prop-
erties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these
properties are improved, presenting significant potential for several biotechnological applications.
Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to
their many advantages compared to other supporting materials, such as larger surface areas, higher
porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a
transducer for the detection/quantification of biochemical substances in the most varied applications
and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present
novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been
highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring
areas. Additionally, different methods by which immobilizations are performed in MOFs and their
main advantages and disadvantages are presented.

Keywords: biosensors; MOFs; enzyme immobilization

1. Introduction

In recent decades, biosensors that employ enzymes as their main sensing element
have been used in various applications in the biomedical, food safety, and environmental
monitoring areas [1–3]. However, although demonstrating high sensitivity and specificity
to several analytes, as well as catalytic activity superior to that of artificial catalysts, en-
zymes, being biological structures, possess low thermal, chemical, and mechanical stability.
Additionally, they may lose their activity during analytical protocols [4–6]. In this sense,
one strategy to circumvent these limitations and provide operational improvements to these
biocatalysts is their immobilization [1,4–6]. Recently, the use of metal–organic frameworks
(MOFs) as immobilization matrices to this end has shown very encouraging results in the
coupling of enzymes to biosensors [1,4–10].

MOFs are a unique class of materials due to their large surface area, porous crys-
talline structure, high porosity, and high flexibility [11]. These attributes give these ma-
terials remarkable physical and chemical properties [12]. They consist of metallic com-
pounds that are interconnected by organic linkers arranged within a crystalline polymeric
structure [12,13]. In addition, MOFs have large free volumes within their structure, pores
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of uniform size, and remarkable surface area. This renders MOFs easily adaptable to a wide
range of applications, such as the separation and storage of gases, drug delivery, and sensor
detection [11–17]. As they are also malleable structures, there are a variety of morphologies
and topologies in which MOFs can be synthesized, granting the ability to specifically design
such materials for targeted applications [18]. In this sense, the relative ease of modification
of MOFs suggests that they can be a promising alternative for enzyme immobilization
protocols and, along with their potential for detection applications, they can also be a
potent material for enzymatic biosensors [5,6,11,15]. According to the literature, MOFs can
be used as enzyme immobilization matrices in the manufacture of biosensors [19].

This review summarizes the advances in, and the peculiarities of, the use of MOFs as
supports for enzyme immobilization, and their subsequent incorporation into biosensors.
Methods by which immobilizations are performed in MOFs are discussed, and some of
their practical applications are presented, especially in the fields of biomedicine, food safety,
and environmental monitoring.

2. Metal–Organic Frameworks

MOFs are porous crystalline compounds with elastic properties and peculiar geometry.
They consist of organic bonds and inorganic metals arranged in a coordinated manner, as
illustrated in Figure 1 [19–22]. They are also known as Metal–Organic Polyhedra (MOP),
Porous Metal–Organic Frameworks (PMOF), Porous Coordination Polymers (PCP), Iso-
Reticular Metal–Organic Frameworks (IRMOF), Coordination Polymers (CP), Microporous
Metal–Organic Frameworks (MMOF) and Zeolitic Imidazole Frameworks (ZIF) [23–25].
This type of material can be obtained via different routes of synthesis, such as solvothermal,
electrochemical, microwave-assisted, or hydrothermal synthesis [26–31]. Furthermore,
MOFs show many notable and highly beneficial advantages for processes involving energy
and gas storage, drug delivery, adsorption, catalysis, bioimaging and biosensing, molecule
separation, and even cancer therapy [32–36]. This is owing to the possibility of designing
these structures for many particular applications, as their chemical arrangement is easy to
manipulate. This allows for their employment in a wide array of different industries, from
medicine to engineering [37–39].

Figure 1. Structures of compound coordinated metal ions and organic binder arrangements shown in
up to three dimensions.

Studies on the structures of MOFs began with Werner, who proposed an arrangement
for coordinated substances via his model, which involved joining central metal ions with
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binding molecules. The arrangement of these Werner-type coordinate complexes generates
a supramolar architecture that evidence long chains, which are called coordinate polymers;
these hybrid materials show organic ligands that uniformly connected the metal atoms in
the structure [23,40,41]. In this way, numerous functional regions in the binders form long
structures and configure polymers of varying molecule ratios.

For the construction of porous and rigid MOFs, it is necessary to consider that large
organic binders cause MOF pores to extend, enabling a reduction in the accessible pore size
and the interpenetration of the structure. The selection of exchangeable molecules and size
adjustment is essential, as MOF pores must be filled with important molecules in order
to synthesize materials. In this context, the control of structure topology is defined by an
adequate choice of connectors and binders [23,42,43].

Properties of Metal–Organic Frameworks

MOFs have an extensive surface area and a high porosity rate. Such characteristics
allow for the molding of their structure into many different configurations, according to
the intended purpose [44–46]. Pores can have sizes ranging from the micrometer scales
to mesoscales [32,47,48]. In coordination polymers, such as the MOF-200, about 90%
of their volume consists of pore voids, causing these porous materials to present lower
crystal density [23,49,50]. These properties are fundamental for gas storage and separation
processes, for example, and naturally, are considered singularities that makes MOFs stand
out from other more conventional porous substances.

Furthermore, MOFs can flex their structure to maintain good stability, rendering them
resistant to changes in pressure, chemical media, and temperature [51–54]. They also show
the capacity to accommodate gases and liquids by reversibly adjusting its structure to
expand or shrink without breaking bonds owing to their characteristic dynamics. Pore
volume changes can be of several angstroms, reinforcing their flexibility also to guest
molecules, giving them the beneficial property of carrying out reactions within the pore
complex [55–57]. This type of ‘multi-stable phase’ works as a response to the environment
and is only activated through external stimuli, such as the entry of guest molecules, which
changes the pressure, magnetic field, or light in the vicinity of the pore [58–61]. Regarding
this property, the MOF that best exemplifies the flexor capacity of these materials is the
MIL-53, which has a structure similar to a wine rack [62–64].

As shown in Figure 2, the reversible, flexible, tunable, and responsive mechanisms of
MOFs correspond to ‘breathing’ movements, when their structures expand and contract,
and also deforming in the process. ‘Swelling’ happens when the monomer increases in
size to accommodate the molecule within its space, without changing its shape; finally, a
‘linker rotation’ occurs when linkers change their angle while making a rotation movement
without breaking their bonds, also to accommodate molecules [24,65–68].

Figure 2. Mechanisms arising from the flexor capacity of MOFs. The green spheres represent the
‘guest’ molecules.
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3. Preparation/Characterization of Enzyme–MOF Biosensors

Enzymatic immobilization in MOFs is achieved by the formation of bonds between the
enzyme and their interactions with the material [7,69,70]. Most synthesized enzyme–MOF
compounds are based on the mechanisms of co-inclusion, covalent bonding, trapping, or
physical adsorption. Table 1 illustrates the most common immobilization strategies and
their main advantages and disadvantages.

Table 1. Different methods of enzymatic immobilization on MOFs and their main advantages
and disadvantages.

Synthesis of Metal–Organic Frameworks (MOFs) for Enzyme Immobilization

Immobilization Strategies Main Advantage Main Disadvantage

Co-precipitation More enzymes can be added
to the MOF structure [71–73].

As synthesis and
immobilization occur

concomitantly, enzyme
clusters may form, reducing

the immobilization
yield [74–77].

Covalent linkage

High binding strength usually
involves several enzyme

residues, providing
outstanding structural

rigidity [78,79].

Partial inactivation or
reduction of catalytic activity

may occur due to
conformational changes in the

enzyme structure [80,81].

Entrapment
Reduces enzyme exposure

to unnatural
environments [82,83].

Difficulty in controlling pore
size facilitates enzyme

desorption; this also causes
problems of mass transfer

limitations and diffusion of
substrates in the pores [84,85].

Surface attachment Reduces changes in the
enzyme’s active site [79].

Ease of desorption due to
weak interactions between
enzyme and support [81].

3.1. Co-Precipitation

Co-precipitation is a recent approach designed to encapsulate macro enzymes in
the MOF structure. During co-precipitation, nucleation, MOF generation and expansion,
and enzymatic immobilization occur simultaneously [71–73]. The main advantage of this
process is that a higher number of enzymes can be added to the surface of MOFs [74].
Figure 3 depicts a synthesis process occurring by co-precipitation.

MOFs have high surface areas and adjustable pore sizes. Thus, there is a better
distribution of enzymes in MOFs during synthesis [75]. Based on this, authors such as
Wang et al. (2017) incorporated Chloroperoxidase in ZIF-8 to MOFs and modified an
electrode using this material. The authors employed the multienzyme system in a glucose
detection protocol [76]. Zhang et al. (2017), in turn, used this methodology for synthesizing
enzyme–MOFs for CO2 capture [77].

3.2. Covalent Linkage

Covalent bonding is considered one of the strongest chemical interactions between en-
zymes and supports [86–96]. This immobilization process involves several enzyme residues.
The multipoint covalent bond immobilizes the enzyme, thus reducing its flexibility. This
stiffens the enzyme, mitigating the structural rearrangements and denaturation caused by
external agents such as heat, temperature, and organic solvents [79].
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Figure 3. Schematic representation of the co-precipitation method.

This immobilization process commonly starts with a chemical modification of the
MOFs. During this step, reactive groups are used, such as epoxy, glyoxyl, or amino groups.
These groups react with the enzyme interface [97]. Amino groups are widely used especially
due to their capacity of bonding with carboxylic groups [78]. Figure 4 shows the schematic
representation of this type of immobilization method.

Figure 4. Schematic representation of the covalent linkage method.

Factors such as the density of reactive groups per unit area of the metal–organic mate-
rial, the reactivity of functional groups of both the enzyme and the MOFs, and the complex
protonation state directly influence the number of covalent bonds that are formed [81].
Thus, having to attain the correct parameters for immobilization renders this strategy
challenging to implement.

3.3. Entrapment

Typically, MOFs have high porosity. Therefore, enzymes can be either physically ad-
sorbed on the surface or trapped within the mesopores of these materials [82,83]. Enzyme
entrapment in MOF mesopores increases enzyme stability under adverse environmental
conditions. The resulting increased stability is a benefit of the structural protection pro-
vided by MOFs [84]. Li et al. (2016) observed that immobilizing organophosphorus acid
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hydrolases (OPAA) on a metal–organic zirconium structure increased the enzymes’ stability
and long-term use [85].

It is worth pointing out, however, that one of the most significant difficulties reported
in the literature with this technique refers to problems with enzyme diffusion in the pores
of MOFs [82]. Figure 5 shows the schematic representation of enzyme entrapment in MOFs.

Figure 5. Schematic representation of enzyme entrapment in MOFs.

3.4. Surface Attachment

This strategy is based on the physical adsorption of the enzyme onto the material’s
surface through bonding (electrostatic interactions, Van der Waals forces, hydrogen bonds,
and hydrophobic interactions) [98–100]. As the immobilization process is based on these
interactions, conformational changes in the enzyme do not occur. This method also reduces
changes in the active site, thus preserving the enzymatic activity [81].

The main advantages associated with this method are its easy implementation and
low cost. However, enzymes immobilized onto MOFs via physical adsorption tend to show
low operational stability. In addition, due to the disordered arrangement of the enzymes
on the surface of the material, enzyme desorption may take place [101]. Figure 6, below,
shows the schematic representation of this immobilization process.

Figure 6. Schematic representation of the physical adsorption of enzymes in MOFs.
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4. Application of Enzyme–MOF Biosensors
4.1. Biomedical Applications
4.1.1. Glucose Oxidase-Integrated MOFs as Biosensors

Glucose oxidase (Gox, EC 1.1.3.4) is an enzyme present in aerobic organisms, and its
primary function is the oxidation of glucose to gluconic acid [102]. This oxidoreductase has
also found applications as a glucose biosensor due to its high stability and specificity [68].
The immobilization of GOx onto zeolitic imidazolate 8 (ZIF-8), which is an organic-metallic
framework [1], allows for better stability, increased catalytic activity in the degradation
of commercial drugs, pH stability, greater tolerance to organic solvents, and greater reuse
capacity when compared to the free enzyme [103]. Their use as biosensors allows for an ul-
trasensitive detection of glucose levels in human serum, in addition to good reproducibility
in experiments, and a wide detection range (1–500 µM) (Figure 7). This technique has a min-
imum concentration sensitivity of less than 0.5 µM, well suited for clinical analyses [104].

Figure 7. Enzyme–MOF biosensor for the ultra-sensitive detection of glucose levels in human serum,
showing good reproducibility in experiments, wide detection range, and capacity of metabolization
by the organism.

As glucose is the primary energy source in cells, it also plays a vital role in the growth
of tumors [105]. Thus, blocking the availability of this sugar in tumor cells can be a
good alternative for treating tumors [101]. MOF-based biomimetic nanoreactors (TGZ
@ eM) were developed and coupled to GOx, and the prodrug tirapazamine (TPZ) was
encapsulated in the porous regions of MOFs [106]. Zhang and collaborators concluded that
this MOF-based structure effectively carried GOx into the tumor, and the enzyme, through
its catalytic activity, was able to consume the glucose and oxygen present in the malignant
cells. This led to tumor hypoxia and the release of TPZ, activating the cells that induce
apoptosis [106].

4.1.2. Detection of Hydrogen Peroxide Using MOF-Based Enzymes

Hydrogen peroxide is a metabolic product of obligate and facultative aerobic organ-
isms [76]. It can be a byproduct of the conversion of fatty acids into energy or of the defense
mechanisms of white blood cells in the immune system [107]. It is a harmful metabolite,
and there is a need for its elimination, which occurs naturally in healthy organisms [108].
Its detection can be achieved through electrochemical biosensors associated with catalase
(CAT) (E.C. 1.11.1.6), the enzyme that has the ability to break down hydrogen peroxide
(Figure 8) [109]. Catalase immobilization in MOFs enables the mapping of the different
concentrations of the oxidant in the body within a wide detection range, due to the high
stability of the complex formed, and without compromising enzyme activity, which also
facilitates electron transfers [74].
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Figure 8. Hydrogen peroxide produced in white blood cells being detected by an enzyme–MOF
biosensor produced using catalase, which is responsible for metabolizing this chemical compound in
the body.

4.1.3. Enzymes Immobilized with MOFs for Drug Delivery as Immunosensors

Due to the high porosity of some MOFs being quite evident, researchers in the biomed-
ical area have developed macromolecule encapsulation techniques to facilitate the delivery
of therapeutic drugs in the body [110]. One of the problems related to this immobilization
technique is the potential metabolization of these compounds, since this can lead to the
release of the metals in the body, which in many cases, can be toxic [111]. Thus, the need
for minimizing the toxic effects resulting from this release has led to research trials using
endogenous metals and focusing on therapeutic effects [112].

A straightforward method for this would be the use of the biomolecule itself as a
reagent, which binds to MOF, forming a porous capsule capable of housing the drug
(Figure 9) [113]. It is essential to monitor the active site of the enzyme and the stability of
the formed capsule, as these factors will directly affect the kinetics of drug release in the
body. Release and delivery occur as a result of degradation of the MOFs and increases in
pore diameter, which lead to the detachment of the drug from the complex [110].

Figure 9. Enzyme–MOF composites carrying drugs in the pores of the immobilization support
through the body, which can be a useful tool in the treatment of diseases in different parts of the body.
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4.1.4. MOF-Based Electrochemical Biosensors for Detecting Cancer Biomarkers

Based on the work of Filik and Aslihan, the growth of several tumor lines can be
evidenced by an abnormal production of proteins, overexpression of genes, and increased
levels of primary metabolites known as biological markers. As diagnosis depends on
identifying and analyzing these abnormal biological entities, MOF-based biosensors have
been developed to measure apoptosis in in vivo systems [1]. Among these markers, special
attention has been given to the protein tyrosine kinase-7 (PTK7), the lymphocyte activating
gene-3 protein (LAG-3), the human growth factor receptor-2 (HER-2) epidermis, to several
miRNAs (such as miRNA122, miRNA144, and miRNA21), as well as to various types of
antigens, such as the prostate-specific antigen (PSA), the carbohydrate antigen 15-3 (CA
15-3), and the carcinoma antigen 125 (CA 125) [112,113]. These biomolecules are related to
different types of cancers, and their mapping in the body allows for the detection of these
diseases. To identify the overexpression of these molecules, techniques such as fluorescence,
mass spectroscopy, colorimetry, and electrochemistry are commonly used [114,115]. MOF-
based biosensors have been used as carriers to deliver biorecognition compounds or
materials to cancerous tissues [116].

The application and development of enzymes immobilized with MOFs are growing
in relevance in the identification of tumor cells, and in addition to being easy to manufac-
ture, they show excellent thermal and chemical stability [117]. Thus, the most promising
biomedical application of these systems has been for the mapping of tumor cell biomarkers
through colorimetric immunoassays [76]. This technique is efficient and enables cell cycle
monitoring and cancer detection at an early stage, which has rendered it very promising in
clinical screenings [118]. In addition to this, its high porosity allows for better stability in the
anchoring of several bioactive elements, which can bind to the enzyme–MOF complex and
be subsequently mapped by confocal microscopy. This can then lead to the identification of
the affected tissue or even the path taken by the biomolecule inside the cell, allowing for
the elucidation of the genesis of the tumor (Figure 10) [114].

Figure 10. Confocal microscopy being used for the mapping of tissues experiencing tumor growth
and for the monitoring of the path taken by the biomolecule inside the cell, which enables the
detection of tumor genesis.

4.1.5. Detection of Other Analytes of Biomedical Interest

According to Mohammad et al., a simple method for developing MOF-based enzy-
matic biosensors is by producing a thin layer of immobilizers and applying the free enzymes
to the surface of this material. These biosensors are widely used to identify several analytes
produced in, or ingested by, living organisms [119]. The enzyme polyphenol oxidase (PPO)
(EC. 1.14.18.1), for example, can be encapsulated with MOF and used as an electrochemical
biosensor to map the oxidoreductase activity of this enzyme in phenols [117]. Cholesterol
is another lipid-based biomolecule of relevance to biomedicine, as several cardiovascular
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diseases are related to its consumption and accumulation in the body. Thus, mapping
cholesterol can be done by immobilizing a cholesterol oxidase (CHOD) (EC 1.1.3.6) onto
metal–organic frameworks, which can allow for an accurate detection and concentration
measurement in blood vessels or in other tissues in the body [120].

Biomedical applications of enzyme–MOFs biosensors are a promising area to be ex-
plored, as these electrochemical sensors are an excellent alternative to the more conventional
techniques. Furthermore, these devices can have numerous applications in many different
areas by increasing the performance of process enzymes and optimizing industrial and
laboratory processes (Figure 11). Again, a noteworthy benefit of these devices is the main-
tenance of the enzymatic activity, enabling its reuse and contributing to thermal and pH
stability. An inherent downside, however, is the long times required for the manufacture of
these devices, as a series of practical steps for synthesis, in vitro tests, and in vivo activity,
are required before these systems can be considered safe to use as drug carriers, biomolecule
detectors, sugar- and lipid-meters, and for other applications that involve direct human
contact with the biosensor.
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A survey on metal–organic structures for enzyme encapsulation and their applications
is shown in Table 2.
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Table 2. Summary of biomedical applications of enzyme–MOF composites reported in the literature
in recent years.

No. MOFs Enzyme Detection
Ranges (mM) LOD (µM) Biomedical Applications References

1 ZIF-8 Lactate/glucose oxidase 0.01–0.3 9.2
Tumor cell mapping and

energy reduction in
tumor cycle

[120]

2 QDs/CDs @ MOFs Ascorbate oxidase 0.003–0.01 1.0 Improved ascorbic
acid detection [117,121]

3 OMUiO-66 (Ce) Glutamate oxidase 0.125–8 1.2

Potential for screening for
specific chiral amino acids

in complex
biological samples

[102,122]

Table 2. Cont.

No. MOFs Enzyme Detection
Ranges (mM) LOD (µM) Biomedical Applications References

4 ZIF-90/Ce-MOF Catalase 0.008–0.056 0.03
Sensitive detection and

degradation of
hydrogen peroxide

[123,124]

5 L-MOFs Glucose oxidase 0.01–10 0.2 Insulin delivery [125,126]

6 MOF-818 @
RGO/MWCNTs/GCE Polyphenol oxidase 0.002–0.6 6.1 Mapping of oxidoreductase

activity on phenols [127]

7 PCN-333(Fe) Alcohol Dehydrogenase 0.01–0.2 6.2
Catalysis of the conversion

of toxic alcohols to
aldehydes in cells

[128,129]

8 MIL-101(Cr) Microperoxidase 8 0.001–2.22 3.0
Dual catalytic activity in the

selective oxidation of
organic molecules

[130–132]

9 ZIF-8 Urease 0–0.8 5.0 Sensitive urea detection [133]

10 AgNC/Mo(II)-NS Cholesterol oxidase 0.05–0.6 0.018

Detections and
concentration

measurements in blood
vessels or body tissues

[134,135]

11 UiO-66 Lipase 0.001–0.2 0.35 Drug synthesis against
venous thromboembolism [136,137]

12 ZIF-8 Glucose oxidase 0.008–5 8.0 Electrochemical glucose
detection [76]

13 MIL-88B-NH2(Cr) Trypsin 0.05–1 3.0 Protein degradation by
enzymatic hydrolysis [5,138]

14 CYCU-4 Trypsin 0.001–0.2 0.5 Protein digestion [84]
15 Tb-mesoMOF Mb 0.01–5 5.0 Oxidation of ABTS and THB [139]
16 ZIF-67 Glucose oxidase 0.002–1 0.66 Antimicrobial action [140]

4.2. Environmental Applications
4.2.1. MOF-Based Biosensors for Detecting Environmental Pollutants

Catalytic biosensors are also widely used to detect environmental contaminants [141,
142]. Marco and collaborators highlighted several biosensor devices using oxidase enzymes,
such as peroxidase, laccase, and aldehyde dehydrogenase, aiming at their application as
pollutant detectors. The most common techniques used to that end, qualitative and quanti-
tative, are based on chromatographic principles [116,139]. However, the immobilization
of enzymes with MOFs has shown to be very promising as an alternative to conventional
analytical techniques, and they can be used to determine the presence of organophosphate
compounds and various phenols, which are the primary environmental pollutants [143].
Synthesis by biosensors involves converting an optically inactive substrate into a com-
pound with optical or electrochemical properties to enable the mapping and analysis of the
device’s enzymatic activity [84]. The detection of pollutants by these enzymes is not based
on catalysis but on the substrate’s inhibition of the enzymatic activity [141]. Although this
detection technique is considered an excellent alternative for replacing more traditional
methods that generate residues and waste, its employment is not always possible [144].
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The enzyme must be commercially available, and factors such as purification, enzyme
stability, and the need for co-dependent factors need to be taken into consideration [74].

In the literature, it is possible to find several environmental applications for metal–
organic frameworks coupled with enzymes (MOF–enzymes), as shown in Table 3. However,
the main focus of the present work is on the discussion of applications of MOF–enzyme
composites as biosensors.

Table 3. Summary of environmental applications of enzyme–MOF composites described in the
scientific literature.

No. MOFs Enzyme Detection
Ranges (mM) LOD (µM) Environmental Applications References

1 MOF-199 Laccase 0.015–0.1 9.8 Removal of heavy metals from fluids
and aquatic environments [145,146]

2 UIO66-NH2 Acetylcholinesterase 0–50 3.0 Organophosphorus pesticide detection [147,148]

3 ZIF-8 Choline oxidase 0.01–0.8 7.8 Detection and removal of
water pollutants [149,150]

4 Ce (III)/UiO-66 Hydrolases 0.005–1 7.4 Adsorptive removal of organic dyes
from aqueous solution [151,152]

5 ZIF-90 Catalase 0–0.3 5.8 Effluent treatment for wastewaters [153,154]
6 HKUST-1 Peroxidase 0.03–0.9 7.5 CO2 adsorption [5,155,156]

7 L-MOFs Lipase 0.01–10 2.0 Luminescent sensors for
environmental pollutants [157,158]

8 QD-MOF Oxidase 0.005–1 0.05 Degradation of organic dyes in
industrial waters [159,160]

4.2.2. Enzyme–MOF as Biosensors with Improved Electrochemical Performance
for Pesticides

The use of insecticides and nematicides based on organophosphate compounds and
carbamates is common in agriculture [161]. These compounds inhibit the action of the
enzyme acetylcholinesterase (AChE), responsible for the hydrolysis of the neurotransmitter
acetylcholine [162]. However, these pesticides can persist in the environment for long times
and cause several environmental problems.

Dong and co-workers highlighted an efficient protocol for detecting this pollutant by
using acetylcholinesterase biosensors. The immobilization of this hydrolase with a metal–
organic structure allows for high stability without compromising the enzymatic activity,
apart from allowing for the sensitive bioindication of pesticide levels in water bodies
(Figure 12). The most common MOFs used for immobilization have a general M-MOF-NH2
structure (M: Fe, La, and Zn) that can be efficiently coupled to the enzyme and allow the
substrate to reach the active site of acetylcholinesterase, acting in its inhibition route. The
detection range of these devices is comprehensive and linear, being very promising for
identifying organophosphates in water, digested soil, and on the surface of bioaccumulated
organic structures [163]. Compared to other MOFs, the general model used is easy to
develop and well-suited as electrochemical detection materials. The AChE-M-MOF-NH2
biosensor proves to be a sensitive pesticide detector and opens up a prospective alternative
for the development of new electrochemical devices based on MOF enzymes, as they can
be excellent options to spectrochemical and Sensormatic methods [164].

4.2.3. Detoxification and Effluent Treatment Using MOF-Based Enzymes

A technique widely used in the treatment of wastes rich in organic matter is its
subsequent dilution and the addition of enzymes capable of hydrolysis. This can be done
along with the optimization of the treatment steps in this protocol, as it is an innovative and
low-polluting alternative [165]. By coupling an enzyme to an MOF, the ability to monitor
the biosensor behavior, route, and activity is gained [166]. Many suppressed materials have
been developed with a focus on the environment, which enables the detection of specific
substrates [167]. Since the enzyme is specific, we can selectively target the device to act on
a specific chemical class of compounds [168].
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Ahuja et al. highlighted some pollutants that can be detected using this technique.
These include liquid solvents such as organochlorines, hexane, heptane, toluene, polyaro-
matics, industrial residues such as oils and naphthalenes, petroleum residues, metals, and
radioactive effluents (Figure 13). The differential of this technique is that the detection range
is wide enough to justify the replacement of more traditional and costly methods [169].

Figure 12. The identification protocol of organophosphate pesticides that is widely used in the
agricultural industry. These pesticides are capable of permeating the soil and reaching groundwaters
causing pollution; they can be detected with an AChE-MOF biosensor.

Figure 13. Pollutant detection protocol on the surface of metal–organic structures (MOFs) coupled
with hydrolases, where contaminant particles attach to the material, detoxifying the wastewater.

It is essential to highlight that these enzymes play an essential role from an environmen-
tal point of view, and that with their application via immobilization onto a metal–organic
structure, their use becomes increasingly promising. This is because they are employed
in highly optimized processes and because they are also biodegradable, according to the
parameters set in Green Chemistry [170].

4.3. Food Applications

In recent years, foodborne and food-related diseases have become a global concern
due to the significant increase in the morbidity and mortality rates linked to food con-
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sumption [171,172]. Bacterial pathogens, antibiotics, clandestine food additives, and heavy
metal ions can lead to the contamination of food products at any stage of the food pro-
duction chain [173]. Food contamination can have different causes, such as the misuse
of veterinary drugs and pesticides, the production of phytotoxins and marine toxins by
organisms, bacterial contamination, and the production of chemical compounds during
processing stages. Due to the change in the population’s eating habits, the globalization of
food chains, and the mass growth of food establishments, food safety concerns have raised
worldwide [174]. Food safety is an essential and critical issue in the modern food industry.
Due to the imperative need for food safety monitoring, new methods of higher sensitivity,
rapid detection, and greater portability must be developed to overcome the limitations and
high costs linked with traditional methods.

Novel methods can improve the identification of food contaminants by mitigating
the impact of potential outbreaks, helping in the combat of threats to human health, and
improving the general population’s well-being. In this scenario, enzymatic biosensors have
been used as super-analytical devices to rapidly screen for hazardous chemicals and toxins
aiming at ensuring food safety [175,176]. Enzyme–MOF complexes represent a promising
class among biosensor materials due to their peculiar physicochemical characteristics such
as ultra-high porosity, large surface area, and flexible structures. Lately, much research
has been carried out using enzyme–MOFs in the manufacture of sensors for food safety
detection, including luminescence, electrochemical and colorimetric sensors [174]. Due to
the above properties, MOFs represent a niche in the field of new materials, allowing them to
be specifically manipulated and adapted, which is highly advantageous and valuable in the
realm of food safety. For enzyme–MOF biosensors, enzymatic immobilization techniques
are highly significant due to the relative instability of the isolated enzyme and the difficulty
in recovering them still in their active form [177].

Another essential element in food safety is food packaging. It is an integral component
of the global food supply chain and protects foodstuffs from physical damage, chemical
contamination, and microorganisms, helping to maintain food quality and safety during
transport and storage. Paper-based food packaging can be produced with the help of novel
technologies, such as enzyme–MOFs, via a group of functional materials possessing unique
chemical and physical properties that are potentially promising in food safety due to its
high surface area and porous structure [178]. Several organic binders have been developed
and combined with various inorganic sites, leading to tens of thousands of MOFs with
different compositions [173,179].

Notably, these advantages of MOFs make them good candidates for the manufac-
ture of biosensors with broad applications, especially in the food and environmental
fields [180,181]. Consequently, biosensorization techniques based on MOFs present great
potential in manufacturing robust analytical sensors aimed at detecting analytes in food
engineering, environmental and industrial applications [182]. A simple and sensitive elec-
trochemical sensor, for example, has been built to monitor lead in leafy vegetables at the
scale of parts per trillion (ppt) [182]. For biosensors based on enzyme–MOFs, enzymatic
immobilization techniques are highly significant due to the enzyme’s relative instability and
fragile nature, which makes them prone to denaturation under adverse conditions [167].
Sensing devices with MOFs-enzymes represent a valuable niche in materials, allowing
them to be specifically built and adapted, which is highly significant in food engineering.

4.4. General Applications

Biosensors are devices that incorporate a biologically active element into an appropri-
ate transduction element to detect, reversibly and selectively, the concentration or activity
of chemical species in a given sample. A few elements are necessary for designing efficient
biosensor systems, such as biorecognition molecules (aptamers, antibodies, or enzymes)
that can specifically interact with targets [183,184]; signal transducers that can generate
measurable signals in response to the interactions between biorecognition elements and
analytes; and data management tools such as electronic systems [185,186]. Close and
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specific interactions between biorecognition molecules and analytes produce detectable
responses on the biosensor’s surface.

Biologically active entities that can be used in the process include enzymes, antibodies,
nucleic acids, organelles, and microorganisms [117,158]. Enzymatic biosensors have shown
great potential applications in clinical diagnostics, the food industry, and environmental
analyses. Therefore, the methods to produce effective biosensors have received great atten-
tion [187,188]. Due to their high specificity, enzymatic biocatalysts such as glucose oxidase,
tyrosinase, and lycase can be used in bioanalytical chemistry, especially for biosensing
applications [189]. The importance of enzymatic biocatalysts lies in their ability to catalyze
reactions only with their corresponding substrates, rendering these devices highly capable
of distinguishing specific analytes in complex matrices. A classic example is the glucose
biosensor used in blood glucose test strips to monitor blood glucose levels in diabetic
patients [190].

MOFs have a range of peculiar physical and chemical properties that make them very
promising for various applications (Figure 14) [183,191–194]. Several innovative structures
and materials based on MOFs and their derivatives have been developed, and are widely
used (Figure 8) in areas such as biosensing [195], gas storage [194], drug distribution [196],
catalysis [197], food engineering [198], adsorption, gas separation [199], among others [200].
MOFs have tunable pore sizes (ranging from several angstroms to about 10 nm), good
adsorption capacity, large surface area, and high stability [201]. They are considered
promising structures for the production of enzymatic biosensors due to favorable anchoring
biorecognition molecules [123].

Figure 14. MOFs Schematic illustration showing the large number of MOFs applications.

In vitro biosensors are specific analytical instruments used in the prognosis and mon-
itoring of urine, blood, tumor tissues containing enzymes, cancer markers, live cancer
cells, small molecules, and proteins. The creation of ultra-sensitive and highly selective
biosensors is of fundamental relevance in the early diagnosis of cancer and for monitoring
the treatment process of cancer patients. Biosensors, and especially enzyme-based elec-
trochemical biosensors, have become a viable, valuable, popular, and potentially portable
tool for detecting a broad spectrum of analytes. Additionally, MOFs have been used as
immobilizers to protect vulnerable biological macromolecules, including enzymes [202].

Enzyme–MOF complexes are widely applied in biocatalysis. Depending on the nature
of the enzyme, these complexes can catalyze many reactions classes such as hydrolysis,
oxidation-reduction, Michael addition, esterification, and transesterification [160].
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The number of publications on biosensors produced with enzymes and MOFs has
been notoriously increasing. This is due to MOFs showing great structural diversity, high
porosity, large specific surface area, improved stability, biocompatibility, and structural
controllability [203,204]. These characteristics demonstrate their great potential for biolog-
ical applications involving enzymatic biomolecules [205,206]. MOFs are also considered
promising candidates for immobilizing catalysts with large pores or channels, such as
metallic complexes, nanoparticles, and enzymes [207].

5. Conclusions

A comprehensive review of metal–organic frameworks (MOFs) based on enzymatic
biosensors was presented. The structures of coordinated metal ions compounds and
arrangements of organic ligands of MOFs were also shown. Furthermore, the review
introduced the different methods of enzymatic immobilization on MOFs, comparing their
advantages and disadvantages. Some examples of MOFs-based biosensing applications
were discussed.

MOFs can be synthesized and molded according to the specific application towards
which they will be used. In addition, they possess highly interesting characteristics that
enable their use as enzyme immobilization matrices for subsequent application in biosen-
sors [18]. Among the characteristics of MOFs that make them a good alternative for
enzyme immobilization, their large surface area and adjustable pore sizes can be high-
lighted [208,209]. In addition, such properties also grant biosensors with greater sensitivity
for electrochemical detection [15].

However, despite the several advantages of MOFs in the manufacture of enzymatic
biosensors, the transduction step still remains a challenge in the incorporation of these
materials during electrochemical detection assays [15]. In this sense, despite the great po-
tential of MOFs for use as solid support in the immobilization of enzymes and subsequent
preparation of biosensors, this technology is still in its early stages of development, requir-
ing further research aiming at its improvement. Despite this, metal–organic frameworks
(MOFs) based on enzyme biosensors are promising and can be potentially applied in the
most diverse technological fields delivering satisfactory results in the detection of a variety
of analytes.
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