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Abstract: π-conducting materials such as chiral polythiophenes exhibit excellent electrochemical
stability in doped and undoped states on electrode surfaces (chiral electrodes), which help tune their
physical and electronic properties for a wide range of uses. To overcome the limitations of traditional
surface immobilization methods, an alternative pathway for the detection of organic and bioorganic
targets using chiral electrodes has been developed. Moreover, chiral electrodes have the ability
to carry functionalities, which helps the immobilization and recognition of bioorganic molecules.
In this review, we describe the use of polythiophenes for the design of chiral electrodes and their
applications as electrochemical biosensors.
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1. Introduction

π-conducting materials have emerged as excellent tools for detection of organic and
bioorganic molecules, due to their stability and reversible electroactive responses [1–4].
The use of π-conducting materials will help overcome some of the limitations found
in common methods used to modify conducting surfaces via thiols [5–7] or diazonium
salts [8–10]. Moreover, their ability to amplify electrochemical signals yields the detection
of low concentrations of analytes and selectively distinguishes between enantiomers. As
an example, several polyaniline-based enzymatic glucose biosensors have been developed
by immobilization of glucose oxidase. In addition to its high electrical conductivity and
biocompatibility, polyaniline participates in electron transfer reactions allowing a facile
detection of electrochemical signals resulting from the enzymatic reactions [11]. The design
of other DNA electrochemical biosensors with a low limit of detection (LOD) based on
conducting materials such as polypyrrole have been reported [12–14].

Owing to the presence of stereocenters on polymer backbone, chiral electrodes play an
important role in several fields including biochemistry, biology and pharmacy [15–17]. The
combination of biological activities with the electrochemical methods helps the differentiation of
amino acid enantiomers, which may lead to the design of chiral voltammetric biosensors [18].

To the best of our knowledge, the first chiral electrode based on chiral polythiophenes
was described in 1988 [19]. Chiral monothiophene monomers substituted in position 3 by
either R(−) (1-R) and or S(+) (1-S) phenylbutanol were prepared and oxidized via elec-
trochemical oxidation on platinum (Pt) electrode in nitrobenzene to form chiral electrode
poly1-Pt. (Scheme 1). Both chiral electrodes (poly1-R-Pt and poly1-S-Pt) have shown
stereoselectivity toward chiral doping anions.
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Scheme 2. Chiral polythiophenes as electrochemical biosensors. 

Herein, we describe the design of chiral electrodes using specific thiophene deriva-
tives and their applications as electrochemical biosensors for the detection of biomole-
cules in the last decade. 
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[35] or oxidation using FeCl3 [36] have been used to prepare polythiophene polymers, 
electrochemical oxidation beyond the oxidation potential of thiophene monomers on 
electrode surface is the method commonly used to deposit doped polythiophenes on 
electrode surfaces, which allows the convenient characterization of electrochemical and 
optical properties of the deposited films [37–39]. The electropolymerization of thiophene 
derivatives following an ECE mechanism [40–42] is outlined in Scheme 3. The initiation 
via electron transfer reaction forms a thiophene radical cation, which dimerizes after 
removal of two protons. The dimer will undergo similar reactions to form a trimer. The 
reaction chain will continue until the formation of doped polythiophenes at the surface of 
the electrode. 
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Recently, chiral electrodes based on chiral-doped polythiophenes have been found to
be very efficient as spin filters at room temperature [20], which may be useful for the design
of organic spin-OLED devices. Furthermore, inherently chiral electroactive electrodes
display excellent chiro-optical and enantioselective properties allowing the detection of a
variety of biomolecules.

Several chiral-polypyrrole modified electrodes have prepared by electropolymeriza-
tion either of chiral pyrrole monomers [21–23] or pyrrole derivatives in the presence of
chiral dopants [24–27]. Similar strategies have been employed for the preparation of
chiral-polyaniline modified electrodes [28–30].

Polythiophenes are one important class of conjugated conducting materials that exhibit
excellent stability at both states, reversible electrochemical responses, high conductivity
and the chemistry of their precursors is well established [31–34].

Chiral electrodes based on polythiophenes can be prepared by electropolymerization
of (i) either thiophene monomers bearing stereocenter at position 3 or (ii) thiophene
monomers in the presence of chiral doping counter anions using cyclic voltammetry (CV).
Scheme 2 displays the representation of electrochemical biosensors including the deposition
of chiral polythiophenes on electrode surfaces and the recognition of selected biomolecules.
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Herein, we describe the design of chiral electrodes using specific thiophene derivatives
and their applications as electrochemical biosensors for the detection of biomolecules in
the last decade.

2. Electropolymerization

Although several chemical polymerization methods such as cross coupling reac-
tion [35] or oxidation using FeCl3 [36] have been used to prepare polythiophene polymers,
electrochemical oxidation beyond the oxidation potential of thiophene monomers on elec-
trode surface is the method commonly used to deposit doped polythiophenes on electrode
surfaces, which allows the convenient characterization of electrochemical and optical prop-
erties of the deposited films [37–39]. The electropolymerization of thiophene derivatives
following an ECE mechanism [40–42] is outlined in Scheme 3. The initiation via electron
transfer reaction forms a thiophene radical cation, which dimerizes after removal of two
protons. The dimer will undergo similar reactions to form a trimer. The reaction chain will
continue until the formation of doped polythiophenes at the surface of the electrode.
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Scheme 4. Amino acid (AA) functionalized terthiophenes. 

Due to the high oxidation potential of amino acid (AA) functionalized monothio-
phenes, their electropolymerization of Pt electrode were unsuccessful. On the other hand, 
AA functionalized terthiophenes were successfully oxidized on Pt electrode via repeated 
cycling CV scans. 

Figure 1A shows the electropolymerization CV scans of terthiophene bearing Ala (2) 
in acetonitrile (ACN). The increase of the peak current confirms the successful deposition 
of the corresponding doped polyterthiophenes to form a chiral electrode poly2-Pt. 

In cyclic voltammetry, the examination of the relationship between the peak current 
with the scan rate can help to distinguish between the nature of electron transfers occur-
ring at the surface of the electrode. For an electron transfer process controlled by diffu-
sion species, the peak current varies linearly with the square root of a scan rate as de-
scribed by the Randles−Sevcik equation (Equation (2)). On the other hand, when the 
electron transfer occurs via surface-adsorbed species, the peak current varies linearly 
with the scan rate Equation (1). 

 
Figure 1. (A) The 10 scan electrochemical oxidation of terth-Ala-OMe (2) in ACN. (B) poly2-Pt at different scan rates. 
Reprinted with permission from reference [43]. Copyright 2010 The Royal Society of Chemistry. 

Scheme 3. Electropolymerization mechanism of thiophene monomers. E: Electrochemical reaction;
C: Chemical reaction.

In addition to low cost, electrochemical methods display various advantages such as
easy deposition/characterization of films on electrode surfaces, facile detection of target
biomolecules and rapid screening results. Several monothiophenes and terthiophenes
(Scheme 4) bearing chiral centers such as D-alanine (Ala) and D-leucine (Leu) have been
prepared in excellent yields [43,44].
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Due to the high oxidation potential of amino acid (AA) functionalized monothio-
phenes, their electropolymerization of Pt electrode were unsuccessful. On the other hand,
AA functionalized terthiophenes were successfully oxidized on Pt electrode via repeated
cycling CV scans.

Figure 1A shows the electropolymerization CV scans of terthiophene bearing Ala (2)
in acetonitrile (ACN). The increase of the peak current confirms the successful deposition
of the corresponding doped polyterthiophenes to form a chiral electrode poly2-Pt.
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Figure 1. (A) The 10 scan electrochemical oxidation of terth-Ala-OMe (2) in ACN. (B) poly2-Pt at different scan rates.
Reprinted with permission from reference [43]. Copyright 2010 The Royal Society of Chemistry.

In cyclic voltammetry, the examination of the relationship between the peak current
with the scan rate can help to distinguish between the nature of electron transfers occurring
at the surface of the electrode. For an electron transfer process controlled by diffusion
species, the peak current varies linearly with the square root of a scan rate as described
by the Randles−Sevcik equation (Equation (2)). On the other hand, when the electron
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transfer occurs via surface-adsorbed species, the peak current varies linearly with the
scan rate Equation (1).

In a free monomer solution, the peak current ip (Figure 1B) observed for the chiral
electrodes varies linearly [45,46] with the scan rate Equation (1), which indicates a surface
bound species, whereas the peak current varies linearly [45,46] with square root of the scan
rate Equation (2) for the diffusing redox species.

ip =
n2F2

4RT
ϑAΓ (1)

ip = 0.446nFAC0(
nFϑD0

RT
)

1
2

(2)

Υ (V s−1): scan rate; n: number of electrons; A (cm2): electrode surface area; D0 (cm2 s−1): diffusion
coefficient; C0 (mol cm−3): concentration of the analyte; Γ (mol cm−2): surface coverage.

Additionally, the peak current the chiral electrode poly2-Pt remains constant over
100 CV scans confirming the excellent stability of the chiral electrode, which is the key step
in the successful detection of organic and bioorganic molecules.

3. Chiral Electrodes Based on Polythiophenes

Chirality has been introduced on conducting polythiophene backbones by electropoly-
merization of chiral precursors. Chiral electrodes based on poly3-Pt and poly4-Pt have been
prepared by electropolymerization of 3 and 4 on Pt electrodes, respectively. Poly3-Pt and
poly4-Pt are very stable and display excellent adhesive properties. The oxidation potential
of these chiral electrodes was found to be between 0.40–0.50 V vs. Fc+/Fc. In order to
examine the sensing ability of the biosensor, the capacitive current of the chiral-poly4-Pt
has been measured in the absence and presence of AA such as Ala and Leu [47]. Figure 2A
shows the differences in the capacitive currents of chiral-poly4-Pt observed after addition
of 1 mM of free LeuOMe. The capacitive current decreased by 30% after 30 min. Thus, the
reduction of the capacitive current is due to the formation of hydrogen bonds between the
free LeuOMe and the chiral-poly4-Pt layers yielding a change in the concentration of the
supporting electrolyte at the interface. Moreover, the formation of the hydrogen bonds
at the interface between the carboxylic acid in poly4-Pt and LeuOMe has been confirmed
by 1H NMR for the monomer 4 and free LeuOMe as depicted in Figure 2C. The chemical
shift of N–H (amide) group changed from 8.35 ppm to 8.50 ppm in terthiophene 4 after
addition of 1 equivalent of LeuOMe and the coupling constant of the doublet (amide
proton) of 4 increased from 7 Hz to 8 Hz. After 30 min, the capacitive currents of poly3-Pt
remain constant after addition of 1 mM of LeuOMe (Figure 2B, control experiment), which
validates the formation of hydrogen bonds on the surface of poly4-Pt.

In another study, L-Leu functionalized polyEDOT (poly5) have been synthesized in
a similar fashion of poly4-Pt [48]. It was found that the chiral center was responsible for
the helical structure of the poly5 backbone, and enhances the electrochemical and optical
stabilities of the deposited polymer on the surface of the electrode, which is crucial for the
design of chiral recognition and optical devices. Similar results have been reported for
chiral polyEDOT derivatives (Scheme 5) [49].

A chiral electrode biosensor based on Ala functionalized polyEDOT for the detection of
phenyl alanine and 3,4-dihydroxyphenylalanine (DOPA) have been designed by deposition
on glassy carbon electrode (GCE) of poly6 [50] and poly7-R(-S) [51], respectively. CV
technique was not sensitive enough to detect DOPA enantiomers by poly7-R(-S) modified
GCEs. However, differential pulse voltammetry (DPV) was very effective to distinguish
between D-DOPA and L-DOPA in contact with poly7-R-GCE and poly7-S-GCE as shown
in Figure 3. It was found that the enantiomers D-DOPA and L-DOPA have affinities with
poly7-R-GCE and poly7-S-GCE chiral electrodes, respectively. These results were consistent
with results reported elsewhere [52–54].
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Using this approach poly8-S-GCE and poly8-R-GCE chiral electrodes have
been used to construct electrochemical sensors that distinguish between D-/L-DOPA,
D-/L-tryptophan, and (R)-/(S)-propranolol enantiomers [55]. The mechanism of the chiral
detection of these enantiomers involves the formation of hydrogen bonds between the
chiral surfaces and the free DOPA (Scheme 6A), which was similar to the chiral electrode
based on poly4-Pt. Moreover, the electron transfers resulting from the oxidation of hy-
droquinone in DOPA to quinone (Scheme 6B) amplify the electrochemical signal and thus
facilitate the enantiomeric detection.
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An electrochemical sensor similar to natural enzyme using histidine (His), serine (Ser)
and glutamic acid (Glu) functionalized polythiophene acetate acid has been employed for
the detection of organophosphorus pesticides (OPs) [56]. The coexistence of three AAs
on polythiophene surfaces is due to their high catalytic activity and rate of conversion for
the hydrolysis of organophosphorus pesticides. Polythiophene acetate has been prepared
using classical organic chemistry reaction and deposited on GCE by drop-coating with the
help of 5% Nafion as a conducting adhesive binder. The three AA-polythiophenes modified
GCE act as an artificial enzyme to catalyze the hydrolysis of organophosphorus pesticides
yielding p-nitrophenol, which was further oxidized to form nitroquinone as depicted in
Scheme 7. The electron/proton transfers resulting from the conversion of hydroquinone
to quinone at the interface of the modified electrode/solution were measured using the
square wave voltammetry (SWV), which is more sensitive than CV for the detection
organophosphorus pesticides.
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Scheme 7. Detection organophosphorus pesticides.

The AA functionalized polythiophene modified GCE has been tested for the detection
of organophosphorus pesticides such as methyl paraoxon, ethyl paraoxon and methyl
parathion. Figure 4 shows the current generated from the oxidation of p-nitrophenol to
quinone measured by SWV at 1 V/s of a scan rate at an optimized pH of 5. Moreover, linear
curves have been observed and the LOD was found to be lower than the value reported
elsewhere [57].
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Figure 4. Electrochemical standard curve of the actual samples of (a) methyl paraoxon, (b) methyl parathion and (c) ethyl
paraoxon with varying concentrations. Reprinted with permission from reference [56]. Copyright 2020 The Royal Society of
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Another approach to introduce chirality on polythiophenes via molecularly imprinted
polymers (MIPs) has been reported [58]. MIPs were deposited onto Au QCM (quartz
crystal microbalance) electrode surface via CV scans in ACN of terthiophene carboxylic
acid in the presence of (−)-norephedrine (Figure 5a). Figure 5b displays the frequency
changes observed during the electropolymerization process from doped to undoped poly-
terthiophenes. In order to confirm the successful incorporation of the chiral motifs by
polyterthiophene films, MIPs have been characterized by XPS technique, which shows
binding energy features of polyterthiophenes (strong sulfur 2p doublet between 163 and
166 eV) and of (−)-norepherdrine motifs (nitrogen 2s peak between 399 and 403 eV).
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Figure 5. EC-QCM in situ measurements of the CV electrodeposition of the MIP film onto PS- (500 nm
size) templated Au surface: (a) CV diagram and (b) QCM response. Reprinted with permission from
reference [58]. Copyright 2012 Wiley.

After characterization of the (−)-norepherdrine nanostructured MIP surface, the MIP-
QCM sensor has been tested for the distinction between (−)-norephedrine (1R, 2S) and
its diastereomer (+)-norephedrine (1S, 2S). A change in the frequency response of the
(−)-norepherdrine imprinted MIP QCM sensor in contact with (−)-norephedrine has been
observed in Figure 6a. However, no significant change of the frequency of the MIP QCM
sensor in contact with the antagonist (+)-norepherdrine has been noticed. Similar tendency
has been perceived with less frequency response for of (+)-norepherdrine nanostructured
MIP sensor in contact with (+)-norepherdrine.

Moreover, the frequency response of the nanostructured MIP-QCM sensor follows a
linear response with the concentration of the target norephedrine. Other polypyrrole-MIPs
based on MOF-5 derived porous carbon nanotube and Prussian blue nanocube sensors
have been used to distinguish between cysteine enantiomers [59].



Electrochem 2021, 2 684Electrochem 2021, 2, FOR PEER REVIEW 8 
 

 
Figure 6. QCM sensing of 250 μM concentration of (a) (−)-norephedrine, (b) (+)-norephedrine, (c) 
(−)-norephedrine sensing calibration plot of the MIP film versus the NIP (control) and (d) compar-
ison of the sensing response of the PS and non-PS-templated MIP film. Reprinted with permission 
from reference [58]. Copyright 2012 Wiley. 

Using nanoparticles, another method has been developed to introduce chirality on 
polythiophene surfaces as shown in Figure 7 (left) [60]. After deposition of polythio-
phenes on GCE via electropolymerization process, MnO2 nanoparticles have also been 
deposited following a similar procedure described for polyEDOT using KMnO4 [61] to 
form MnO2-NPs/PolyTh/GCE surface. Then, the D-amino acid oxidase (DAAO) and he-
moglobin (Hb) were immobilized on the surface via electrostatic interactions to form 
DAAO-Hb/MnO2-NPs/PolyTh/GCE sensor. Redox peaks of dopamine (anodic peak at 
0.17 V and cathodic peak at 0.11 V) have been observed on 
DAAO-Hb/MnO2-NPs/PolyTh/GCE sensor (Figure 7 right), but these peaks are absent in 
other surfaces certifying the excellent selectivity of this sensor toward the detection of 
dopamine motifs. 

 
 

Figure 7. Left: Fabrication steps of the DAAO-Hb/MnO2 NPs/PTh/GCE bi-enzyme biosensor. Right: 
CVs of (a) bare GCE, (b) PTh/GCE, (c) MnO2 NPs/PTh/GCE and (d) DAAO-Hb/MnO2 

NPs/PTh/GCE in PBS solution (100 mM, pH = 6) containing 200 μM D-alanine and 5 μM DAAO at 
scan rate of 100 mV/s. Reprinted with permission from reference [60]. Copyright 2017 Elsevier. 
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(c) (−)-norephedrine sensing calibration plot of the MIP film versus the NIP (control) and (d) comparison
of the sensing response of the PS and non-PS-templated MIP film. Reprinted with permission from
reference [58]. Copyright 2012 Wiley.

Using nanoparticles, another method has been developed to introduce chirality on
polythiophene surfaces as shown in Figure 7 (left) [60]. After deposition of polythio-
phenes on GCE via electropolymerization process, MnO2 nanoparticles have also been
deposited following a similar procedure described for polyEDOT using KMnO4 [61] to form
MnO2-NPs/PolyTh/GCE surface. Then, the D-amino acid oxidase (DAAO) and hemoglobin
(Hb) were immobilized on the surface via electrostatic interactions to form DAAO-Hb/
MnO2-NPs/PolyTh/GCE sensor. Redox peaks of dopamine (anodic peak at 0.17 V and
cathodic peak at 0.11 V) have been observed on DAAO-Hb/MnO2-NPs/PolyTh/GCE
sensor (Figure 7 right), but these peaks are absent in other surfaces certifying the excellent
selectivity of this sensor toward the detection of dopamine motifs.
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Figure 7. Left: Fabrication steps of the DAAO-Hb/MnO2 NPs/PTh/GCE bi-enzyme biosensor.
Right: CVs of (a) bare GCE, (b) PTh/GCE, (c) MnO2 NPs/PTh/GCE and (d) DAAO-Hb/MnO2

NPs/PTh/GCE in PBS solution (100 mM, pH = 6) containing 200 µM D-alanine and 5 µM DAAO at
scan rate of 100 mV/s. Reprinted with permission from reference [60]. Copyright 2017 Elsevier.
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Dopamine enantiomers have been differentiated by second-derivative linear sweep
voltammetry (SDLSV) using MnO2/nitrogen-doped graphene nanocomposites sensor [62].
In this method, the LOD was found to be 0.039 µM whereas the LOD was found to be 40 nM
using DAAO-Hb/MnO2 NPs/PTh/GCE sensor, which validates the importance of polythio-
phenes for amplifying the sensitivity of electrochemical signals to lower limits of detection.

4. Concluding Remarks

Efforts have been made to design chiral electrodes for the detection of a variety of
biomolecules. Taking advantage of the well-established electrochemical properties of polythio-
phenes, the facile use and low cost of electrochemical methods such as CV and DPV, distinc-
tion between enantiomers has been made possible by amplifying the electrochemical signals.
Table 1 summarizes a few electrochemical biosensors using polythiophene chiral electrodes.

Table 1. Examples of electrochemical chiral electrode sensors.

Electrode Construction Detection LOD Ref

Leu/PTh/Pt LeuOMe/AlaOMe 1 mM [47]

PTh/GCE 1,4-Dihydroxyphenylalanine 0.50 mM [51]

Norephedrine/PTh/QCM Norephedrine 0.25 mM [58]

His-Ser-Glu/PTh/GCE Organophosphorus 0.50 µM [56]

DAAO-Hb/MnO2 NPs/PTh/GCE Dopamine 40 nM [60]

DAAO-Hb/MnO2 NPs/GCE Dopamine 0.039 µM [62]

PPy-DEX/GR/GCE Mandelic acid 0.25 mM [63]

Trp/PPy/Au L-Tryptophan, D-Tryptophan 0.012 µM, 0.009 µM [64]

L/D-CNT/PPy/Pt Amino acids (Tryptophan) 0.107 nM [65]

PANi/GCE L-Glutamic acid 0.011 mM [66]

PANI-FSA/PGE L-Ascorbic acid 7.3–4.5 10−4 nM [67]

L-Cys-Au/Fe3O4-NP L-and D-Tyrosine 0.021–0.084 µM [68]

GCE L-Tyrosine, D-Tyrosine 0.65, 0.86 mM [69]

Cu-β-CD/PLA/MWCN/GCE. Tryptophan 3.3 10−7 M [70]

Chiral electrodes based on polythiophenes exhibit similar LOD observed for chiral
-polypyrroles and -polyanilines modified electodes. However, they present better LOD than
traditional chiral electrodes, which may be explained by the amplification of the electrical
signal resulting from the conducting materials and the diminution of the signal noise.

Chiral electrode sensors are very effective and can be used as an alternative to tradi-
tional methods utilized to modify conducting surfaces and detect biomolecules. However,
the design of chiral electrodes using new chiral polythiophenes that are very stable on the
surface of the electrodes and chiro-selective toward target are important challenges for
successful electrochemical biosensors.
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