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Abstract: The design and synthesis of artificial receptors based on molecular imprinting (MI) tech-
nology for the development of a new MIP-based biosensor for detection of the stress biomarker
α-amylase in human saliva in point-of-care (PoC) applications is described in this work. The
portable electrochemical devices for monitoring α-amylase consists of cost-effective and dispos-
able gold screen-printed electrodes (AuSPEs). To build the electrochemical device, the template
biomolecule was firstly immobilized directly over the working area of the gold chip previously
activated with a self-assembled monolayer (SAM) of cysteamine (CA). Then, pyrrole (Py) monomer
was selected as building block of a polymeric network prepared by CV electropolymerization. Af-
ter the electropolymerization process, the enzyme was removed from the polymer film in order
to build the specific recognition sites for the target enzyme. The MIP biosensor showed a very
wide linear concentration range (between 3.0 × 10−4 to 0.60 mg mL−1 in buffer solution and be-
tween 3.0 × 10−4 to 3.0 × 10−2 mg mL−1 in human saliva) and low detection levels were achieved
(LOD < 3.0 × 10−4 mg mL−1) using square wave voltammetry (SWV) as the electroanalytical technique.

Keywords: α-amylase; pyrrole (Py); electrochemical biosensor; molecularly imprinted polymer
(MIP); screen-printed electrode (SPE)

1. Introduction

Nowadays, one of the main challenges of our society and health systems is the
early detection of several diseases, which directly depends on the correct identification
of specific disease biomarkers. Over the past decades, salivary biomarkers of oxidative
stress attracted the attention of scientific community since they are able to reflect local and
systemic pathologies and can provide valuable information on the diagnosis, prognosis
and therapeutic responsiveness of numerous human diseases [1].

Recently, α-amylase, an enzyme of ~60 kDa that belongs to a distinctive group of
isoenzymes produced in salivary glands for starch digestion, was identified as a promising
sensitive biomarker for stress-related changes in the body that reflect the activity of the
sympathetic nervous system [2,3]. Thus, increasing levels of both, physiological and
psychological stress, leads to an increase of α-amylase concentration in saliva (above
~0.5 mg mL−1) [4,5].

Nowadays, methods for α-amylase quantification rely on electrophoresis [5,6], chro-
matography [7,8], Phadebas test [9] or immunological assays [10–13]. Although these
detection methodologies can offer reliable and sensitive (and selective) detection, some
issues have been identified, namely: (i) the biorecognition elements used (usually anti-
bodies) makes the detection rather expensive, sometimes carrying problems related to
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bioreceptors instability; (ii) need of labelling and/or complex signal amplification strategies
or coloration of the test solution and; (iii) laborious and time consuming procedures, very
dependent on laboratory instrumentation.

Electrochemical biosensing can be a valuable alternative to conventional detection
methodologies due to their high sensitivity and cost-effective detection, allowing portability
for point-of-care (PoC) analysis [14–17]. Besides, the integrated recognition element can
be either biological (enzymes, antibodies, etc.) or based on artificial antibodies, by using
molecularly imprinted polymers (MIPs) [18–22]. This molecular molding technology
provides an easy and simple way to build rigid 3D polymeric materials grown over target
molecules (from small drugs to large proteins), having the ability of specific molecular
recognition by the formation of specific interactions between the polymeric structures and
the template [18–22].

Several approaches for surface protein imprinting have been accessible for electro-
chemical detection, where target biomolecules can be simply adsorbed [14,15] or covalently
bonded (oriented immobilization) [23] to the sensing platforms. After effective template
immobilization, the polymerization can be performed by chemical [23] or electrochemi-
cal processes [14–16]. Compared to bulk polymerization, electropolymerization is much
simpler and less time-consuming, allowing the easy control of the film thickness [14–16].
In this process, the selection of adequate monomer is crucial for effective entrapment of
template molecules and to achieve the desired physical features (including conductivity)
of the thin polymer layers over the electrode surface [24].

Poly(pyrrole) is a conducting polymer extensively used for (bio)sensing applica-
tions [25–30], including the design of new electrochemical biosensors for detection of
several important biomolecules, such as hemoglobin [27], quercetin [28], tryptamine [29]
and paracetamol [30]. Thus, its good biocompatibility and easy electrochemical generation
(and deposition) on electrodes surfaces [25–30] was deeply considered and pyrrole (Py)
monomer was chosen in this work to build the MIP sensing surface for selective detection
of α-amylase.

This work describes the assembly and test of a new MIP-based electrochemical biosen-
sor for detection of α-amylase, which represents about 50–60% of human salivary protein,
in PoC, using gold screen-printed electrodes (AuSPEs) as transducers. In the initial stage
of the sensor assembly, the AuSPE surface was modified with a self-assembled mono-
layer (SAM) for α-amylase immobilization prior to electropolymerization. In contrast
to carbon surfaces, in bare metal electrodes, such as gold, the unfolding of the protein
during adsorption at the bare electrode surface can lead to its denaturation [31], resulting
in poor imprinting process. Thus, SAM approach was used in this work for effective im-
mobilization of template biomolecules at the gold surface, prior to electropolymerization,
avoiding template denaturation [31], while promoting imprinting quality and recognition
ability of the MIP surface [20,31,32]. After that, the electrosynthesis of the MIP layer at
the electrode surface, was achieved by CV technique, followed by removal of template
biomolecules physically entrapped within the polymeric matrix. Finally, after template
removal from the polymeric matrix, the resulting MIP film was able to selectively recognize
target molecule during the rebinding studies (quantification). The adopted procedure for
the MIP preparation is schematically represented in Figure 1. To evaluate the performance
of the electrochemical biosensor for α-amylase detection (in buffer solution and in saliva
samples) a systematic study of several analytical parameters (such as sensitivity, dynamic
linear range, limit of detection and selectivity) was implemented in this work.
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Figure 1. Schematic representation of the synthetic process for preparation of the MIP film at the AuSPE surface. The overall
process incorporates the following steps: (i) adsorption of a cysteamine (CA) SAM on the electrode working area for (ii)
immobilization of template biomolecules; (iii) imprinting process by electrosynthesis of a poly(pyrrole) thin film in the
presence of template molecules; (iv) removal of target biomolecules from the polymeric matrix.

2. Results and Discussion

MIPs are synthetic materials used for molecular recognition (plastic antibodies), thus,
presenting high affinity for specific targets. This strategy was used in this work for selective
detection of stress biomarker α-amylase. First, a systematic investigation of the biosensor
preparation procedures was performed. Then, the biosensor performance was evaluated
by quantification of α-amylase in buffer solution and in saliva samples. Electrochemical
measurements at the MIP electrode surface were performed in the presence of the biocom-
patible [Fe(CN)6]3-/4- redox couple since it can provide stable and reliable electrochemical
response at SPE surface [33]. SWV was selected as electroanalytical technique for the
quantification studies due to its high sensitivity along with fast time of analysis [15,34–36].

2.1. Step-by-Step Preparation of the Sensor Surfaces

The surface modification procedures started with the formation of an amine layer at
the AuSPE surface after incubating the chip working area with a CA solution, allowing the
spontaneous formation of a narrow packed SAM through the strong Au-S interaction [37].
Then, effective template protein immobilization over the pre-formed CA SAM was achieved
mainly by hydrophilic interactions [38] between the thiolated surface and the enzyme but
also through electrostatic interactions. At medium pH = 7.2, the amine groups at the
CA SAM surface (pKa: 8.27 [39,40]) were expected to be slightly positively charged and
attracted the negatively carboxylic acid groups of the enzyme (pKa: 6.0 to 6.9 [5]). The
electropolymerization process was performed by incubating the chip surface with Py
monomer solution followed by scanning the electrode potential between −0.2 V to 1.0 V,
at 100 mV s−1. Preliminary studies were performed in order to evaluate the optimal film
thickness to improve the biosensor performance (see Figure S2, SI) and one CV cycle for Py
electropolymerization was selected to build the MIP film surface.

The typical CV voltammograms obtained for the electropolymerization of Py monomer
at the CA SAM/AuSPE surface for both systems, MIP and NIP, are presented in Figure 2.
The monomer oxidation to a radical, which occurs near the positive end of the potential
window (at ~0.8 V), initiated the polymerization reaction that allowed the deposition of
a very thin and homogeneous poly(Py) film on the working electrode surface [28,41,42].
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As can be seen in the figure, a lower peak current intensity due to monomer oxidation
was obtained at the MIP surface relatively to the NIP surface, which was due to the
template biomolecules immobilized at the SAM surface that caused an additional barrier
to diffusional monomer for its further oxidation at the electrode surface.
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Figure 2. Typical CV voltammograms obtained for of electropolymerization of Py monomer
(C = 10 mmol L−1, in 0.1 mol L−1 PBS at pH 7.2) at the (—) MIP and (—) NIP surfaces. Number of
cycles: 1. Scan rate: 100 mV·s−1.

Finally, after (iv) template extraction, the MIP film surface containing the empty
binding sites was ready for rebinding (detection). Three different strategies were applied
in this work for the effective removal of α-amylase from the imprinted surface, namely
the use of acidic (H2SO4) and basic (NaOH) solutions and buffer solution containing the
surfactant SDS [15]. From the extraction procedures tested, buffer solution containing the
SDS surfactant proved to be the most effective for template removal while preserving the
polymeric surface integrity (see SI Figure S5).

The EIS technique was used to follow the changes in the electron transfer properties
of the [Fe(CN)6]3−/4− redox couple on the receptor surface after each modification step.
Typical impedance diagrams obtained, displayed as Nyquist plots, are shown in Figure 3.

In order to quantify the redox probe diffusion variations that occured at the differ-
ent stages of surface modification, the experimental data was analyzed using a Randles
equivalent circuit (see SI Figure S1). The numerical values extracted from the fitting, with
particular relevance for the charge transfer resistance (Rct) circuit element, are displayed
in Table S1 (SI). The impedance data obtained revealed a sequential increase of the Rct
(due to a decrease of electron transfer kinetics) after incubation of the bare AuSPE surface
with CA and template enzyme solutions, revealing successful (i) SAM formation and (ii)
α-amylase immobilization, prior to electropolymerization. Moreover, the (iii) formation
of the specific cavities on the electrode surface by (one CV cycle) electropolymerization
of Py in the presence of template protein involved the coverage of the chip surface by
a huge amount of material, thus, inducing a large increase of Rct due to high surface
blocking to the diffusional redox probe. After (iv) treating the chip surface with extraction
solution, a decrease in the Rct was observed. This was consistent with the effective removal
of α-amylase from the imprinted polymer layer, leaving empty the binding sites in the
polymeric structure and providing pathways for redox probe diffusion to the electrode
surface.
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Figure 3. EIS data, collected in the presence of 5 mmol L−1 [Fe(CN)6]3−/4− redox couple, during the step-by-step modifica-
tion of the AuSPE surface to build the MIP sensing surface.

In this work, the NIP surface was used as reference system, where only non-specific
interactions can occur. Thus, similar experiments were performed at the MIP and NIP
surfaces, but for NIP, the electropolymerization of Py monomer took place after surface
incubation with pure PBS (absence of α-amylase as template).

2.2. Surface Characterization by AFM

Surface characterization studies using AFM were performed at the AuSPE surface
before (bare electrode) and after electrosynthesis of the MIP film, and after template removal
from the deposited polymer layer. The collected images are represented in Figure 4.

As can be seen in Figure 4 (top image), the bare gold surface had a grain-like morphol-
ogy with a domain size of ~5–10 µm in diameter. The rough profile was associated to the
gold ink composition used for fabrication of the gold screen-printed chips, which contains
gold particles [43]. The root mean square (RMS) surface roughness value obtained was
108.0 nm. After Py electropolymerization over the SAM surface containing the immobi-
lized template biomolecules (Figure 4, middle image), the RMS value decreased to 69.2 nm,
meaning that a considerably more flattened and smoother surface was obtained after coat-
ing the electrode surface with the MIP film. Furthermore, from the 3D-images, the surface
depth of the MIP film (2.3 µm) decreased relatively to the bare surface (3.4 µm). The AFM
images showed that surface modification with poly(Py) was accomplished homogenously.

After removal of α-amylase from the polymer layer (Figure 4, bottom image), the RMS
value increased to 100.0 nm (while the surface depth increased to 3.0 µm), indicating that
empty cavities (binding sites) were formed at the polymeric matrix, leading to an increase
of surface roughness.
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Figure 4. AFM images in (left) 2D and (right) 3D collected at the AuSPE surface (top) before and (middle) after Py monomer
electropolymerization in the presence of template protein, followed by (bottom) template extraction from the MIP film.

As can be seen in Figure 4 (top image), the bare gold surface had a grain-like mor-
phology with a domain size of ~5–10 µm in diameter. The rough profile was associated
to the gold ink composition used for fabrication of the gold screen-printed chips, which
contains gold particles [43]. The root mean square (RMS) surface roughness value obtained
was 108.0 nm. After Py electropolymerization over the SAM surface containing the im-
mobilized template biomolecules (Figure 4, middle image), the RMS value decreased to
69.2 nm, meaning that a considerably more flattened and smoother surface was obtained
after coating the electrode surface with the MIP film. Furthermore, from the 3D-images,
the surface depth of the MIP film (2.3 µm) decreased relatively to the bare surface (3.4
µm). The AFM images showed that surface modification with poly(Py) was accomplished
homogenously.

After removal of α-amylase from the polymer layer (Figure 4, bottom image), the RMS
value increased to 100.0 nm (while the surface depth increased to 3.0 µm), indicating that
empty cavities (binding sites) were formed at the polymeric matrix, leading to an increase
of surface roughness.

Figure 4. AFM images in (left) 2D and (right) 3D collected at the AuSPE surface (top) before and (middle) after Py monomer
electropolymerization in the presence of template protein, followed by (bottom) template extraction from the MIP film.

2.3. Analytical Response of MIP Biosensor

After optimization of the experimental conditions, the prepared MIP-based biosensor
was applied for the amperometric quantification of α-amylase (see detection scheme in
Appendix A) in buffer solution. The rebinding studies were performed by incubating the
MIP film surface for 10 min with several buffer solutions with increasing concentrations
of analyte, ranging from 6.0 × 10−6 to 0.60 mg mL−1. After surface washing and drying,
electrochemical measurements were recorded in the presence of the [Fe(CN)6]3−/4− redox
couple. The collected SWVs and the corresponding calibration curve obtained are shown
in Figure 5.
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As can be seen in Figure 5A, increasing α-amylase concentration in solution led to
a decrease of redox probe anodic peak current due to the enzyme cumulative binding
to the empty imprinted sites at the MIP film surface that blocked the diffusional redox
probe pathway within the polymer layer. Moreover, the plot of the estimated redox probe
peak current (Ipeak) as a function the α-amylase concentration, shown in the inset of
Figure 5B, gave origin to a non-linear dependence. By opposition, a linear pattern against
the concentration logarithm was obtained for analyte concentration ranges between (1)
6.0 × 10−6 to 3.0 × 10−4 mg mL−1 and from (2) 3.0 × 10−4 to 0.60 mg mL−1 (see Figure 5B).
The limit of detection (LOD < 3.0 × 10−4 mg mL−1) was estimated according to IUPAC
recommendation for ion-selective electrodes, where log(C) is used [44].

For comparison, the results obtained at the NIP surface are also shown in the inset
of Figure 5B. As expected, there was no net response tendency over the concentration
range tested. This might indicate that the interaction between the enzyme and the NIP
surface was randomly and uncontrolled due to the absence of specific interactions. Thus,
the significant difference in the interaction between MIP and NIP was a good indicator that
MIP specific synthetic receptors can improve the affinity of the sensor device for the target
α-amylase.

Furthermore, the prepared MIP-based biosensor can be reused at least for two times
(decrease in sensitivity is only 2.9%) after surface regeneration with surfactant solution
overnight, following by abundant washing with PBS and pure water (see Figure S3).

The analytical features of the developed MIP-based biosensor for detection of α-amylase
were compared with the obtained by other detection methodologies reported in the literature
(see SI Table S2). The detection levels achieved in this work (LOD < 3.0 × 10−4 mg mL−1)
was of the same order of magnitude, or even inferior, to reported values which makes
the developed electrochemical device suitable for amylase determination in other bio-
logical fluids, like serum and urine, where trace amount of this enzyme can be found
(~1 × 10−3–2 × 10−2 mg mL−1) [5,11,45,46]. In addition, taking into account that α-amylase
is the most abundant protein in saliva, with an average concentration in undiluted saliva
of ~0.5 mg mL−1 [4,5], and depends on gender and age, beside stress [17], the linear con-
centration range of response also plays an important role for application of the biosensor
in clinical context. Comparing with other detection approaches, the developed MIP biosen-
sor has one of the widest working concentration range, allowing the easy detection of
α-amylase in undiluted or diluted saliva samples (10 to 100 times, for example) to minimize
matrix effects. Besides, the advantages of simple, rapid, sensitive and cost-effective detec-
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tion procedures make our electrochemical approach a valid alternative to more complex,
expensive and long analysis time methods, very dependent on laboratory instrumentation
and well-trained operators, for regular quantification of α-amylase in clinical context.

2.4. Selectivity and Application of the MIP-Based Biosensor

In this work, quantification studies were also performed in human saliva, collected
from five healthy donors. To do so, saliva samples were previously boiled (T = 100 ◦C for
10 min), for thermal denaturation of α-amylase [47] (see Figure S4, SI), and then, filtered
and diluted 10 times in PBS.

In order to evaluate the selectivity of the sensor response, the analytical features
resulting from the calibration curve obtained in saliva (linear concentration range, slope
and LOD) were compared with the previously obtained in buffer solution. Data obtained
are resumed in Table 1.

Table 1. Comparison of the analytical features resulting from calibration curves obtained in buffer
solution and human saliva samples.

Analytical Features
MIP-Biosensor Application

Buffer Solution Saliva Samples

Slope (µA decade−1) −8.04 −7.94
LOD (mg mL−1) <3.0 × 10−4 <3.0 × 10−4

R2 0.992 0.983
Linear concentration range (mg mL−1) 3.0 × 10−4–0.60 3.0 × 10−4–3.0 × 10−2

After performing the experiments in diluted saliva, a saturation of the sensor response
at higher concentrations was observed, leading to a decrease of the linear concentration
range relatively to buffer solution. However, the sensitivity of the MIP-biosensor in saliva
(−7.94 µA decade−1) was very similar to the obtained in buffer solution (−8.04 µA decade−1),
indicating no significant interference of the saliva matrix in the working range used. Thus,
the developed MIP-based biosensor can be used for amylase detection in saliva after simple
sample dilution (to avoid signal saturation).

In order to access the applicability of the prepared MIP biosensor in clinical context,
recovery studies were performed in treated blank human saliva samples spiked with
known amounts of α-amylase (from 6.50 × 10−4 to 1.50 × 10−2 mg mL−1). The results
obtained are summarized in Table S3 (SI). As can be seen, a good agreement between
added and found amounts of α-amylase was achieved. The recoveries ranged from 87.3 to
108% with an average relative error of 9.1%, suggesting that the proposed biosensor can be
successfully used in real applications in clinical context.

3. Materials and Methods
3.1. Reagents and Solutions

The chemicals used throughout this work were: α-amylase (extracted from porcine
pancreas, Sigma-Aldrich (Darmstadt, Germany), sodium dihydrogen phosphate (Sigma-
Aldrich, Darmstadt, Germany), sodium hydrogen phosphate (Sigma-Aldrich), cysteamine
(CA, Fluka, Dorset, UK), pyrrole (Py, TCI, Eschborn, Germany), potassium ferricyanide
(K3[Fe(CN)6], Merck KGaA, Darmstadt, Germany), potassium ferrocyanide trihydrate
(K4[Fe(CN)6].3H2O, Merck KGaA, Darmstadt, Germany) and dodecyl sulfate sodium (SDS,
Merck KGaA, Darmstadt, Germany). All other chemicals were of analytical grade and
were used without any further purification.

Stock solutions of α-amylase (C = 6 mg mL−1) were prepared in 0.1 mol L−1 PBS,
pH 7.2, and less concentrated standards were prepared by suitable dilution in the buffer
solution. All aqueous solutions were prepared using water purified with a Milli-RO3 Plus
and Milli-Q purification systems (resistivity > 18 MΩ cm).
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3.2. Apparatus

Electrochemical measurements were conducted in an Autolab PGSTAT302N potentio-
stat/galvanostat (Metrohm Autolab, Utrecht, The Netherlands), containing an impedance
module, controlled by GPES software. Gold screen-printed electrodes (AuSPEs, DRP-
220AT, DropSens, Merck, Oviedo, Spain) were used as sensor platforms in this work.

Atomic force microscopy (AFM) images of surface topography were recorded using a
Molecular Imaging PicoLe atomic force microscope using a silicon cantilever/tip (model
ACT, App Nano, Orsay, France) with a resonance frequency between 200 and 400 kHz.

3.3. Synthesis of MIP on the AuSPE Surface

Before surface modification, the gold chips were cleaned by sequential washing
with pure water, acetone and ethanol. Then, an electrode surface electrochemical cleaning
procedure, using CV technique, was employed by sweeping the electrode potential between
0 and 1.25 V, at a scan rate of 100 mV s−1, in a 0.5 mol L−1 sulfuric acid solution. Several
cycles were performed until a reproducible voltammogram as obtained (~12 CV cycles).
The chips were then carefully rinsed with pure water and dried under a N2 stream.

For preparation of the sensor surfaces the following procedure was adopted: the
working area (4 mm diameter) of the freshly cleaned AuSPE was firstly incubated with a
25 mmol L−1 solution of CA for 2 h, at 25 ◦C, followed by washing with pure water and
dried under a N2 stream. Then, the chip surface was incubated with a α-amylase solution
(C = 12 µg mL−1, prepared in 0.1 mol L−1 PBS, pH 7.2) for 15 min, at 4 ◦C, for effective
protein immobilization over the pre-formed CA SAM. After that, the specific binding sites
were created by electropolymerization of Py monomer in the presence of the template
protein. Briefly, one CV cycle was recorded between −0.2 V to 1.0 V, at 100 mV s−1, in
a 10 mmol L−1 Py solution (prepared in 0.1 mol L−1 PBS, pH 7.2). Finally, extraction of
template biomolecules physically entrapped within the polymeric network was achieved
by incubating the MIP film overnight with a 25 mmol L−1 SDS solution, prepared in a
mixture of PBS and methanol (10:1, v/v) [15]. After incubating the chip surface with the
extraction solution, the AuSPE was abundantly washed with pure water to completely
remove protein residues from the polymeric film and dried under a N2 stream.

Non-imprinted polymer (NIP) surfaces were used as reference system in this work
and were prepared by following the same method used for MIP fabrication but in the
absence of α-amylase during the electropolymerization process (non-specific adsorption).

3.4. Electrochemical Measurements

Electrochemical measurements were performed in the presence of 5 mmol L−1 [Fe(CN)6]3-/4-

redox pair, prepared in 0.1 mol L−1 PBS (pH = 7.2). For SWV measurements, the potential
was scanned from −0.2 to 0.6 V, at a frequency of 10 Hz, with an amplitude of 50 mV and a
step potential of 2 mV. EIS measurements were performed at open circuit potential (0.12 V)
using a sinusoidal potential perturbation with an amplitude of 0.01 V. The frequency range
was from 0.1 to 100,000 Hz. Impedance data were represented as Nyquist plots and fitted
to a Randles type equivalent circuit (see Figure S1, SI) using the adequate module in the
FRA software.

4. Conclusions

In this work, an efficient strategy to develop an electrochemical device to collect
valuable salivary proteomic information in a clinical context was reported. Molecular
imprinting technology, combined with electrochemical techniques, were the basis for
the design and electrosynthesis of artificial receptors at the sensor surface to selectively
recognise the stress biomarker α-amylase, in order to evaluate patients’ physiological and
psychological stress. In addition, detection was performed in a straightforward manner.
The use of portable and compact potentiostats along with disposable chips, the AuSPEs,
makes the detection simple, cost-effective and suitable for PoC application. Besides,
minimal sample volumes were needed for the electrochemical readout.



Electrochem 2021, 2 436

The developed MIP-biosensor was successfully applied to the analysis of α-amylase
in human saliva samples. Sample preparation was minimal and aby simple dilution a very
wide working concentration range was obtained, between 3.0 × 10−4 to 3.0 × 10−2 mg mL−1,
and low detection levels were achieved (LOD < 3.0 × 10−4 mg mL−1). The biosensor
performance revealed no apparent effect of the sample matrix and good recoveries were
obtained. Thus, the proposed MIP-based biosensor can be used for fast and accurate
screening assays for α-amylase determination in a clinical diagnosis context.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electrochem2030028/s1, Figure S1: Randle’s equivalent circuit, Table S1: Fitting parameters
using the Randles circuit, Figure S2: optimization of the MIP film thickness, Table S2: methodologies
reported in literature for α-amylase detection in saliva, Figure S3: reusability, Figure S4: selectivity
and application of the biosensor, Table S3: determination of α-amylase in human saliva.
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