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Abstract: The development of smart negative electrode materials with high capacitance for the
uses in supercapacitors remains challenging. Although several types of electrode materials with
high capacitance in energy storage have been reported, carbon-based materials are the most reliable
electrodes due to their high conductivity, high power density, and excellent stability. The most
common complaint about general carbon materials is that these electrode materials can hardly ever
be used as free-standing electrodes. Free-standing carbon-based electrodes are in high demand and
are a passionate topic of energy storage research. Electrospun nanofibers are a potential candidate
to fill this gap. However, the as-spun carbon nanofibers (ECNFs) have low capacitance and low
energy density on their own. To overcome the limitations of pure CNFs, increasing surface area,
heteroatom doping and metal doping have been chosen. In this review, we introduce the negative
electrode materials that have been developed so far. Moreover, this review focuses on the advances
of electrospun nanofiber-based negative electrode materials and their limitations. We put forth a
future perspective on how these limitations can be overcome to meet the demands of next-generation
smart devices.
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1. Introduction

Electrical energy has been an indispensable aspect of human civilization. It is essential
for day-to-day activities, developing infrastructures, discovering new technologies, and
driving the economy. Currently, fossil fuels are the primary energy sources, contribut-
ing more than two-thirds of total electricity generation; however, global energy demand
continues to increase [1–3]. Additionally, fossil fuels are the main contributor of CO2
emissions that are responsible for life-threatening global warming. Moreover, fossil fuel
sources are being rapidly exhausted and they are inherently non-renewable [4]. The above
facts demonstrate the urgent need for renewable, clean, and sustainable energy sources,
and research has moved in this direction. However, energy generated from renewable
sources such as hydro, solar, and wind is intermittent, and there is a large fluctuation
in energy output. Therefore, energy generated from these sources has to be stored so it
can be supplied when and where it is needed. The development of efficient electrical
energy storage technology that can store a large amount of energy from intermittent and
fluctuating renewable sources has been one of the major obstacles to a fossil fuel-free, clean,
and sustainable society [5]. Currently, batteries and supercapacitors (SCs) are two major
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energy storage technologies. Li-ion batteries, with their high energy density (~300 W h
kg−1), have tremendously contributed to this field and were recognized with the Nobel
prize in Chemistry 2019; however, batteries suffer from a limited operating life (a few
thousand cycles), slow recharge rate, low power density, and safety issues [6,7]. SCs, due to
their attractive features, such as their fast charge and discharge rates (s to min), high power
density (~105 W kg−1), and long operating life (>106 charge-discharge cycles), are a promis-
ing alternative or complement to batteries [8,9]. Moreover, SCs are better than batteries
in regard to safety. Commercialized for the first time under the name “supercapacitor”,
SCs, are currently available for various applications. However, the widespread stand-alone
utility of SCs has been limited mainly due to the low energy storage capacity per unit mass,
volume, or area of their electrodes. Therefore, the current research approach is to increase
the energy storing capacity of SCs without compromising their cycling life and power
density mainly by developing efficient electrode materials [10]. Over the past decades,
nanoscale carbon materials, conducting polymers, transition metal compounds, and their
composites have been explored as electrode materials and have shown promising results.
A large specific surface area, high electronic conductivity, and abundance of active sites are
the primary requirements of active electrode materials. Additionally, high porosities and
proper nanoarchitectures are other promising features [11–13]. Finally, being lightweight
and flexible are additional requirements for portable, flexible, and wearable devices. Apart
from these factors, the use of cost-effective and ecofriendly materials, availability of simple
and fast fabrication processes, demonstration of multifunctional use, and capacity for mass
production are parameters that are always at the center of commercial materials.

2. Negative Electrode Materials

Basically, a supercapacitor consists of two electrodes, namely, a positive electrode and
a negative electrode that are separated by an electrolyte-rich semipermeable membrane
identified as the separator. When comparing the energy density of an energy storage
device, there is a very large gap between a battery and a supercapacitor device. A battery
has a high energy density but a low power density, while a supercapacitor has exactly the
opposite. Herein, obtaining a supercapacitor device with a high energy density is the main
challenge, and this needs to be significantly improved to meet the increasing energy density
demands of next-generation high-tech devices. It is well known that the energy density of
a device depends on the working potential window of the device and the capacitance, as
indicated by the formula, Energy density (E) = 1/2 CV2, where C is the capacitance and
V is the working potential window. This demand further focuses on developing devices
with a high capacitance that work over a wide potential range. Several thousands of
studies have focused on the development of pseudocapacitor electrode materials with high
capacitance. Pseudocapacitance is the combination of a capacitor-type material and a redox
material. Generally, research on novel materials for supercapacitor applications is extremely
active but is mostly done for positive electrode materials (cathodes). Wu et al. fabricated
nickel-cobalt layered double hydroxide as a cathode material, which exhibited 2682 F g−1

at a current density of 3 A g−1 [14]. In another work, Liang et al. [15] fabricated an
oxygen vacancy-rich nickel–cobalt layered double hydroxide electrode that demonstrated
1563 F g−1 capacitance at a current density of 1 A g−1. However, the common properties of
metal-based positive electrode materials are that they work within small potential ranges
(0–0.5/6 V) [14–17]. This result means that the assembly of a supercapacitor device by
using only the above materials cannot lead to a high enough energy density. On the
other hand, carbon-based materials have been used as anodes that work over a wide
range of negative potentials while demonstrating lower capacitance values than cathode
materials. The assembly of a positive electrode material with carbon-based materials as the
asymmetric supercapacitor device significantly improves the energy density of the device
due to the synergistic effect of both types of electrode materials. Hence, the development
of anode materials that have relatively high capacitance but work over a wide potential
window is imperatively important. In this regard, several attempts have been made to
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obtain anode materials with desirable properties. The major negative electrode materials
include tin-based [18,19], copper-based [20], vanadium-based [21,22], MO-based [23,24],
iron-based [25–27], and carbon-based electrode materials [28–32] (Table 1). We review the
carbon fiber-based negative electrode details in this report.

Compared to carbon-based materials, metal-based negative electrode materials have
been reported to show superior capacitance values. The major concerns of metal-based
materials are the phase changes that occur due to the redox activity during long-term
use and their low conductivity, notably limiting their uses [33–35]. Thus far, only carbon
materials have been used in commercial electrical supercapacitor devices due to their
excellent stability under various conditions, such as pH and temperature. Moreover,
carbon materials have desirable properties, such as a large surface area and outstanding
conductivity, compared to metal-based electrodes. The major carbon materials are activated
carbon (AC) [36,37], carbon nanotubes (CNTs) [38,39], graphene [40], carbon cloth (CC) [41],
electrospun carbon nanofibers [32,42,43], porous carbons [44–46], and their composites
(Table 1).

Table 1. List of negative electrode materials reported in the literature.

S.N. Electrode Materials Electrolyte Capacitance Current density Reference

1. Iron phosphide (FeP) nanotubes 1 M LiCl 149.11 F g−1 1 mA cm−2 [27]

2. Activated CNF 6M KOH 156.0 F g−1 0.5 A g−1 [31]

3. Carbon-coated tin nitride (TiN) 1 M KOH 167.0 F g−1 1 A g−1 [19]

4.
80:20 PAN,

Poly(acrylonitrile-co-butadiene
(PAN/PAN-co-PB) derived CNF

2 M KOH 172.0 F g−1 1 A g−1 [29]

5. CNF/graphene 6 M KOH 183.0 F g−1 1 A g−1 [47]

6 ZIF-8 derived nanoporous carbon
(ZIF-8/NPC) 3 M (KOH) 190.0 F g−1 1 A g−1 [45,48]

7. Nitrogen-doped hollow activated
carbon nanofibers (HACNFs) 6 M KOH 197.0 F g−1 0.2 A g−1 [49]

8. Nitrogen doped NCFs@polypyrrole
(NCNF-900@PPy) 6 M KOH 202.0 F g−1 1 A g−1 [50]

9. Three-dimensional porous CNFs
(P@3D-CNF) 2 M KOH 205.5 F g−1 1 A g−1 [28]

10. ZIF-7/glucose composite-derived
carbon-L-950 6 M KOH 228.0 F g−1 0.1 A g−1 [46]

11. Graphene/carbon nanotube/iron
oxide (G/CNT/Fe2O3-150) 1 M Li2SO4 258.0 F g−1 1 A g−1 [51]

12. CNF-40 (Polystyrene foam/PAN,
PF:PAN = 40:60) 1 M H2SO4 271.6 F g−1 0.5 A g−1 [52]

13.
Vanadium pentoxide V2O5/vertically

aligned CNTs composites
(V2O5/VACNT)

1 M sodium sulphate
(Na2SO4) 284.0 F g−1 2 A g−1 [21]

14 Three dimensional boron-doped CNF
(3D-BN-CNF-F900) 2 M KOH 295.0 F g−1 0.5 A g−1 [42]

15. Porous CNF-3 6 M KOH 314.0 F g−1 0.5 A g−1 [53]

16. Reduced graphene oxide-CNF
(rGO-CNF, 1:1) 6 M KOH 316.5 F g−1 0.25 A g−1 [43]
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Table 1. Cont.

S.N. Electrode Materials Electrolyte Capacitance Current density Reference

17. PAN: poly(m-aminophenol
(PmAP)-NCNF 6 M KOH 347.5 F g−1 0.5 mA cm-2 [54]

18. Porous CNFs 6 M KOH 362.0 F g−1 0.2 A g−1 [55]

19. hierarchical porous carbon nanotube
(HPCT) 6 M KOH 386.2 F g−1 0.1 A g−1 [56]

20. CNT@Graphene 6 M KOH 401.0 F g−1 1 A g−1 [30]

21. Molybdenum oxide/sulphide
(MoO2/MoS2)

1 M Na2SO4 433.3 F g−1 5 mV s−1 [23]

22. CNT@CNF 6 M KOH 464.2 F g−1 0.5 A g−1 [57]

23. Electrodeposited molybdenum oxide
(MoOx) film 1 M H2SO4 507.0 F g−1 1 A g−1 [24]

24. Carbon nanotube@graphene-CNFs
(CNT@Gr-CNF-5) 6 M KOH 521.5 F g−1 0.25 A g−1 [39]

25.
Amorphous cobalt

phosphate/porous carbon on CC
(a-PC@CoPi-CC8)

2M KOH 606.1 F g−1

(2.15 F cm−2)
1 A g−1

(4 mA cm−2)
[58]

26. Tantalum in copper sulphide
(Ta-Cu7S4) 1 M KOH 675.0 F g−1 1 A g−1 [20]

27. 3D Titanium Carbide (Ti3C2) aerogel 1 M KOH 1012.0 mF cm−2 2 mV s−1 [18]

28. Vanadium oxides (VOx) 5 M lithium chloride
(LiCl)

1.57 F cm−2

1652.3 F g−1 2 mA cm−2 [22]

3. Carbon-Based Negative Electrode Materials

The conventional electrode material for electrical double-layer capacitors (EDLCs) is
porous AC with a large specific surface area of ~2500 m2 g−1, which delivers capacitances of
200 F g−1 and 100 F g−1 in aqueous and organic electrolytes, respectively [36,59]. Graphene
is a promising material as a negative electrode [32,60]. A three-dimensional exfoliated
graphene network has a mesoporous structure and excellent conductivity, enabling a high
capacitance of up to 330 F g−1 that is superior to other AC-based electrodes [61]. However,
the highly expensive or tedious work needed to synthesize graphene can hinder their
large-scale production and practical use. This is the same case for CNTs. The more common
aspect of graphene, CNTs, or activated carbon is that these electrode materials can hardly
be used as free-standing electrodes and their surfaces are difficult to modify due to their
powdered form and tendency to quickly aggregate. Self-supported electrode materials are
necessary to make a device function independently. CC is promising as a self-supporting
highly conductive substrate with high strength and flexibility. However, CC by itself
has an extremely low capacitance due to its small surface area (<10 m2 g−1) and larger
size compared to nanostructured materials. Recently, the activation of CC to increase
its surface area has been considered a prominent strategy for achieving anode materials
with a high capacitance [62]. Increasing the surface area of a material is a prime strategy
since the surface is involved in ion adsorption and desorption at the electrode-electrolyte
interface of an EDLC [63,64]. Moreover, the functionalization of carbon cloth materials also
improves their performance by increasing conductivity and accommodating other double
layer capacitance-contributing materials [65–67]. Porous nitrogen-doped carbon cloth
exhibits a capacitance of 190 F g−1 [68]. Heterodoping on a mesoporous and functionalized
CC can further increase the capacitance while exhibiting a wide working potential [58].
Tiwari et al. [58] reported an amorphous cobalt phosphate particle-anchored CC with
N-P-doped porous carbon that delivered a capacitance of 606.1 F g−1 at a current density
of 1 A g−1, which is significantly higher than that of the corresponding nonfunctionalized
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materials. Furthermore, these electrodes work over a wide potential range (−1.4 to +0.5)
in an aqueous KOH electrolyte (Figure 1), thereby opening a new avenue to produce
a high-performance symmetrical supercapacitor. Moreover, they have shown that the
as-assembled symmetrical device exhibited an energy density up to 31.1 W h kg−1 at a
power density of 476.0 W kg−1 while demonstrating exceptional stability (94.2%). The
superior performance of the above device among contemporary devices was attributed to
the amorphous carbon/cobalt phosphate composite and additional doping of P. Another
report also suggested that doping P in amorphous materials can widen the working
potential window, thereby increasing the energy density of the device [69].
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4. Electrospun-Based Fibers as Negative Electrode Materials for Supercapacitors

Currently, electrospun carbon nanofibers (ECNFs) have appeared as a promising
material for electrochemical energy storage [32,38,59]. Most importantly, electrospun
fibers can be produced with a simple machine in a laboratory setting, unlike the need for
a company set up to produce carbon cloth. CNFs can be fabricated by the cost-effective
and convenient electrospinning of organic polymers followed by carbonization [70–72].
Electrospinning is a method for the facile fabrication of nanofibers under the influence
of an external electric field. It allows the fabrication of continuous fibers with nano- to
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microscale diameters [73–75]. In 1887, C. V. Boys showed that fibers could be produced
from a viscoelastic liquid in the presence of an external electric field [76]. In 1902, J.
F. Cooley and J. Martin filed patents for a prototype setup for electrospinning [71].
In 1964–1969, Geoffery Taylor reported a mathematical model for the formation of
a Taylor cone from a spherical solution droplet under the influence of an external
electrical field [77–79]. After the 1990s, various organic polymers were demonstrated
to form nanofibers, and, after the 2000s, composites, ceramics, core-shell structures,
hollow structures, and various types of nanofibers were produced [80–84]. Currently,
electrospinning is a versatile method for the facile production of nanofibrous structures
with diverse structures and functionalities for a variety of advanced technologies. The
morphology, structure, and functionality of the nanofibrous material are determined
by the nature of the polymer, solvent, and processing parameters [85,86]. Currently, a
large number of natural and synthetic polymers have been successfully reported for the
fabrication of nanofibers by electrospinning [71]. By incorporating active nanomaterials
or precursors, electrospun nanofibers can be used as advanced functional materials for
a variety of technologies, such as air filtration, including face masks, water filtration;
oil-water separation; energy storage and conversion; catalysis; biomedical use; textiles.
The postmodification of nanofibers is essential for obtaining structural and functional
variations, as demanded by various technologies. A typical electrospinning setup is
illustrated in Figure 2.
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Figure 2. Schematic representing the simple electrospinning process.

CNF sheets consist of very long nonwoven one-dimensional (1D) carbon nanofibers
that form 2D sheets that can be modified as necessary. The large specific surface area,
chemical stability, lightweight, good conductivity, easy accessibility, and environmentally
friendly nature of CNFs are attractive features. In addition, CNFs possess other advantages:
(i) CNFs are very economical compared to graphene and carbon nanotubes and can be easily
fabricated on a mass scale. (ii) With proper modifications of the electrospinning technique,
precursor composition, or position, followed by a postmodification, carbon nanofibers
with extraordinary porosity, a large specific surface area, and diverse functionalities can be
fabricated [87–92]. (iii) CNFs can be directly used as a free-standing electrode without the
use of a conductive additive, binder, or current collector. The use of binders and additives
decreases the effective surface area and conductivity of the electrode, thereby decreasing its
performance [93]. ECNF sheets as current collectors instead of heavy metals, such as nickel
foam, significantly reduce the weight of electrodes [94,95]. (iv) CNF sheets offer a light and
chemically stable 1D nanoskeleton for the growth of various active nanostructures in 3D
patterns without aggregation and can be used as free-standing electrodes [96,97]. (v) CNFs
offer a larger specific surface area and conductive network than the same mass of carbon
cloth since the fibers in carbon cloth are microscale. (vi) Finally, CNFs can be used as flexible
electrodes. Therefore, electrospun carbon nanofiber sheets are very attractive for energy
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storage applications [98,99]. Moreover, the modification of CNFs to obtain an increased
capacitance can be done in two ways. First, the electrospinning process is performed
by tuning the electrospinning solution parameters and processing parameters. Second,
modifications can be done by post-CNF synthesis processes [32,59]. The post-modification
approaches for increasing capacitance are more or less similar to those of CC.

The most commonly used polymer to synthesize carbon nanofibers is PAN due to
its high carbon yield compared to other polymers. Other polymers used for that purpose
are shown in Table 2. Various processing parameters, such as the voltage, flow rate, and
collector-to-tip distance, along with solution parameters, such as the viscosity and con-
ductivity of a polymer solution, can play a role in controlling the morphology and fiber
diameter of the final product. Pure, as-spun polymeric nanofibers generally have low
conductivity; therefore, stepwise thermal treatment processes, such as stabilization and
subsequent carbonization, must be performed to make the carbon fibers more conduc-
tive. The potential of electrospun carbon nanofiber-based materials in diverse advanced
technologies has been increasingly studied, and progress has been summarized in a few
reviews. However, works related to electrospun carbon nanofiber-based negative electrode
materials for supercapacitors have been rarely summarized. We believe this review can
serve as a resource for further studies on the development of negative electrode materials
for high-performance energy storage devices.

Typically, ECNFs are solid and have a small surface area that results in low capacitance
and energy density. To this end, it is necessary to design carbon fibers to increase the surface
area and make composites with materials that can contribute to a high capacitance, while
not hampering the inherent features of carbon fibers. Nanofibrous materials with a high
specific surface area, controllable porosity, good conductivity, and flexibility are promising
features for next-generation technologies. Therefore, different strategies have been adopted
to fabricate nanofibers with such properties. Coaxial electrospinning produces sheath-core
nanofibers. It uses a coaxial needle that consists of inner and outer hollow needles that
are arranged concentrically and dispense two different solutions. By using less volatile or
washable core polymers, hollow nanofibers can be obtained [83]. Coaxial electrospinning
using poly(methyl methacrylate) (PMMA) as the core solution and a PAN solution as the shell
solution, thereby producing PMMA/PAN core-shell nanofibers. Regarding the PMMA/PAN
nanofibers after carbonization, a more volatile PMMA portion is removed; therefore, hollow
carbon nanofibers are obtained (Figure 3b) [88]. Electrospinning PAN/PMMA blends with
different ratios produce multiporous nanofibers (Figure 3c) [100].

Using block copolymer-based precursors as an approach is significant for con-
trolling the porosity of the resulting material and may revolutionize the synthesis
of PCNFs [91]. Zhou et al. synthesized dual-doped PCNFs with well-controlled bi-
modal pores, namely, mesopores (10 nm) and micropores (0.5 nm), by electrospinning
poly(acrylonitrile-block-methyl methacrylate) (Figure 3f) [91]. There are some other
notable reports. Yan et al. prepared highly porous sponge-like carbon nanofibers by elec-
trospinning poly(tetrafluoroethylene) and poly(vinyl alcohol) with boric acid as the cross-
linking agent. These nanofibers possessed well-controlled macro/meso/micropores and
an ultrahigh porosity (>80%) and outstanding conductivity (980 S cm−1), while being
triple-doped with B-F-N (Figure 3g) [103]. Yang et al. prepared necklace-like hollow
carbon nanofibrous materials with an abundance of micro/meso/micropores and an
ultrahigh content of doped N (Figure 3h) [104]. One of the common strategies for fabri-
cating porous nanofibers is the selective removal of a sacrificial phase from the as-spun
nanofibers by washing, leaching, or heating. The sacrificial phase may be small nanopar-
ticles or another polymer. Wang et al. fabricated silicon oxide (SiO2)- and Sb-entrapped
nanofibers by electrospinning antimony trichloride (SbCl3), polyvinylpyrrolidone (PVP),
and tetraethylorthosilicate (TEOS). After carbonization and etching with HF, a highly
porous carbon nanofibrous structure was obtained (Figure 3d) [102]. They later used
this electrode as a highly stable electrode for Li batteries.
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A new strategy for the fabrication of highly porous nanofibers is the use of MOFs.
MOFs, such as zeolitic imidazolate frameworks (ZIF-8, ZIF-67), can be directly developed
in nanofibers during electrospinning or at later stages. MOFs are interesting new nano-
materials because of their unique and controllable features, such as their high porosity,
large specific surface area, and variability in regard to metal ions and organic linkers; thus,
they are attractive for a wide range of applications [105–109]. Chen et al. fabricated ZIF-8-
mediated highly porous nitrogen-doped carbon nanofibers (Figure 3e) [44] that showed
capacitances up to 307.2 F g−1 at a current density of 1 A g−1; additionally, this material
retained a capacitance of 193.3 F g−1 at 50 A g−1 [44]. This high-value achievement was
attributed to the superior Brunauer–Emmett–Teller (BET) surface area of the ZIF-8-induced
porous ECNFs. The BET surface area was observed to be almost 50 times that of pure
ECNFs. Therefore, compared to conventional materials, MOF-based nanomaterials usually
exhibit a controllable porous architecture and pore volume along with an extraordinar-
ily large surface area [108,110–114]. Furthermore, no additional template is required for
promoting porosity. Heteroatom doping, which enhances the electronic properties of a
material, needs additional chemicals and processes that may be complicated and hazardous.
In the case of MOF-derived materials, the heteroatoms present in organic ligands, such as
2-methylimidazole, are directly doped and do not require additional chemicals or steps.

Another benefit of carbon nanofibers is their use as one of the constituents of nanocom-
posites or simply as light and conductive substrates for the growth of active materials.
Different nanocarbons, such as graphene and CNTs, as well as many metal compounds,
such as hydroxides, oxides, sulfides, and phosphides, in a number of shapes and sizes,
have been engineered on CNFs to produce a variety of architectures. Qie et al. developed
graphene-reinforced ECNFs that exhibited a specific capacitance of 183 F g−1, approx-
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imately 1.6 times higher than that of pristine CNFs [47]. Few reports have shown the
growth of metal-based compounds on ECNFs as negative electrode materials for superca-
pacitors [115,116]. The optimal concentration of metal doping can be beneficial to obtain
high capacitance without sacrificing EDLC behavior and the high conductivity of the
carbon materials. Otherwise, the composite simply becomes a composite that demonstrates
metal-dominated behavior, i.e., high Faradic activity and low stability [58].

Table 2. Precursors to obtain carbon fibers, their application, and properties.

S.N. Polymer/Solvent Fiber Diameter/Surface
Area Application References

1 Polyacrylonitrile /dimethylformaide
(PAN/DMF) with a metal precursor 200–500 nm/N/A Energy storage [59,88,117]

2 Coal, PAN/DMF N/A Energy storage [118]

3 [PAN + PMMA + tin octoate]/DMF N/A Lithium-based batteries [119]

4 PVP, cobalt nitrate [Co(NO3)] in
water/ethanol 150 nm/N/A Sodium ion batteries [120]

5 ZIF-67, PAN/DMF 200 nm/338.37 m2 g−1 Li–S batteries [121]

6 PAN, cobalt salt/DMF Energy storage [32]

7 PAN, terephthalic acid/DMF 400–600 nm/N/A Electrochemical test [122]

8 Pitch/DMF Micrometer/N/A Gas diffusion [123]

9 Polyimide/dimethylacetamide
(PI/DMAc) Micrometer/N/A n/a [124]

10 Cellulose/acetone-dimethylacetamide 50–500 nm/N/A Energy storage [125]

11 PVP, ammonia borane/methanol 150 nm/145 m2 g−1 Lithium-ion batteries [126]

12 Lignin, polyvinyl alcohol/distilled water
(PVA/DW) 100 ± 23 nm/1670 m2 g−1 Energy storage [127]

14 PAN, PVDF/DMF 200–300 nm/29 m2 g−1 CO2 adsorbents [128]

15 Plant protein/acetic acid 413–900 nm/N/A Energy storage [129]

5. Challenges, Opportunities, and Future Directions

Generally, carbon fibers are brittle; therefore, it is very challenging to retain fibers in
their free-standing and flexible state. There are some reports that show the successful fabri-
cation of highly flexible carbon fibers, and they have been used to study electrochemical
performance [130,131]. Tian et al. showed interconnected networks of carbon fibers that im-
proved the integrity and buffered the volume expansion of an electrode, while contributing
to its flexibility [132]. Similarly, Liu et al. [33] synthesized highly flexible electrospun-based
carbon fibers from pitch using a crosslinking strategy. The as-designed product exhibited a
capacitance of 170 F g−1 at a current density of 1 A g−1. Another challenge is to make a
three-dimensional flexible network. As-spun membrane-derived carbon fibers are similar
to a two-dimensional sheet composed of compacted fibers. In such a case, the modification
of fibers by electrochemically active materials to achieve high performance can be limited
to only the surface of exposed fibers, and the remaining internally located fibers of the
membrane remain untouched [32]. Recently, the fabrication of three-dimensional foam-like
carbonaceous structures has been reported [28,32,133]. For instance, electrospinning and
subsequent post-processing (gas foaming) result in a three-dimensional network struc-
ture. Tiwari et al. [28,32] recently demonstrated a three-dimensional carbonaceous porous
network that exhibited high capacitances up to 205 F g−1 at a current density of 1 A g−1.
The PAN nanofibrous mats were first fabricated in a three-dimensional shape by sodium
borohydride-mediated hydrolysis, causing hydrogen gas to become trapped into the fi-
brous network. Later, these were carbonized to obtain carbon fibers. Current challenges
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can become opportunities in the future. The synthesis of highly flexible carbon nanofibers
with a high capacitance that work over a wide range of potentials can be a future oppor-
tunity. Recently, MOFs have become promising materials for the development of porous
and highly branched crosslinked networks [134,135]. In this context, the integration of
MOF-derived networks into porous and hollow carbon nanofibers with negative electrode
materials can overcome the challenges associated with pure carbon nanofibers, such as
their brittleness, inflexibility, low capacitance, and low energy density. It is expected that
the highly flexible free-standing configuration of ECNF membranes will be an option for
developing the next generation of flexible energy storage devices.

6. Conclusions

In this review, we reported the ECNF-based negative electrode materials used in
supercapacitors. Among the many carbonaceous materials, ECNFs have many advan-
tages, such as the possibility of developing free-standing materials and their ability to
accommodate other active compounds to achieve higher performances. Strategies to obtain
higher capacitance by modifying ECNFs without disturbing the EDLC behavior of carbon
nanofibers were discussed in this report. By reviewing the literature and providing critical
analysis, it was found that the creation of highly porous networks along with metal doping
and heteroatom doping are promising strategies for developing anode materials with high
capacitance values. We expect that the shortcomings of pure ECNFs in energy storage
can be overcome by the use of secondary techniques and strategies. Overall, this review
explores the negative electrode materials used thus far and provides insight for the further
development of high-performance supercapacitors to use in next-generation devices.
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