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Abstract: Among the many biological entities employed in the development of biosensors, enzymes
have attracted the most attention. Nanotechnology has been fostering excellent prospects in the
development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures
can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio,
signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These
and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via
the compilation of several reports on their applications in different industrial segments. To provide
detailed insights into the state of the art of this technology, all the relevant concepts around the topic
are discussed, including the properties of enzymes, the mechanisms involved in their immobilization,
and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a
discussion around the pressing challenges in this technology, which will be useful for guiding the
development of future research in the area.
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1. Introduction
1.1. Biosensors

Biosensors are devices that are capable of detecting the presence of specific analytes via
their interaction with biological material, such as enzymes, antibodies, and genomes [1–3].
These biological materials act as elements of recognition and can attach to a physico-
chemical detector that will produce a measurable signal and whose intensity will differ
depending on the class of analyte [4,5]. Biosensors must provide fast, specific, and sensitive
transduction of biochemical signals [6,7]. With this purpose, many materials have been
studied and developed, and in the last couple of years, nanomaterials have received the
most attention [8–11].

Biosensors are classified according to the type of transduction performed, which can be
of optical, electrochemical, or piezoelectric nature [12,13]. There can also be other classifica-
tions, such as immunosensors, aptasensors, genosensors, and enzymatic biosensors [14,15].
Usually, carbon is the major element used by biosensors in electroanalysis, as it shows
good catalytic properties such as enhanced chemical stability and biocompatibility [16]. In
the case of other types of transducers, metals that show more efficient electron transfer
capabilities, such as gold, platinum, or palladium, are the preferred sensors for generating
these signals [17,18].
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The use of materials with desirable catalytic and sensing characteristics renders biosen-
sors powerful tools in scientific research, such as in the control of water and air pollu-
tion [19–21], in biomedical applications (e.g., monitoring of daily glucose levels for diabetic
individuals) [22,23], and in the food industry (e.g., measurement of levels of alcohol, carbo-
hydrates, acids, or other compounds in product quality control) [1,24]. Figure 1 shows a
summary of the most recurrent applications of biosensors. However, in some on-demand
applications for detecting viruses and other particles, electrode-tethered sensors can be
more effective, practical, and faster. In Yousef et al. [25], a reagent-free system containing a
DNA–antibody complex sensitive to viral particles was studied to develop a rapid test for
the presence of SARS-COV-2 viral particles in human saliva (Figure 2). The application of a
positive differential potential on the electrode surface induces an electromagnetic force (Fe)
that attracts the DNA antibody complex, which is negatively charged with the application
of a ferrocene redox probe in the structure of the binding DNA. However, a drag force Fd
contrary to Fe reduces the attraction speed of the DNA–antibody complex, increasing the
time τ to touch the electrode surface. It was observed that in the presence of viral particles
from COVID-19 in the saliva of infected people, the behavior of the current applied to the
electrode surface and the time τ showed significant differences in relation to the presence
of other proteins linked to the complex DNA–antibody and the fully unbound protein [25].
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Figure 2. Application of reagent-free DNA–antibody complex sensitive to viral particles by induction
and electrochemical attraction for the detection of severe acute respiratory syndrome coronavirus 2 -
SARS-CoV-2 viruses. More information at Yousef et al. [25].

The sensing properties of biosensors are directly correlated to the properties of the
materials used in their bioreceptors and transducers [26]. Several optical transducers can
be used in affinity, fluorescence, and surface plasmon resonance (SPR) [27]. Fluorescence
detection is one of the methods of optical bioanalysis that presents the greatest sensitivity
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and ease of operation [28,29]. In graphene-based biosensors, graphene, which has thin layer
of atoms interconnected and in hexagonal conformation within a carbon structure [17,30],
has been used in several transduction modes. These biosensors present high electron
transfer rates and immobilization capacities [31]. One application of graphene-based
nanomaterials as inhibitors in their transducers is the production of fluorescent biosensors
due to the high efficiency of their forks and the fact that reduced graphene oxides have
fluorescent-quenching characteristics [32,33]. However, some unwanted properties, which
are majorly observed in graphene-designed biosensors, should be considered. For example,
the different methodologies for synthesizing graphene and its derivatives can impart
different properties and functionalities to graphene-based nanomaterials [31]. In addition,
some characteristics inherent in the graphene structure can also affect the selectivity and
accuracy of graphene-deriving biosensors, such as the number of functional groups in the
nanotube, the oxidation state of graphene, and the number of layers in the molecule [31–35].

In comparison to other transducers, biosensors with electrochemical transduction
properties can guarantee good advantages for both commercial and research purposes,
such as low cost, high sensitivity, and ease of production in reduced form for point-of-care
(POC) utilization [27]. As an example of common electrochemical biosensors, we can
cite microbial sensors, which can be used to detect biotoxicity levels by using biofilms
during an extracellular electron transfer [36,37]. In addition to these advantages, the use of
microbial electrochemical sensors allows for online monitoring in real time, self-feeding
routine as fuel cells, and the generation of electrical signals without the need for additional
transducers [37–39].

Electrochemical immunosensors are also widely used in the detection of pathogens [40]
and heavy metals [41] in food by combining the electrochemical properties of these sub-
stances and their biomolecule recognition capability [42,43]. However, despite their prepa-
ration being relatively easy, the efficiency of the immobilization of antibodies onto the elec-
trode surfaces remains the greatest challenge for avoiding biomolecule denaturation [43,44].

Another important classification of biosensors is made based on the principles of their
biorecognition ability, such as catalytic biosensors [27,45,46]. Enzyme-based biosensors are
the most widely used in scientific research [47], which is mainly due to the high catalytic
power of enzymes, apart from their also high specificity and catalytic activity under mild
reaction conditions [48,49]. In addition, the immobilization of enzymes for the obtainment
of biosensors is highly recommended, as the practice improves enzyme stability and
facilitates the recovery of their catalytic activity and their separation from the product,
enabling enzyme recycling and reuse [16,50]. For instance, the literature reports that the
optimum conditions under which alcohol oxidase should be immobilized onto platinum
electrodes is at temperatures of 35–40 ◦C and at pHs of between 8.6 and 9.2 [19,51]. Within
this range, biosensor responses can be successfully reproduced, and there is improved
sensitivity [19,52,53].

1.2. Nanomaterials

Nanotechnology is a highly interdisciplinary science whose knowledge stems
from physics, chemistry, biology, biochemistry, material science, and other engineering
branches [54–75]. The science specifically focuses on the study and development of
new functional materials, devices, and systems, all at the nanometric scale [58–60]. By
definition, nanomaterials have at least one critical dimension of less than 100 nm [67,72].
They are usually considerably more active than their bulk counterparts and can offer
unique properties, such as high surface-to-volume ratio, increased electrical conductivity,
exceptional magnetic properties, and greater catalytic activity [8,14,63]. The large surface
area and the relatively ease of modification by various functional groups translates into
efficient biomolecule immobilization, deeming them highly desirable in biosensing appli-
cations [53–55]. Over the past few decades, nanostructured materials have considerably
changed the analytical and bioanalytical sciences [75]. Nanomaterials have been showing
a fundamental role in the expansion of this science to the most diverse industrial fields,
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such as fuel, energy storage, energy conversion, nanocatalysis, integrated catalysis, indus-
trial waste treatment, biomedicine, food, and bioengineering, among others [61,62,75–88]
(Figure 3).
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Among organic nanomaterials, nanotubes stand out due to their high mechanical
resistance and capillarity, and their unique electronic structure [73]. In turn, within the
inorganic class of nanomaterials, quantum dots are seen as a promising subdivision, given
their high applicability in the development of transistors, solar cells, LEDs, quantum
computing, among others, all owing to their great optical and electrical properties [74].

The versatility of nanomaterials is attributed to their nanoscale structure, which
presents unique chemical, optical, electronic, and mechanical properties [89,90]. It is also
important to highlight that the synthesis of any given nanomaterial depends mainly on its
end purpose. For example, in the production of paving materials, high resistance to load is
necessary. One way to improve these materials is to introduce polymers modified with
binders during their production, which can serve as reinforcement material [91,92].

Driven by the potential versatility of nanomaterials and their numerous applications,
new fields of study in the area have emerged. The following discussion will focus on the
different research trends in the topic of nanomaterials, based on their application versa-
tility and on the number of related publications on scientific databases. For example, in
nanomedicine, these structures are already being used for developing surgical nanoma-
terials, biological devices, and nanoelectronic biosensors, among other possible future
applications in molecular nanotechnology, such as biologically operated machines [93–96].
The central idea is to use nanoscale materials for the diagnosis, monitoring, control, pre-
vention, and treatment of diseases. Nanoteranostic applications involve medicinal uses
that combine therapy and diagnosis employing materials on a nanometer scale. As such,
many treatment protocols for different diseases have evolved greatly due to the growing
ascension of this specific area [97–99]. According to works from the literature, a unique
capability of nanoteranostics is the possibility of eliminating malignant tumors and their
respective metastases via methods that are less invasive and have higher subcellular preci-
sion, which is a characteristic defined by the size of the action zone of the nanoparticles in
use [100–102].

Enzymatic catalysis has evolved over the years, and consequently, the need to develop
new protocols for the synthesis of heterogeneous solid supports has emerged. To this end,
nanomaterials are useful as supports in enzyme immobilization, and in most cases, they
can enhance several enzymatic properties, conferring to them increased activity, thermal
stability, and pH resistance [103]. The use of nanomaterials as a support for immobilizing
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enzymes has already been proved to improve several properties of the enzymes involved
in these processes [50,103–105]. The main factors considered to deem an immobilization
protocol efficient are improvements to enzyme activity, selectivity, stability, specificity, and
resistance to inhibitors, among others. Xing et al. [106] proposed a lipase B from Candida
antarctica immobilization strategy onto magnetic nanoparticles modified with APTES (3-
aminopropyltriethoxysilane) and activated with glutaraldehyde. These biocatalysts, when
used in kinetic resolution reactions, generated a product with an enantiomeric excess higher
than 99%. When compared to the result obtained with the free enzyme, the difference is
readily noticeable, confirming the improvement caused by immobilizing the enzyme to the
support and its later reuse, which is impracticable in the case of free enzymes [106].

The gradual and unsustainable exploitation of the environment has encouraged re-
searchers from the food industry to also explore new tools to increase production while
still observing the pillars of sustainability [107]. The industry has been identifying and
developing potential applications of nanomaterials in the field for decades aiming at op-
timizing production [108]. These materials have been currently applied to developing
new foods and ingredients, improving food safety, strengthening quality control, and
acting as biosensors in contaminated or spoiled food [107–110]. Under this perspective,
Hosseini et al. [111] structured a colorimetric and chemiluminescent method mirrored in
parameters conjugated with AuNPs to detect aflatoxin B1 (AFB1), which is based on the
interactions of gold nanoparticles (AuNPs) with an aptamer. Chemiluminescence is used
to increase the catalytic activity of the reaction and also to improve the detection limit.
The process of aggregating AuNPs induced the desorption of the AFB1 binding aptamer
from the surface of AuNPs. As a result of this interaction, the solution undergoes a color
change in AuNPs, which shift from red to purple. In this way, the content of the aflatoxin
B1 present is calculated within a quantification range (80 to 270 nM). Compared to the
traditional detection of aflatoxin B1, this method can be said to be more sensitive and
selective, as well as simpler [111].

The cosmetic industry has also been currently investing in new technological ap-
proaches to further improve its products. Cosmetics belong to a market recognized by
notable technological advances and the presence of a myriad of loyal consumers [112].
However, for products to be deemed effective and safe, it is necessary that they follow
specific regulations, which span different stages across all production protocols [112,113].
In this sense, nanomaterials have become a viable and competitive alternative for achieving
the results desired by the industry and its consumers via the use of small aggregations
of active compounds aimed at the improvement of product quality [113]. Modern appli-
cations of nanomaterials in cosmetics involve the use of nanocrystals, microemulsions,
nanoemulsions, fullerenes and dendrimers, nanopigments, and nanocapsules, among
others [114]. Many cosmetic protocols and formulations require precise, accurate, and judi-
cious analyses, and their characterization, quantification, and separation are essential for
the safe obtainment of the final product. Cao et al. [115] developed an optimized protocol
that includes the separation, quantification, and characterization of gold nanomaterials in
commercially available cosmetic creams, which can assist regulatory agencies in cosmetics
analysis. According to their protocol, the total amount of gold in creams was first quantified
by mass spectrometry with inductively coupled plasma (ICP-MS) following wet digestion.
In sequence, gold nanomaterials were separated from other cosmetic ingredients by solvent
extraction. Next, analyses of physical–chemical parameters and preliminary cytotoxicity
tests on the gold nanomaterials extracted were performed, which is an essential step for
evaluating the safety of engineered nanomaterials in cosmetics. Their morphology was
also analyzed by several electron microscopy and atomic force techniques, ensuring good
nanomaterial characterization [115].

The electronic development sector is another area that has seen exponential growth,
which has been driven by the rise of the communication market achieved by a robust and
well-structured marketing strategy in digital media [116]. As a result, the nanoelectronic
science emerged, which aims to develop electronic components in the nano-order of
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magnitude. The evolution of nanoelectronics was propelled by the need to improve a wide
array of electronic components [117–119]. In addition, in the wearable electronics industry,
the enormous current demands have been generating flexible and extensible devices that
can be easily integrated into the skin or to soft and curvy human clothing [115–120].
Currently, nanomaterials have been enabling these properties in clothing that are marketed
to the general public. In this specific field, the 1D nanostructures used have showed better
mechanical elasticity than their equivalent larger materials or ball-like nanoparticles [120].

Nanomaterials have also been offering excellent opportunities for the construction
of new electrochemical sensors. This was due to the possibility of working with this type
of sensors in reaction environments with high resistivities, such as in organic solvents
or in solutions with low levels of support electrolytes; for example, this feature can be
successfully used for biosensing applications [121–123].

Thus, nanomaterials can clearly be presented as potential alternatives in the advance-
ment of various industrial sectors, apart from also being capable of fostering other scientific
developments. However, there are some disadvantages and challenges that still limit a
wider use of nanomaterials. One of the main limitations observed is the difficult optimiza-
tion of the analyses of materials and the testing of the protocols for further applications.
Many current scientific advances are restricted by several bureaucratic measures regarding
their reliability [124,125]. In addition, a clear example of a risk involved in research labs
is the inhalation of dust in the case of accidental spillage or dispersion of nanomaterials.
In this case, the use of PPE (personal protective equipment) does not provide enough
protection, as nanomaterials are too small to be retained by these. Regarding the medical
applications of nanomaterials, despite the numerous advantages listed previously, their
toxic effects cannot be ignored [126]. As for the nanoimmobilization of enzymes, aspects
linked to the cost of production and large-scale applications have challenged several re-
searchers. However, the development of more robust nanomaterials has shown to be a
potential and effective solution to these adversities [124].

In summary, nanomaterials are promising alternatives for facing and overcoming some
of the environmental challenges of the 21st century. Therefore, their use remains a potential
alternative in the advancement of several subsectors of nanotechnology. It is noteworthy
that the versatility of these materials is one of their most praised attributes, which is
complemented by their unique physical and chemical properties. Given this versatility,
nanomaterials add considerable value to the research on the development of sensors,
biosensors, and nanobiosensors [127]. Nanobiosensors appear as feasible alternatives in
medical therapies and in the diagnosis of several diseases. It is also worth mentioning
their role in several other medic applications, such as the monitoring of tumor and glucose
levels, the evaluation of cardiovascular diseases, controlled drug release, microbiology
and virology, detection, and the functionality of nucleic acids, among others [128]. The
next section will address the use of nanomaterials in the synthesis of biosensors and their
various related applications.

2. Nanomaterial-Based Biosensors

Nanobiosensors have become one of the main tools in the field of disease diagnosis,
especially in the last decade [10,129,130]. Several industries have since incorporated
nanomaterials in the production of biosensors that present refined sensitivity, selectivity,
and specificity [131,132]. Industries such as the medical, food, electronic, enzymatic, and
several others are the main ones responsible for their popularization. In this sense, the
applications of several biosensors, according to the volume of publications across scientific
databases, are discussed in the aforementioned sequence.

Four main types of nanomaterials can be highlighted due to their versatility: gold
nanoparticles, graphene, carbon nanotubes, and photonic crystals [133–135]. Table 1 shows
the nanomaterials most widely used in biosensing applications. Due to the growing
demand for increasingly versatile and high value-added nanomaterials, universities, insti-
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tutes, and laboratories have long been dedicating their research efforts to the improvement
of nanobiosensor design technologies [136].

Table 1. Nanomaterial-based biosensors for different applications.

Nature Nanomaterial Applications Reference

Organic Carbon nanotubes Biomedical [137]
Hybrid GR-MWNTs/AuNP (1) Biomedical [138]
Hybrid Au@PDMPAHCl (2) Biomedical [139]

Inorganic Fe3O4 Biomedical [140]
Inorganic Fe3O4-silica NPs (3) Biomedical [141]

Hybrid CS/AuNPs-GNs (4) Food and
environmental [142]

Inorganic Ceria nanospheres Food [143]
Hybrid MNP-PAMAM-PtNP/rGO-CMC (5) Food [144]
Organic MnO2 modified MWCNTs * Biomedical [145]
Organic Tobacco mosaic virus Biomedical [146]
Hybrid Carbon ceramic Biomedical [147]
Organic poly(l-aspartic acid)/MWCNT * Food [148]
Hybrid Chi-Gr cry/PB/SPCE (6) Uric acid detection [149]
Hybrid Titanim dioxide hybrid Biomedical [150]

Inorganic Semiconductorquantum dots Biomedical [151]

Organic Carbon black Biomedical and
environmental [152]

Hybrid Electrospun nanofibers Biomedical [153]
(1) Gold nanoparticles prepared at graphene and multi-walled carbon nanotubes; (2) Core–shell gold nanoparticles
stabilized with poly(3-dimethylammonium-1-propyne hydrochloride); (3) Magnetic nanoparticles–silica core
shell; (4) Chitosan/gold nanoparticle−graphene nanosheets; (5) Poly(dopamine)-modified magnetic nanopar-
ticles coated with four-generation ethylenediamine and core polyamidoamine G-4 dendrimers, all decorated
with platinum nanoparticles on the surface of glassy carbon electrodes coated with graphene oxide and car-
boxymethylcellulose; (6) Porous cryogel platform of graphene-incorporated chitosan on top of a Prussian blue
layer electrodeposited on a screen-printed carbon electrode. * Multi-walled carbon nanotubes (MWCNT).

The standard structure of biosensors is a classic system containing three fundamental
elements: a bioreceptor, which is responsible for the selectivity of the device, a transducer
that translates the physical or chemical change, leading to analyte recognition, and a signal
processing unit [154]. The projection stage of the interaction between the biological and
the transducer systems is fundamental for method design and possible test protocols for
the nanosensor. In this phase, chemistry and computational biochemistry are essential
elements to enable greater security to the method and generate considerable savings in
reagents, human resources, and time.

Among medical applications, nanobiosensors are viable tools for detecting viruses or
bacteria, which can cause potentially deadly diseases. Joshi et al. +developed a biocompat-
ible, economically competitive, reduced graphene oxide (rGO) film. The film was obtained
from shellac using a heat treatment (TrGO). After analysis, its relevant structural, chemical,
and electrical properties were compared to similar films. After the heat treatment, the
rGO (TrGO) film showed good crystallinity, low foil resistance, and high carbon content.
From the TrGO, electrochemical immunosensors were produced without labels for the
quantitative detection of the H1N1 influenza virus employing electrochemical impedance
spectroscopy. These nanosensors exhibited high stability and reproducibility. The detection
limits were of 26 and 33 plaque-forming units, respectively, in phosphate-buffered saline
and diluted saliva. These low-cost TrGO-based sensors showed great potential as biosen-
sors based on reliable and robust nanomaterials for general clinical applications [155].

Cancer diagnosis has become increasingly precise and selective, but errors are still
common. Especially in this specific field, such errors must be minimized and procedures
must reach high levels of accuracy. One of the most lethal types of cancer is ovary cancer,
which is commonly diagnosed by biomarkers such as CA125, Mucin 1, HE4, and others,
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which may be present in the bloodstream [156]. However, there is a latent need for less
expensive, more straightforward, and portable diagnostic tools for the timely diagnosis of
ovarian as well as other types of cancer [157,158].

A possible solution is the employment of nanomaterial-based biosensors as tumor
markers. In one of their pieces of research, Raghav et al. [159] presented an impedimetric
immunosensor for free detection of the CA-125 marker. The CA125 immunosensor was pro-
duced using an electrode printed on a screen modified with Au–Ag NPs and functionalized
with amine, which confers a larger surface area, besides providing the immobilization of
antibodies in the correct orientation, that is, the formation of covalent amide bonds across
the region antibody Fc. The functionalized immunosensor exhibited a linear response of up
to 1–150 IU/mL (r2 = 0.994). The dynamic range of 1.0–1000 IU/mL reported in the litera-
ture makes it suitable for detecting CA125 without the need for any sample pretreatment,
such as dilution, separation, or other adjacent processes. It is noteworthy that no significant
interference was noticed from the chemical reagents or the serum proteins present in the
blood. Considerable research is still being carried out to study the parameters that govern
this linear response in more depth and whether they are dependent on nanoparticle size or
on other particular properties of the nanomaterials used [159].

From this perspective, developing new sensing tools to identify tumor cells have
evolved significantly due to the pressing need for less invasive and more accurate methods.
These biosensors are mainly used to detect specific tumor biomarkers for different types
of cancer. The literature already has a vast library of biomarkers but some methods are
insufficiently selective. A classic example of a biomarker is the human mucin one protein
(MUC1), which is the most common biomarker for monitoring metastatic breast tumors. In
the study by Paimard et al. [160], the authors reported on an impedimetric assay for MUC1
identification using a gold nanocomposite with a nanofiber core shell on a multi-walled
nanotube (MWCNT) that had been covalently modified with the MUC1 binding aptamer.
MUC1 was detected by changing the surface resistance of the synthesized electrode. This
nanobiosensor exhibited a high detection limit (LD) of 2.7 nM, good stability, and selec-
tivity in the narrow region of 5–115 nM of MUC1. The assay was successfully applied
to determine MUC1 in enriched serum samples and yielded satisfactory recoveries [160].
Despite the fact that this work is relatively recent, the laboratory tests were considered
significant and indicated the possibility of their use on clinical trials from the first stage of
the disease.

In the food industry, nanosensors are promising alternatives to solve several common
problems in the sector [161]. The development of “smart tags” based on nanomaterials can
evaluate product quality. These labels can interact with gases, microorganisms, and other
by-products generated during food decomposition or adverse reactions with the packaging
material. Many labels use a color change in the indicators present in the sensors as a means
to alert consumers about the quality of a product [162,163]. This is in line with the concept
of smart packaging (SP), which encompasses any type of container that provides specific
functionality beyond their basic function of being a physical barrier between the food
product and the surrounding environment [164]. Many packages are currently formulated
with nanomaterials that provide improvements to their physical, chemical, and biochemical
properties, imparting a longer shelf life for different products.

Practical applications in this area include the work of Faalnouri et al. [162], who de-
veloped surface plasma resonance (SPR) nanosensors to detect amoxicillin in milk samples
using a molecular printing technique. Laboratory tests have shown that this nanosensor
has a low detection limit and a high sensitivity and selectivity for identifying amoxicillin.
As this study is very recent, the scientific community awaits for further tests before the
product can be commercialized [162]. In addition, Xiang et al. [165] proposed the synthesis
of a new nanosensor functionalized with black phosphorene (BP) in two-dimensional
layers (2D). The tool was used to detect ochratoxin A (OTA) in grape juice and red wine
samples. OTA is a toxic metabolite secreted by species of Aspergillus and Penicillium
fungi, and it can cause severe nephrotoxic, immunotoxic, and carcinogenic effects [166].
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In the literature, short reports on the electrochemical detection of this metabolite using a
chemically modified electrode can be found. The BP-modified nanosensor exhibited an ex-
cellent linear electrochemical response to OTA in the concentration range of 0.3–10 µg/mL,
with a detection limit of 0.18 µg/mL under ideal conditions. It was concluded that this
electrochemical nanosensor showed good stability, superior anti-fouling property, and
excellent sensitivity for OTA detection [165].

In summary, nanomaterials in the preparation and functionalization of biosensors
have been proved to be a promising opportunity for solving several problems in the food
sector, in agriculture, in applied medicine, in the enzyme preparation industry, among
others, all of which are discussed in the next sections [130,167–170].

3. Enzymes

It has been observed that nanomaterial-based biosensors have elevated sensitivity
and specificity [171]. These characteristics can be improved both by improving their con-
ductivity and via the creation of a layer of nanomaterial on the surface of the transducer,
onto where a wide variety of compounds can be immobilized, including biological materi-
als [172,173]. It is important to highlight that materials with a high specific surface, such as
NP, can increase the number of bioreceptor units within a reduced volume while still acting
as a transduction element [152]. However, the variation in size, shape, and composition of
nanoparticles, along with the general instability of their suspensions, can influence reaction
performances and response times, potentially causing low reproducibility and negatively
affecting their commercial interest [173].

Enzymatic biosensors, on the other hand, show less stability, lower signal intensity,
higher cost, and in some cases, they require association with a mediating system [174].
However, they can be highly sensitive and selective [171]. Biomolecules can be immobilized
and combined with other materials by surface modification through recombination or the
introduction of binders [171]. Enzymatic biosensors are easy to use, sensible to very low
concentrations, highly precise, and even when associated with NPS, they show great
potential for miniaturization and real-time diagnostic capability, apart from requiring
minimal sample preparation and promoting high yields [175].

Enzymes are biocatalysts that facilitate a plethora of reactions in biological systems,
apart from being essential entities for sustaining life in several living organisms [176–178].
They are synthesized in animals, vegetables, fungi, and microorganisms [179,180], and their
structure is composed of linear chains of amino acids that fold into complex, highly accurate
tertiary structures with hydrophobic nuclei surrounded by hydrophilic layers [181,182].
The complexity of their three-dimensional structures provides the chemical environment
necessary to catalyze a particular reaction mechanism, and they also present a defined
region within their structure, called the active site, where catalysis takes place [183,184].

Several chemical-based transformation processes still employed in various industrial
sectors show many disadvantages, from both a commercial and an environmental per-
spective, such as low yields, very high temperature, pressure, and acidity or alkalinity
requirements, and high costs [185]. The environmental and economic impact imparted by
using enzymes is greatly reduced by their potential of creation of more active variants than
those found in nature [186]. Enzyme-assisted catalytic processes are highly efficient and
advantageous due to the possibility of operation under mild conditions of reaction, high se-
lectivity and specificity, lower environmental and physiological toxicity, and reduced costs
and waste generation, all of which leads to more optimized production routes [187–193].

It is important to highlight that enzymes, when used in their free form, present limita-
tions relating to their stability, efficiency, and specificity. Most of them are soluble in water,
which makes it difficult to recover and reuse them [194]. Despite its excellent performance
potential, industrial applications were made impossible due to these undesirable charac-
teristics [195,196]. In this scenario, immobilization techniques stand out as alternatives
to overcome these limitations, since they can offer better stability, increased activity and
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selectivity, excellent resistance, improvements in product separation and purification, and
the possibility of enzyme reuse, rendering processes increasingly efficient [192–206].

Enzyme Immobilization

Enzymatic immobilization is based on the confinement of enzyme molecules on the
surface of a reliable support that is different from that in which the substrate or prod-
ucts are present [202–209]. In contrast with their solubilized form, immobilized enzymes
provide a large enzyme to substrate ratio, efficient digestion, and secure handling, in
addition to showing more significant activity and the possibility of reuse for several cy-
cles [197,210–213]. The stability of free enzymes is mainly dictated by its intrinsic structure,
while the stability of their immobilized counterparts is highly dependent on several other
factors, as shown in Figure 4. These factors are responsible for the stability of immobilized
enzymes under different temperatures and storage conditions. The experimental variables
can be expected to increase or decrease during the immobilization process [214–217].
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According to the modes of interaction between enzymes and supports, immobilization
methods can be classified into physical or chemical methods, as shown in the scheme
in Figure 5 [180,218]. Physical methods show weaker monovalent interactions, such
as hydrogen bonds, hydrophobic interactions, van der Waals forces, affinity or ionic
bonding of enzymes to the support, or the mechanical containment of enzymes within the
support [219–222]. In chemical methods, the formation of covalent bonds occurs from ether,
thioether, amide, or carbamate bonds between the enzyme and the support material [223].
Each immobilization technique is applicable to a specific process, and choices are usually
made based on the costs and sensitivity required [200–224].

Adsorption is a simple but efficient method of enzymatic immobilization [225]. Ad-
sorption can be of physical, ionic, or affinity nature, with physical adsorption being the
most commonly used method [180]. The latter is probably the fastest, most straightfor-
ward, and economical technique [226]. It is a reversible method in which enzymes are
physically bound to the support material. It involves weak intermolecular interactions,
such as Van der Waals forces, electrostatic forces, hydrophobic interactions, and hydrogen
bonds [227,228]. With this technique, immobilized enzymes can be easily removed from
the support, allowing its reuse in subsequent immobilization cycles [229]. In the study
carried out by Lin et al. [230], FeO@C nanoparticles functionalized with amine were used
as magnetic carriers for laccase immobilization by adsorption. As a result, the operational,
pH, and storage stability of the immobilized laccase were significantly improved, and after
10 consecutive operations, it maintained its residual activity above 60%.
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The trapping method is based on the incorporation of the enzyme into a polymeric
network by covalent or non-covalent bonds that enable the passage of the substrate while
retaining the enzyme [231,232]. In this method, enzymes are not bound to the support
matrix, unlike in other methods [233]. Different strategies can be used for entrapment,
such as the inclusion of the enzymes within a highly cross-linked polymeric matrix, their
dissolution in a non-aqueous phase, or their separation through semipermeable microcap-
sules [207]. The entrapment to charged polymeric membranes appears as an alternative
to the functionalization method, since this allows the immobilization of enzymes at high
concentrations [229–235]. The technique presents several advantages, as it does not re-
quire many steps or extensive purification stages, apart from being fast and the reaction
being able to run under moderate conditions [236,237]. However, difficulties regarding
diffusion exist in the transport of substrate and product, when these have high molecu-
lar weight [238]. In the study by Xu et al. [239], an Aspergillus niger lipase was doubly
immobilized via encapsulation in SiO2 nanoparticles in sol–gel powder prepared with
tetramethoxysilane (TMOS) and methyltreimetotoxysilane (MTMS) catalyzed polymeriza-
tion. The results indicated that under ideal conditions, the immobilized lipase retained
92% of its protein load and 94% of its total enzymatic activity, in addition to showing
higher thermal and pH stability than its free form, confirming their great potential for
industrial applications.

Enzyme crosslinking involves a bifunctional agent, usually glutaraldehyde [240], in the
preparation of immobilized enzymes without the need for a carrier [241]. The advantages
of this approach are high enzyme activity and low production costs due to the exclusion of
additional expensive carriers [211]. The cross-linked enzyme aggregate (CLEA) method is
an independent immobilization technique, which enables the production of recyclable and
stable biocatalysts with high activity retention [242,243]. They can be applied to immobilize
almost all enzymes and present many positive economic advantages and environmental
benefits in industrial biocatalysis [237,244]. They are produced by the crosslinking of
enzymatic aggregates resulting from the mixing of an aqueous protein solution with
organic solvents, polymers, or anionic salts, or by crosslinking the bifunctional reagent,
which generates a three-dimensional polymeric matrix [228,245]. Doraiswamy, Sarathi,
and Pennathur [246] carried out a study using nanoparticles of magnetite (MGNP-CLEAs)
and graphene oxide (GO-CLEAs), cross-linked with glutaraldehyde, as supports for the
immobilization of the enzyme Staphylococcus spp through the CLEA method. As a result,
MGNP-CLEAs have been shown to have better stability over a wide temperature and pH
range, together with an increase in their reusability and storage stability.



Electrochem 2021, 2 160

Covalent bonding occurs through functional groups of enzymes that are not essential
for its catalytic activity [247]. Nucleophilic functional groups of amino acid side chains,
such as hydroxyl, amino, carboxylic, and thiol, are usually involved in the formation of
these bonds [248]. Immobilization by covalent bonding is advantageous in that it forms
strong bonds between the enzyme and the support, preventing enzyme leaching [249].
However, the amount of materials available commercially for covalent immobilization is
low compared to immobilization by adsorption [250]. With the use of this technique, there
is a slow release of enzymes and an improvement in its storage capacity and shelf life, so it
is favorable for continuous applications at full scales [251]. Osuna et al. [252] studied the
immobilization of Aspergillus niger lipases by covalent bonding on magnetic nanoparticles
coated with chitosan (CMNP) and obtained by co-precipitation. The results showed high
storage stability for 50 days in immobilized derivatives that maintained their initial activity
above 80% after 15 hydrolytic cycles.

The characteristics of the support used for enzyme immobilization are fundamental
factors to determine their performance [190,253]. An adequate support must present
physical resistance to pressure and hydrophilicity, be readily available, and of low cost [254].

4. Nanomaterial-Based Enzymes as Biosensors

Enzyme-based biosensors are widely used, as well as immunosensors (which gener-
ally involve antibodies), genosensors (based on nucleic acids), and cell-based sensors, and
these can be applied in the areas of food safety, health care, and environmental monitor-
ing [14,255–258]. Enzyme immobilization onto transducers is crucial in the obtainment of
enzyme-based biosensors, since it directly affects their lifespan and the time of enzymatic
response [14,52,259,260].

As mentioned previously, the underlying architecture of a biosensor consists of the
appropriate combination of a biological portion (in this specific case, an enzyme) and a
transducer [261,262]. Therefore, the most central aspect for designing such a device is the
adequate combination between enzyme and electrode [238]. In addition, the sensitivity of
the biosensor is directly proportional to the efficiency of the process of enzyme immobiliza-
tion to the electrode [14,47,238]. Therefore, for this process to be successful and result in
excellent biosensor efficiency, some factors must be taken into account, such as the class of
enzyme, type of support, immobilization method, and final application [212,263]. These
observations must be considered in early design stages because immobilization techniques
can highly influence the properties of enzymes [212,263].

Concerning support materials, nanostructured materials are highlighted, as they have
characteristics that justify and incentivize their application in the field of biosensors: high
surface-to-volume ratio, good electrical conductivity, high reactivity, excellent magnetic
properties, and the ability of synthesis of suitable enzyme-support derivatives [14,264]. In
addition, the incorporation of nanomaterials in the design of biosensors can offer remark-
able electronic, magnetic, and optical properties; they can also render enzyme immobiliza-
tion processes more successful, facilitate electron transfers and make biocatalyzed reactions
more specific [265,266]. Moreover, nanostructured materials are more biocompatible to a
certain degree and allow enzymes to better maintain their catalytic activity [14,238,267].

Among specific examples, gold nanoparticles (10–30 nm) have been shown as po-
tential alternatives for biosensor applications due to the fact that their physicochemical
properties (such as electrocatalytic, optical, thermal, and magnetic) depend on the size,
shape, and biocompatibility of the biosensor [47]. The stability of the final composite
material made from gold nanoparticles (AuNPs) became a promising platform for en-
zymatic biosensors [268]. Gold nanoparticles favor the transfer of electrons between a
wide range of electroactive biological species and the electrode, which in turn enables the
device to detect biocomposites at lower concentrations [47]. This principle is used mainly
in the redox enzyme biosensor, where the bioreceptor unit catalyzes the oxidation or the
reduction of the analyte [269]. The presence of functionalized AuNPs leads to a better
bioelectrocatalytic response of the biosensor, besides promoting greater selectivity and



Electrochem 2021, 2 161

sensitivity [270]. Moreover, easy modification of the gold surface by thiolated molecules
makes AuNPs suitable across different biological arrangements.

Another noteworthy factor is that the transfer of electrons between enzyme and trans-
ducer can be improved by the use of nanomaterials [53,271,272]. This improvement is
provided by the morphology and dimensions of these nanostructures, and the strong
electrostatic interactions between the enzyme and the nanomaterials [14,273]. The immobi-
lization of enzymes onto nanomaterials for the design of biosensors is extensively reported
in the literature. Table 2 shows the types of materials that have been used in the production
of enzymatic biosensors based on nanomaterials.

Table 2. Nanomaterial-based enzyme biosensors for different applications.

Enzyme Nanomaterial Applications Reference

Glucose oxidase Carbon nanotubes Glucose biosensor [137]
Glucose oxidase GR-MWNTs/AuNP (1) Glucose biosensor [138]

Bovine serum amine
oxidase Au@PDMPAHCl (2) Biomedical

applications [139]

Horseradish
peroxydase Gold sononanoparticles Cyanide

determination [274]

DNA ligase Fe3O4
Detection of genomic

DNA [140]

Organophosphorus
Hydrolase Fe3O4-silica NPs (3) Direct detection of

paraoxon [141]

Plant esterase CS/AuNPs-GNs (4)
Detection of

organophosphate
pesticides

[142]

Diamine oxidase Ceria nanospheres
Determination of
putrescine in tiger

prawn
[143]

Xanthine oxidase MNP-PAMAM-PtNP/rGO-
CMC (5)

Determination of
xanthine in fish meat [144]

DNA
methyltransferase Gold nanoparticles

Detection of DNA
methyltransferase

activity
[275]

Human monoamine
oxidase B MnO2 modified MWCNTs * Determination of

total monoamines [145]

Glucose oxidase Tobacco mosaic virus Glucose biosensor [146]

Glucose oxidase Carbon ceramic

Pore size effect in the
amount of

immobilized enzyme
for manufacturing

biosensors

[147]

Tyrosinase Carbon nanotubes Phenol biosensor [276]

Xanthine oxidase poly(l-aspartic acid)/MWCNT Detection of xanthine
in food industries [148]

Uricase Chi-Gr cry/PB/SPCE (6) Uric acid detection [149]
(1) Gold nanoparticles prepared with graphene and multi-walled carbon nanotubes; (2) Core–shell gold nanoparti-
cles stabilized with poly(3-dimethylammonium-1-propyne hydrochloride); (3) Magnetic nanoparticles: silica core–
shell; (4) Chitosan/gold nanoparticles: graphene nanosheet; (5) Poly(dopamine)-modified magnetic nanoparticles
coated with four-generation ethylenediamine and core polyamidoamine G-4 dendrimers decorated with platinum
nanoparticles on the surface of glassy carbon electrodes coated with graphene oxide and carboxymethylcellulose;
(6) Porous cryogel platform of graphene-incorporated chitosan on top of a Prussian blue layer electrodeposited on
a screen-printed carbon electrode. * Multi-walled carbon nanotubes (MWCNT).

By observing Table 2 above, it is evident the great interest of the scientific community
in the development of new enzyme-based biosensors that incorporate nanomaterials for
the most diverse demands. Their applications in the biomedical, environmental, food, and
industrial sectors are discussed in the next sections.
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4.1. Biomedical Applications

The development of enzyme biosensors has improved and expedited the diagnosis of
many diseases, such as diabetes, cancer, HIV, dengue, high cholesterol, and many other
disorders that involve serum analysis [127,277]. To this end, the employment of enzyme
biosensors present numerous positive aspects (simplicity, flexibility, cost-effectiveness,
portability, and superior selectivity) [278,279]. Currently, only a few biosensors are com-
mercially available, such as those for monitoring blood glucose. In the next sub-sections,
we will discuss biosensor features used in the monitoring of diabetes, the role of choles-
terol oxidase (COx) for determining cholesterol, the detection of biomarkers for cancer
diagnostics, and the detection of lactate, which can be a strong indicator of health problems.

4.1.1. Glucose Biosensors for Diabetes Monitoring

Diabetic patients need to self-monitor blood glucose levels daily, which has proved
challenging on many occasions [280,281]. Without strict control of their glucose levels,
these patients can suffer health complications such as blindness, coronary artery diseases,
stroke, and even kidney failure [282,283]. Due to the limitations and the importance of
correct diagnostics, in recent years, considerable efforts have been made to create better
techniques for determining blood glucose [278,284]. Enzymatic amperometric glucose
biosensors are the devices most employed to this end, mainly because they are highly
selective [285–287]. Among the enzymes used for detection, glucose oxidase (GOx) is a
common choice owing to its relatively higher selectivity toward the monomer [286,288].
It is also easy to obtain, cheap, can withstand higher pH conditions, ionic strength, and
temperature compared to other enzymes, such as hexokinase and glucose 1-dehydrogenase,
for example [127,289,290]. Moreover, GOx catalyzes the oxidation of b-D-glucose into b-
D-glucono-1,5-lactone and hydrogen peroxide by using molecular oxygen as an electron
acceptor [291,292]. Then, the quantification of glucose can be done either via the hydrogen
peroxide produced or the oxygen consumed [285,293].

So far, three generations of glucose oxidase biosensors have been proposed. The
first generation is based on the measurement of the hydrogen peroxide produced and
the oxygen consumed [285]. This is because GOx usually oxidizes glucose into glucono-
lactone in the presence of oxygen and produces hydrogen peroxide (H2O2) and water
as by-products [294]. The main drawback of these first-generation biosensors is that the
amperometric measurement of hydrogen peroxide requires a high operation potential to
be able to act with high selectivity [286,291]. Another drawback is the limited solubility
of oxygen in biological fluids, which produces oxygen tension changes that are known as
“oxygen deficits” [127].

The second generation of glucose sensors, also known as “mediated glucose biosen-
sors”, have overcome the problem of their first-generation counterparts by the addition of
a redox mediator (non-physiological electron acceptor), which transports electrons from
the enzyme’s active site to the electrode [285,286]. However, these mediators have high
toxicity. Therefore, a third generation of glucose biosensors has emerged, basing on the
direct electron transfer between GOx and the electrode without mediators [7,287,295]. Due
to the slow deactivation, these biosensors require constant recalibration [285].

4.1.2. Cholesterol Oxidase Applications in Biomedicine

The rapid advance of cardiovascular diseases seen in the last decades is remarkably
worrying. High blood cholesterol levels is an aggravating factor for these types of dis-
eases, and it is of fundamental importance to detect them in their early stages, since when
present in large quantities, cholesterol circulates in the blood and accumulates on the
internal walls of arteries, making them narrower and less flexible [296]. Several enzy-
matic biosensors have been developed in recent years to accelerate the diagnosis of high
cholesterol levels [154,297,298]. Most of them use the enzyme cholesterol oxidase (ChOx),
which catalyzes the oxidation of cholesterol (cholest-5-en-3-ol) by employing oxygen as an
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electron acceptor, and it generates cholest-4-en-3-one and hydrogen peroxide (H2O2) as
by-products [299,300].

Similar to glucose biosensors, most of the cholesterol biosensors are based on the
amperometric technique. In short, the biosensor controls the O2 consumption and the
H2O2 production during the ChOx cholesterol catalysis [301,302]. Other cholesterol biosen-
sors widely studied in recent years are those based on photometric indicators, such as
luminescence, surface plasmon resonance, and fluorescence [295]. Recent studies report
that ChOx from Bordetella spp. caused lung cancer cells both in vitro and in vivo to un-
dergo irreversible apoptosis, besides promoting the generation of reactive oxygen species
(ROS) [302–304]. These findings render ChOx a promising candidate for future anti-tumor
therapies.

4.1.3. Detection of Cancer Biomarkers

MicroRNAs (miRNAs) are small, endogenous, and single-stranded noncoding RNAs
that a play vital role in regulating gene expression through messenger RNAs [305,306].
They are involved in many physiological processes in the human body, and their abnor-
mal regulation results in various diseases, including different types of cancer [307,308].
Graphene oxide and reduced graphene oxide both exhibit strong affinity for miRNAs
via hydrogen bonding or π–π interactions, and they are widely used for detecting this
biomarker. In electrochemical miRNA detection, the transduction event measures the
changes provoked by hybridization, employing electrochemically active reporter species,
including enzyme–substrate pairs such as horseradish peroxidase or hydrogen peroxide,
which delivers good sensitivity [309–311].

The enzyme-linked immunosorbent assay (ELISA) is a technique that is widely used
for different applications, including cancer diagnostics [312]. Despite the simple operation
and cost efficiency, it suffers from low sensitivity to biological samples [312]. Using
nanomaterials as carriers of enzymes is an effective strategy, since they are able to increase
the sensitivity of detecting markers of different types of cancer from 2 to 13 fold [313–316].
For this purpose, gold nanoparticles carrying the enzyme horseradish peroxidase are the
most often used, but reports of employment of other nanomaterials and enzymes can also
be found in the literature [312–314].

4.1.4. Lactate Detection

The concentration of lactate, or lactic acid, has been widely used as a key parameter in
clinical diagnostics, both for assessing patient health conditions and for studying different
diseases [317–319]. An accumulated concentration of this specific acid in the human body
results in lactic acidosis, which causes several health problems, such as failures in the heart’s
left ventricular and in the renal and hepatic systems, sepsis, diabetes, and malignancy or
inborn errors of metabolism [317,320].

Due to the simple enzymatic reactions and the facilitated production of biosensors, the
most common enzymes used for lactate detection are L-lactate dehydrogenase (LDH) and
L-lactate oxidase (LOD) [321]. The complexity and cost of conventional LOD biosensors ren-
der their use impractical [317]. The use of nanomaterials, and more specifically, of those that
are carbon-based, can effectively solve the lower sensitivity and selectivity issues in LODs.
Using these nanomaterials also increases the longevity of lactate biosensors [322–325].

Carbon nanodots have been receiving considerable attention in biosensing applica-
tions due to their water solubility, low cytotoxicity, high luminescence, and good conduc-
tivity [326,327]. To facilitate enzyme immobilization, they can be surrounded by different
functional groups such as hydroxyl, carboxyl, and amide groups [328,329]. Bravo et al.
used a simple and fast method to produce a lactate biosensor, which consisted of the
direct adsorption of lactate oxidase onto carbon nanodots. Their biosensor had a sensi-
tivity of 4.98 × 10−3 µA·µM−1 and a detection limit of 0.9 µM, similar to the commercial
spectrophotometric enzymatic kit [322].
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Diamond nanoparticles are carbon-based nanomaterials generated from carbon-containing
explosives detonated under conditions of negative oxygen balance [330,331]. Their easy scale-
up and moderate production cost, along with their biocompatibility and noncytotoxic nature,
render them attractive for biosensing applications [332,333]. To this purpose, they require some
structural modification, such as that done by Briones et al., who used (hydroxymethyl)ferrocene
(HMF) as a redox mediator. Their developed lactate biosensor presented a linear concentration
range from 0.02 to 1.2 mM, a sensitivity of 6.1 µAmM−1, a detection limit of 5.3 µM, and very
good stability [332].

4.2. Environmental Applications

In the last decades, the concerns involving environmental pollution have intensi-
fied due to the constant growth of contaminants and pollutants harmful to the environ-
ment [334]. There is a clear need for developing new methods for monitoring the levels of
pollutants in the environment, such as heavy metals and pesticides [335,336]. Traditional
analytical techniques, such as chromatographic methods, are challenging to incorporate
because they require costly reagents, time-consuming sample pre-treatments, and expen-
sive equipment, apart from not being efficient in in situ measurements, as in the case of
accidental releases of pesticides or acute poisoning [21,337,338]. Thus, analytical methods
for environmental monitoring are required to be practical, cost-effective, portable, and
fast [338,339].

In this context, enzyme-based biosensors appear as a potential alternative, as they
have several advantages over other traditional tools, by being economical, user-friendly,
highly sensitive, accurate, and large-scale enabled [335,340,341]. Currently, the primary
water and soil pollutants are heavy metals, such as aluminum (Al), cadmium (Cd), copper
(Cu), lead (Pb), chromium (Cr), mercury (Hg), and zinc (Zn) [342,343]; and pesticides, such
as atrazine, endosulfan sulfate, diethyl atrazine, chlorpyrifos, etc. [344–346]. Therefore,
two of the main applications of enzyme-based biosensors are in the analysis of water and
soil samples for the detection of heavy metal or pesticide traces. Within this context, the
next subsections will be dedicated to exploring the main concepts and studies concerning
these applications.

4.2.1. Heavy Metal Sensing

Several enzymes, such as urease [347–349], horseradish peroxidase [343,350,351], glu-
cose oxidase [287,352], invertase [353,354], and dehydrogenase [355–357] can be highly
efficient in metal identification analyses, based either on the activation or on the inhibi-
tion of the specific enzyme. Heavy metals generally act as cofactors of metalloproteins
to form an essential part of the structure that is required for enzyme activation [335,342].
Enzyme inhibition, on the other hand, occurs in the parts of the enzyme where the in-
teraction between heavy metals and thiol or methylthiol groups of amino acids takes
place [337,358]. Enzymatic methods are based on the inhibition behavior that several metal
ions can cause in a wide range of enzymes (such as peroxidases, dehydrogenases, ureases),
which are explicitly inhibited by low concentrations of a particular metal ion [353,359–362].
Nanoparticles can enhance electron transfer, increase conductivity, and offer high biocom-
patibility and catalytic efficiency, therefore composing inhibition biosensors with high
sensitivity [350,362].

The deactivation of the enzyme urease was used in a system set up to monitor and
detect heavy metals such as mercury, cadmium, and arsenic. Although the estimation
was made based on enzymatic analyses, the application of immobilization techniques was
not required. In addition, it was observed that the enzyme was completely deactivated
in the presence of 20 ppb mercury [342,361]. Urease was also employed in the design
of enzymatic amperometric biosensors for the measurement of Hg+2, which is based on
the inhibitory action of the ion on the urease activity [347,362]. To do that, the authors
used screen-printed carbon electrodes as a support and electrodes modified with gold
nanoparticles, resulting in a more sensitive analysis of this heavy metal [362].
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4.2.2. Organophosphoric Pesticide Sensing

According to the EPA, pesticides are substances, or mixture of substances, intended for
preventing, destroying, repelling, or diminishing damage caused by pests [360]. Pesticides
are the major pollutants found in water, the atmosphere, soil, plants, and foods [363–365].
Biosensors are essential for detecting and monitoring these contaminants as they are simple,
highly sensitive, and do not require extensive sample pre-treatment [338,366].

The main enzymes used for this purpose are cholinesterase (ChE), glucose oxidase
(GOx), cholinesterase (AChE), urease, butyrylcholinesterase (BChE), and oraganophosphorus-
hydrolase (OPH) [359,367,368]. In that regard, common techniques are enzymatic inhibition
assays and immunoassays [369]. Inhibition-based biosensors have a disadvantage in the
fact that the inhibition process takes place in several steps, with the incubation and re-
activation, or regeneration, steps being time-consuming [369,370]. Acetylcholinesterase
(AChE) inhibitors have been studied in the development of a paper-based biosensor. This
biosensor could detect organophosphate and carbamate pesticides within very reasonable
detection limits, with methomyl = 6.16 × 10−4 mM and profenophos = 0.27 mM showing a
fast response time of approximately 5 min [371].

Organophosphorus hydrolase (OPH) or phosphotriesterase is a bacterial enzyme
that is capable of catalyzing the hydrolysis of many pesticides [372,373]. The enzymatic
hydrolysis of pesticides includes pH changes and chromophoric species [369,374]. OPH has
emerged as a promising alternative for detecting organophosphorus compounds, owing
to its wide range of compatible substrates and its variety of possible bonds, such as P-F,
P-O, P-S, and P-CN [375]. It is also highly specific for the detoxification of the PdF bond (G
agents) of organophosphates such as sarin; however, OPH is ineffective for other classes of
organophosphates such as PdO, PdS, and PdCN [335]. In another work, Du et al. designed
a nanomaterial-based biosensor by covalently coupling OPH loaded on quantum dots
with carbon nanotubes or gold composites. The detection limit was 1.0 ng/mL [376].
Furthermore, this biosensor showed high selectivity for detecting methyl parathion and
many other interfering compounds, such as carbamate pesticides [376].

4.3. Food Applications

Detecting the presence and controlling the amount of toxic substances in foods is
of paramount importance to this industry, not only because of the potentially harmful
health effects on consumers but also to better manage the quality of the food produced,
considering that the levels of toxins increase over time, which can be made worse due to
poor conditions of processing and storage [107,377]. In this regard, enzymatic biosensors
based on nanomaterials appear as good alternatives for monitoring the quality and safety
of foods because they are highly sensitive, selective, fast, and also due to the possibility of
miniaturization [377]. For example, nanomaterial-based enzyme biosensors are used in the
food industry for the detection of harmful substances such as mycotoxins, pesticides, and
other compounds, and their application in this sector for controlling these substances is
widely reported [14,47,107,377–379].

In this scenario, one of the most pertinent issues is the contamination of food by pesti-
cides, which is a constant issue in agricultural production [378]. Zhang et al. synthesized
an acetylcholinesterase biosensor based on mesoporous carbon/ferroferric oxide-modified
electrode for detecting organophosphorus pesticides. Chitosan was used as a dispersant
to disperse ordered mesoporous carbons (OMC), and Fe3O4 for fixing them firmly on the
electrode surface, increasing its electrochemical response. With the use of this biosensor
to detect pesticides in cabbage, rape, and lettuce samples, relative standard deviations
between 0 and 4.51 and a recovery rate between 94% and 105% was observed. These
results indicate that the proposed biosensor has remarkable accuracy, precision, and that
the process is highly reproducible [275].

For a similar purpose, Zheng et al. synthesized a nanocomposite based on a glassy
electrode functionalized with ionic liquid and gelatin. The nanocomposite obtained showed
high conductivity and excellent biocompatibility with the enzyme acetylcholinesterase
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(AChE). A good rate of electron transfer was observed between the active site of the enzyme
due to a good adhesion of AChE owing to the surface hydrophilicity of the electrode, which
facilitated the access of substrates to active enzyme centers. The proposed biosensor was
tested in the analysis of carbaryl and monocrotophos in spiked tomato juice samples.
Their observations showed that the detection of carbaryl reached levels between 92.5%
and 105.0%, and for the detection of monocrotophos, this was between 91.2% and 110.0%.
The results confirmed that the proposed biosensor had good accuracy and sensitivity in
analyses of food security [380].

More recently, Ma et al. discussed the synthesis and uses of a biosensor based on
nanocomposites of Pt nanoparticles anchored to UiO66-NH2 as carriers to produce acetyl-
cholinesterase biosensors for organophosphorus pesticide detection in samples of cabbage
and apple. Their results showed that the synthesized biosensor presented high sensitivity,
varying from 1 × 10−14 M to 1 × 10−9 M, within a detection limit of 4.9 × 10−15 M. Using
the proposed biosensor, malathion recovery rates ranged from 93.34% to 97.80%. These
results demonstrate that the biosensor is a viable alternative for practical use [381].

Another issue in the food industry that could be solved by the detection and the control
capabilities of biosensors is that of contamination by bacteria and other microorganisms. In
this regard, Sánchez-Paniagua López et al. [377] studied and synthesized electrochemical
enzyme biosensors based on calcium phosphate materials for tyramine detection in gouda
and brie cheese samples using tyrosinase as the biological material. The resulting biosensor
proved to be a reliable, highly sensitive, fast, cheap, and easy analytical method for
detecting tyramine. Under optimal reaction conditions, a linear range of 5.8 × 10−7 to
1.6 × 10−5, sensitivity of 1.5 × 103 mA M−1 cm−2, detection limit of 4.85 × 10−8 M, and a
response time of 6 s were obtained [377].

In another application, Sun et al. used the enzyme deoxy ribozyme to develop a
colorimetric sensor based on a truncated aptamer and trivalent DNAzyme aimed at the
determination of Vibrio parahemolyticus, which is a food-borne pathogen common in fresh
salmon samples. In their work, the aptamer-conjugated magnetic nanoparticles (MNPs)
were used as capture tools, and the G-quadruplex (G4) DNAzyme was used as the signal
amplifier element. Under optimal reaction conditions, a considerable linear detection range
of 102 to 107 CFU/mL was observed, in addition to a low detection limit of 10 CFU/mL.
Therefore, the synthesized biosensor showed good sensitivity and accuracy, making it
a viable alternative for monitoring food quality without the need for more complicated
operations [382].

Ethanol detection is used in clinical analyses and also to check the progress of fermen-
tation processes in fermented beverage production [383–385]. Many different biosensing
architectures are proposed in the literature, with the work of Revenga-Parra et al. being
worthy of mention. The authors used diamond nanoparticles chemically modified with
phenothiazine as carriers for the enzyme alcohol dehydrogenase [330]. The biosensor
produced presented a persistent electrocatalytic effect toward the oxidation of NADH,
good selectivity to ethanol, and very good analytical performance [330].

Thus being, several enzymatic biosensors based on nanomaterials have been reported
for the most diverse purposes in the food industry, aiming at an improved detection
of pesticides and microorganisms, as described above. It is clear that the technological
potential of biosensors is being studied further to ensure better management, safety, and
quality of foods, considering that the sector is directly linked to the well-being and quality
of life of the wider population. Therefore, the need for more optimized sustainable practices
and the rush to reduce negative environmental impacts by providing (bio-)technologies that
can detect the concentration and toxicity of contaminants in foods, soil, and plantations has
become an attractive research field that aims at ensuring the production and maintenance
of safe and healthy food products.
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4.4. Industrial Bioprocess Applications

As described above, the basic architecture of a biosensor is given by the appropriate
combination of a biological portion and a transducer, and the changes that are detected
by the transducer are converted into tangible optical, electrical, or thermal signals, which
are used to identify the analyte of interest [47]. Thus, depending on the type of electrode
and the class of enzyme, these biosensors can applied in several industrial segments,
such as in biomedical applications [19,47,137–139], in the monitoring of food, soil, and
plantations [275,377,380,381], and in the detection of environmental pollutants [1]. The
growing interest of these sectors in this type of device is explained by their high sensitivity
and enzyme specificity toward the analytes of interest. In this sense, several categories of
enzyme-based biosensors are capable of adapting to specific industrial applications based
on the type of transducer used, for producing electrochemical, colorimetric/optical, or
piezoelectric biosensors.

Electrochemical biosensors is the most used and reported class in the literature, having
been applied in the biomedical field, in the food industry, for the detection of pollutants
in the environment, etc. [47]. An example of an application in biomedicine, the work of
Bäcker et al. reports the development of an electrochemical detector based on nanotubes
of Tobacco mosaic virus (TMV) as a matrix for immobilizing glucose oxidase (GOD) using
streptavidin (SA) as a bridge between TMV and GOD in Pt electrodes. The authors also
investigated the immobilization strategy of streptavidin-conjugated GOD ((SA)-GOD) that
would result in the most sensitive and accurate glucose detection: bio-affinity binding, ad-
sorption, and crosslinking with glutardialdehyde. The results showed that glucose sensors
with (SA)-GOD conjugates immobilized by adsorption and those equipped with (SA)-GOD
crosslinked with glutardialdehyde presented a sensitivity of 1.4 nA mM−1 mm−2 and
1.6 nA mM−1 mm−2, respectively, in the linear range of 0.4–3.4 mM glucose. On the other
hand, biosensors based on bio-affinity (SA)-GOD resulted in a higher detection sensitiv-
ity of 4.9 nA mM−1 mm−2 and 2.8 nA mM−1 mm−2, in the linear range of 0.1–7.4 mM
glucose [146].

Within the environmental area, electrochemical biosensors have also been successfully
applied. In water treatment for the detection of contaminants, Maleki et al. proposed a
new enzyme-based biosensor to detect catechol in water samples using artificial neural
networks. In this study, poly (3,4-ethylenedioxy-thiophene) (PEDOT), graphene oxide
nanosheets (GONs), and laccase (Lac) were used in the design of a biosensor to be placed on
the glassy carbon electrode. The developed biosensor was successful for detecting catechol,
and linear responses were obtained in two intervals, 0.036–0.35 µM and 0.35–2.5 µM, with
a detection limit of 0.032 µM. These results confirmed that the proposed model can be a
powerful tool for catechol detection in water samples in real scenarios [386].

In addition, from the perspective food quality, another research line has focused
on electrochemical enzyme-based biosensors. In this regard, Yazdanparast et al. devel-
oped an enzyme-based ultrasensitive electrochemical biosensor using poly(L-aspartic
acid)/MWCNT bio-nanocomposite for xanthine detection in order to guarantee meat fresh-
ness. The biosensor was prepared using a multi-walled carbon nanotube (MWCNT) and
a poly(L-aspartic acid) film for the immobilization of xanthine oxidase (XO) on a glassy
carbon electrode (GCE). The developed model applied in the detection of xanthine in fish
meat showed a linear range of 0.001–0.004 µM and 0.005–50.0 µM, with a detection limit of
3.5 × 10−4 µM [148].

Another example of application in the food sector was carried out by Russian re-
searchers, who patented a device to determine the content of glucose, lactate, ethanol, and
starch in fermentation media or in products such as glucose syrup, resulting from food
production streams. The purpose of the invention is to increase the accuracy of analyses
of glucose, lactate, ethanol, and starch, and to extend the range of determination of the
concentrations of such substances, deeming it a practical solution for this intended purpose.
To this end, enzymatic preparations of glucose oxidase, alcohol oxidase, lactic oxidase,
and a mixture of glucose oxidase and γ-amylase were covalently immobilized on graphite
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electrodes modified by single-walled carbon nanotubes. The data showed that the device
met the proposed objective with good detection time and accuracy [387].

Concerning colorimetric biosensors, several studies have also reported optical detec-
tion to be an efficient tool to identify pathogens and toxins in the food industry. Wu et al.
developed a simple colorimetric aptasensor system to detect Vibrio parahaemolyticus, which
is a widespread food-borne pathogen. The method used magnetic (MNPs) and gold
nanoparticles (AuNPs) as carriers of horseradish peroxidase (HRP) and aptamers, which
served as signal probes. In the presence of the analyte, optical signals were generated, and
under optimal conditions, these were linearly dependent on the Vibrio parahaemolyticus
concentrations from 10 to 106 cfu/mL in a logarithmic graph, with a detection limit of
10 cfu/mL. Due to the presence of the gold nanoparticles, a large amount of horseradish
peroxidase could be loaded, which resulted in an amplification of the signal and an im-
provement in the sensitivity of the biosensor [388].

Based on the principle of photosensitive detection, Lu et al. [389] patented a biosensor
using a photonic crystal sensor with immobilized urease for the determination of heavy
metal ions in industrial effluents under the justification that such effluents could be harmful
to both humans and the environment. According to their experimental data, because the
system was designed using an immobilized enzyme, the biosensor allowed for repeated
analyses and thus reduced the costs of detection. Additionally, due to the physical charac-
teristics of the support, the mass transfer resistance between the analyte and the biosensor
was reduced and the analysis was facilitated. Therefore, when comparing other strategies
for detecting heavy metals in samples, this particular invention proved to be simpler to
operate, to have greater sensitivity and stability, and result in shorter response times [389].

Another invention related to photodetection was reported by Honghui et al., who
worked with MWCNT doped with iron nanoparticles used as a tint for the immobilizing of
peroxidase (EC 1.1.11.7). According to the inventors, the biosensor proposed can be used
in the detection of hydrogen peroxide and glucose, considering that these substances are
by-products from several industrial bioprocesses. In this sense, apart from the good analyte
detection levels, the invention enabled the reuse of the biosensor and its incorporation by
the industry [390].

As discussed, several enzymatic biosensors based on nanomaterials have been em-
ployed across different industries for the most diverse purposes, such as for biomedical
applications, in food safety and quality, and for pollutant detection. Therefore, the techno-
logical potential of biosensors is in increasing development to ensure better management,
safety, and quality of foods, human health, and the environment.

5. Conclusions and Future Trends

As discussed in this review, nanomaterials of different types and properties are cur-
rently being researched and developed for use across many areas of interest. The incorpo-
ration of nanotechnology to the already consolidated enzyme-based biosensing techniques
has been granting even more relevance and applicability to biosensors [8,47]. Among their
advantages, it can be noted that nanomaterials are usually cost-effective; they can enhance
the electrochemical signal conversion of transducers, reduce response times, and they are
more stable and biocompatible than their non-nano counterparts [8,14,65]. However, there
are still a few issues regarding their use that require further research before they can see a
more widespread implementation.

For example, Batool et al. [65] discussed that the usual method for creating nanolayers
on the transducer surface leads to random surface thickness and affects the performance of
electrochemical biosensors [65]. In this sense, it is necessary to study alternative immobi-
lization methodologies aimed at nanolayer formation in order to produce biosensors with
uniform and controllable characteristics [65].

It is also worth mentioning that it is quite challenging to produce graphene with a
well-defined size and precise surface chemistry. Moreover, to this end, it is necessary to
focus on its biocompatibility, versatility, and reusability [391]. Another trend is to produce
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biosensors by combining two or more novel nanomaterials, which is currently attracting
considerable attention [8]. These hybrid nanomaterials often show synergetic effects among
their constituents, enabling the development of highly sensitive biosensors for wearable
applications [8].

Despite their significant potential, nanomaterials-based biosensors are still in the early
stages of use regarding the detection of pesticides, pharmaceutical compounds, and other
hazards in real applications [14]. More research is needed for achieving highly optimized
ways of developing new nanomaterials that improve the sensitivity, selectivity, stability,
and catalytic activity of the systems involved [14]. As a consequence, with these novel
materials being developed, other novel and appropriate immobilization protocols will also
need to be designed [14,64]. All these considerations need to be at the center of the focus of
the research being done into the next generation of nanometric enzyme-based biosensors.
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