Supplementary Materials

Figures captions

Figure 1S. ACN vs $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}$: Diode array chromatograms of anolyte, after 2 F anodic oxidation with respect to caffeine, of $\mathrm{ACN}(\mathrm{a})$ and $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}$ (b) caffeine solutions. Divided cell, Pt electrodes, r.t., N_{2} atmosphere, caffeine 0.02 M .

Figure 2S. ACN-H2O: Diode array chromatograms of catholyte before (a), after $1 \mathrm{~F}(\mathrm{~b})$ and after 2 F anodic oxidation (c), with respect to caffeine, in ACN-H2O. Divided cell, Pt electrodes, r.t., N_{2} atmosphere, caffeine 0.02 M in $\mathrm{ACN}-0.1 \mathrm{M} \mathrm{Et} 4 \mathrm{NBF}_{4}$ containing 0.02 M water. $E=+1.85 \mathrm{~V}$, vs SCE .

Figure 3S. Compound 1: R.T. 2.75 min , calculated mass $\mathrm{M}=250.09 \mathrm{Da}$; UV-vis spectrum, positive Electrospray ionization (pESI) MS spectrum, pESI fragmentation MS spectra at different collision energies (C.E.), fragmentation pattern, proposed structure.

Figure 4S. Compound 2, R.T. 3.35 min , calculated mass $\mathrm{M}=188.09 \mathrm{Da}$; UV-vis spectrum, positive and negative Electrospray ionization (pESI, nESI) MS spectra, pESI and nESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

Figure 5S. Compound 4: R.T. 6.94 min , calculated mass $\mathrm{M}=213.07 \mathrm{Da}$; UV-vis spectrum, negative Electrospray ionization (nESI) MS spectra, nESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

Figure 6S. Compound 5: R.T. 8.37 min , calculated mass M = 228.09 Da; UV-vis spectrum, positive Electrospray ionization (pESI) MS spectra, pESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

Figure 1S. ACN vs ACN-H2O: Diode array chromatograms of anolyte, after 2 F anodic oxidation with respect to caffeine, of ACN (a) and $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}$
(b) caffeine solutions. Divided cell, Pt electrodes, r.t., N_{2} atmosphere, caffeine 0.02 M .

Figure 2S. ACN- $\mathbf{H}_{2} \mathrm{O}$: Diode array chromatograms of catholyte before (a), after $1 \mathrm{~F}(\mathrm{~b})$ and after 2 F anodic oxidation (c), with respect to caffeine, in ACN-H2O. Divided cell, Pt electrodes, r.t., N_{2} atmosphere, caffeine 0.02 M in ACN-0.1 M Et4NBF 4 containing 0.02 M water. $E=+1.85 \mathrm{~V}$, vs SCE.

Figure 3S. Compound 1: R.T. 2.75 min , calculated monoisotopic mass M = 250.09 Da ; UV-vis spectrum, positive Electrospray ionization (pESI) MS spectrum, pESI fragmentation MS spectra at different collision energies (C.E.), fragmentation pattern, proposed structure.

Figure 4S. Compound 2, R.T. 3.35 min , calculated monoisotopic mass M $=188.09 \mathrm{Da}$; UV-vis spectrum, positive and negative Electrospray ionization (pESI, nESI) MS spectra, pESI and nESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

R.T. 6.94 min

$M=213 \mathrm{Da}$
nESI: $\left\{\begin{array}{l}{[\mathrm{M}-\mathrm{H}]^{-}=212} \\ {\left[212-\mathrm{CO}_{2}\right]^{-}=168}\end{array}\right.$

Figure 5S. Compound 4: R.T. 6.94 min , calculated monoisotopic mass M=213.07 Da; UV-vis spectrum, negative Electrospray ionization (nESI) MS spectra, nESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

R.T. 8.37 min

$M=228 \mathrm{Da}$

Figure 6S. Compound 5: R.T. 8.37 min , calculated monoisotopic mass M=228.09 Da; UV-vis spectrum, positive Electrospray ionization (pESI) MS spectra, pESI fragmentation MS spectra at different collision energies (C.E.), fragmentation patterns, proposed structure.

