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Abstract: In this paper, an application of an artificial neural network algorithm is proposed to
enhance the accuracy of temperature measurement using a fiber-optic sensor based on a Fabry–Perot
interferometer (FPI). It is assumed that the interrogation of the FPI is carried out using an optical comb
generator realizing a microwave photonic approach. Firstly, modelling of the reflection spectrum of
a Fabry–Perot interferometer is implemented. Secondly, probing of the obtained spectrum using a
comb-generator model is performed. The resulting electrical signal of the photodetector is processed
and is used to create a sample for artificial neural network training aimed at temperature detection. It
is demonstrated that the artificial neural network implementation can predict temperature variations
with an accuracy equal to 0.018 ◦C in the range from −10 to +10 ◦C and 0.147 in the range from −15
to +15 ◦C.

Keywords: fiber-optic sensors; microwave photonics; convolutional neural networks; fuzzy logic
algorithms; optical frequency comb; Fabry–Perot interferometer

1. Introduction

Microwave photonics is a scientific and technical discipline at the interface of radio
electronics and photonics, which deals with the study of technologies for the generation,
transmission, processing and reception of signals using the transfer of optical signal pro-
cessing into the radio frequency range. The original goal of microwave photonics was to
combine the advantages of photonic (laser) technologies with mature microwave technolo-
gies. Microwave photonic techniques can significantly increase transmission capacity and
range, reduce signal loss and interference, improve accuracy and significantly reduce the
cost of both transmission and measurement systems [1–3]. Microwave photonic techniques
have applications in various fields including telecommunications [4], radar systems [5,6],
wireless communications, measurement technology [7,8] and fiber-optic sensing [9–11]. The
use of microwave photonic methods in fiber-optic sensing allows not only to significantly
reduce the cost of interrogation equipment but at the same time to increase both the speed
and accuracy of measurements [10–13].

In modern optical and photonic engineering, the task of accurately measuring physical
environmental parameters, such as temperature, pressure and chemical composition, is
becoming critical. For example, accurate temperature measurement is a key factor in a
number of biomedical applications and is crucial in various industrial applications [14].
Classical electrical sensors are among the most common [15], but their application is a
challenge when used in corrosive, explosive or flammable environments. Mechanical
sensors are inexpensive devices that meet safety requirements, but their low resolution and
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vulnerability to mechanical damage limit their applicability [16]. There is great interest in
developing new measurement devices based on fiber-optic sensor systems. Given their
fundamental advantages, such sensors have high reliability, sensitivity and are becoming af-
fordable. The development of fiber-optic sensing technologies opens up new opportunities
to improve patient care, health status and quality of life [17], in particular in the field of new
more sensitive and accurate fiber-optic temperature sensors. Optical interferometers, such
as Fabry–Perot interferometers, are known for their high sensitivity and resolution, which
makes them very promising for use as sensors in various fields of science and technology.
However, interpretation of data obtained with these devices can be difficult due to their
high cross-sensitivity to a wide range of external factors [18].

Another rapidly developing modern research area is artificial neural networks (ANN)
and fuzzy logic algorithms, which among other things are also applied in sensor net-
works [19–22]. Artificial neural networks are also used as a control tool [22] and in signal
processing devices [23,24]. In [25], an ANN was used to effectively analyze the effect of
temperature and acidity level (pH) on the sensor sensitivity, providing a stable response
under different physical conditions. Machine learning-based models excel in analyzing
large amounts of information to predict data outcomes they have not previously encoun-
tered, demonstrating a significant ability to improve the efficiency of fiber-optic systems
in the task of processing and interpreting complex signals [26]. For example, an artificial
neural network apparatus has been used to measure the salinity and temperature of seawa-
ter [27]. Experiments have shown that linear ANNs provide high accuracy and stability of
temperature measurements [28,29] when processing a small number of samples.

The aim of this work is to evaluate the advantages of integrating two key technologies
(microwave photonics and artificial neural networks) to solve the problems of improving
the accuracy and speed of interrogation in fiber-optic measurement systems. One of the
first approaches to the application of the artificial neural network apparatus in fiber-optic
sensing, undertaken by the authors, was the developed algorithm for determining the
central wavelength of fiber Bragg gratings as key elements of sensor networks [30]. Despite
the fact that the authors obtained good results on the determination of the spectral shift of
a fiber Bragg grating obtained under conditions of low spectral resolution, the work did
not use microwave photonic methods, and the measurement system required a full-fledged
spectrum analyzer for the wavelength range 1510–1590 nm.

2. Problem Statement

It was decided to analyze the possibility of a complete refusal from optical spectrum
analyzers with simultaneous high-precision determination of the spectrum shift completely
by means of microwave photonic methods on a model which was formulated as follows. Let
a thin polymer film with refractive index and thickness linearly depending on temperature
be applied to the end of an optical fiber. The difference between the refractive indices
of the optical fiber and the thin film deposited on the fiber end face forms a Fabry–Perot
interferometer (FPI) [31–33]. One of the mirrors of the interferometer is the interface
between the optical fiber and the polymer film, and the second mirror is the interface
between the polymer film and the environment. The resulting Fabry–Perot end-face
interferometer, as well as any interferometric system, is extremely sensitive to changes
in the phase overlap between the mirrors, which in turn depends on both the refractive
index of the material and the distance between the mirrors [34], which, as mentioned
above, depend on the ambient temperature. In this work, it is assumed that the FPI is
isolated from all the external factors, such as humidity, pressure, dust, etc., except for the
temperature variation.

According to the proposed microwave photonic interrogation approach, the scheme of
which is presented in Figure 1, the probing of the FPI reflection spectrum is carried out by
an optical frequency comb including five–seven optical spectral components in the optical
part of the spectrum with a step of 5–10 GHz (40–80 pm) and full width at half height up to
30–35 GHz (240–280 pm). The considered wavelength range of the FPI reflection spectrum
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is from 1520 nm to 1595 nm. The optical frequency comb can be formed using a wideband
optical source (denoted as 1 in Figure 1), the radiation from which is reflected from the
superstructured fiber Bragg grating 3 (described in detail in Section 3.3) and directed to the
Fabry–Perot interferometer through the circulators 2 and 4.

Optics 2024, 5, FOR PEER REVIEW 3 
 

by an optical frequency comb including five–seven optical spectral components in the op-

tical part of the spectrum with a step of 5–10 GHz (40–80 pm) and full width at half height 

up to 30–35 GHz (240–280 pm). The considered wavelength range of the FPI reflection 

spectrum is from 1520 nm to 1595 nm. The optical frequency comb can be formed using a 

wideband optical source (denoted as 1 in Figure 1), the radiation from which is reflected 

from the superstructured fiber Bragg grating 3 (described in detail in Section 3.3) and di-

rected to the Fabry–Perot interferometer through the circulators 2 and 4. 

 

Figure 1. Scheme of microwave photonic interrogation of the FPI temperature sensor: 1—wideband 

optical source; 2 and 4—optical circulators; 3—superstructured FBG; 5—FPI sensor; 6—photodetec-

tor; 7—bandpass filters of the beating signal; 8—analog-to-digital converter; 9—ANN-based data 

processing unit; blue lines designate optical connections, black lines—electrical connections. 

The signal reflected from the FPI is directed to the photodetector through the circu-

lator 4. On the photodetector, as on the element with a quadratic transfer characteristic, 

the cross-beating of all frequency components forming the optical frequency comb will be 

formed, and the frequency of beating components will be a multiple of the frequency spac-

ing of the optical comb. The amplitude of the beating components is a multiple of the 

product of the amplitudes of the probing components of the optical frequency comb and 

the Fabry–Perot reflection spectrum. The flat shift of the comb spectrum leads to a change 

in the resulting amplitudes of the probing radiation and, as a consequence, in the ampli-

tudes of the beating signal at the photodetector’s output. The beating signal is filtered 

using seven bandpass filters, the number of which corresponds to the number of the con-

sidered beating components, and is processed by the analog-to-digital converter 8. The 

obtained data is processed in the ANN-based unit 9 defining the measured value of tem-

perature. Such a microwave photonic interrogation approach does not rely on the spec-

trometer, the resolution of which is limited by the CCD array, thereby enhancing the max-

imum achievable measurement resolution. 

In the present work, the task was set to analyze the possibility and limits of applica-

bility of determining the temperature of the Fabry–Perot sensing element by a set of am-

plitudes of the photodetector output signal obtained at multiple frequencies of the differ-

ence frequencies of the probing optical frequency comb. 

3. Mathematical Model 

The mathematical model of the FPI sensing element probing (a polymer film applied 

to the end of an optical fiber) includes the following: a model of the reflection spectrum 

of the Fabry–Perot interferometer, along with the dependence of its parameters on tem-

perature; a model of the resulting spectrum of the probing optical frequency comb; a 

Figure 1. Scheme of microwave photonic interrogation of the FPI temperature sensor: 1—wideband
optical source; 2 and 4—optical circulators; 3—superstructured FBG; 5—FPI sensor; 6—photodetector;
7—bandpass filters of the beating signal; 8—analog-to-digital converter; 9—ANN-based data process-
ing unit; blue lines designate optical connections, black lines—electrical connections.

The signal reflected from the FPI is directed to the photodetector through the circulator
4. On the photodetector, as on the element with a quadratic transfer characteristic, the
cross-beating of all frequency components forming the optical frequency comb will be
formed, and the frequency of beating components will be a multiple of the frequency
spacing of the optical comb. The amplitude of the beating components is a multiple of
the product of the amplitudes of the probing components of the optical frequency comb
and the Fabry–Perot reflection spectrum. The flat shift of the comb spectrum leads to
a change in the resulting amplitudes of the probing radiation and, as a consequence, in
the amplitudes of the beating signal at the photodetector’s output. The beating signal is
filtered using seven bandpass filters, the number of which corresponds to the number of
the considered beating components, and is processed by the analog-to-digital converter
8. The obtained data is processed in the ANN-based unit 9 defining the measured value
of temperature. Such a microwave photonic interrogation approach does not rely on the
spectrometer, the resolution of which is limited by the CCD array, thereby enhancing the
maximum achievable measurement resolution.

In the present work, the task was set to analyze the possibility and limits of appli-
cability of determining the temperature of the Fabry–Perot sensing element by a set of
amplitudes of the photodetector output signal obtained at multiple frequencies of the
difference frequencies of the probing optical frequency comb.

3. Mathematical Model

The mathematical model of the FPI sensing element probing (a polymer film applied
to the end of an optical fiber) includes the following: a model of the reflection spectrum of
the Fabry–Perot interferometer, along with the dependence of its parameters on tempera-
ture; a model of the resulting spectrum of the probing optical frequency comb; a model
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of their interaction spectrum; a model of the electrical signal spectrum obtained at the
photodetector; and a model of the amplitude detector at difference frequencies.

The mathematical model will enable the creation of a digital twin of the measurement
conversion process of a fiber-optic sensor based on an FPI with a microwave photonic
interrogation method at multiple difference frequencies. The susceptibility of the spectral
response of the interferometer to environmental parameters, incorporated in the mathemat-
ical model, makes it possible to study the system at different values of temperature in the
required range. The proposed mathematical model makes it possible to form a continuous
set of training data for the artificial neural network.

3.1. Model of the Fabry–Perot Reflection Spectrum

The mathematical apparatus of scattering and transmission matrices was used to
model the reflection spectrum of the Fabry–Perot interferometer [35]. In general, the
reflection and transmission spectra of the Fabry–Perot interferometer are modelled by the
product of three transmission matrices: (a) a discontinuous change in the propagation
medium parameters (from the optical fiber core to the interferometer inner cavity); (b) a
continuous medium of the interferometer inner cavity; and (c) a discontinuous change in
the propagation medium parameters (from the interferometer inner cavity to the external
medium). The scattering matrix of a continuous medium is a function of the radiation
wavelength, permittivity, permeability and thickness of the medium:

SM =

[
0 e−j·H·γ

e−j·H·γ 0

]
, (1)

where

γ =
π

λ

√
2Reε · Reµ


√√√√√1 −

(
Imε

Reε

)2
+ 1 − j

√√√√√1 −
(

Imε

Reε

)2
− 1

 , (2)

ε and µ are the permittivity and permeability of the solid medium, H is the thickness of the
solid medium, and λ is the wavelength of radiation.

The scattering matrices of the discontinuity of the medium parameters at the bound-
aries of propagation media are a function of the permittivities and permeabilities of the
media:

S12
J =

√
ε1µ2−

√
µ1ε2√

µ1ε2+
√
ε1µ2

2· 4√ε1µ1ε2µ2√
µ1ε2+

√
ε1µ2

2· 4√ε1µ1ε2µ2√
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√
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√
µ1ε2√

µ1ε2+
√
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√
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√
ε2µ3

2· 4√ε2µ2ε3µ3√
µ2ε3+

√
ε2µ3

2· 4√ε2µ2ε3µ3√
µ2ε3+

√
ε2µ3

√
ε2µ3−

√
µ2ε3√

µ2ε3+
√
ε2µ3

 , (3)

where ε1 and µ1 are the permittivity and permeability of the optical fiber, ε2 and µ2 are the
permittivity and permeability of the Fabry–Perot interferometer cavity (polymer film), and
ε3 and µ3 are the permittivity and permeability of the external medium.

The scattering matrices S are transformed into the transmission matrix T and back by
operators of the form

↔
T(S) =

1
S2,1

(
S2,1S1,2 − S1,1S2,2 S1,1

−S2,2 1

)
,
↔
S(T) =

1
T2,2

(
T1,2 T1,1T2,2 − T1,2T2,1

1 T2,1

)
. (4)

The Fabry–Perot transmission matrix is the result of successive multiplication of the
transmission matrices of the partition boundaries and the internal cavity of the interfer-
ometer (continuous medium) and is a function depending on the radiation wavelength,
dielectric and magnetic permeability of the media, and cavity length:

TFP = T12
J × T2

M × T23
J . (5)



Optics 2024, 5 227

In (5), the lower index defines the transmission matrix (“J”—discontinuous change of
parameters, “M”—continuous medium), the upper index of the matrix “J” indicates the
direction of radiation transition from the i-th layer to the (i + 1)-th layer, and the upper
index of the matrix “M” defines the parameters of the interferometer cavity.

The SFP scattering matrix of the Fabry–Perot interferometer is obtained by inverse
transformation of the TFP transmission matrix by (4):

SFP =
1(

TFP)
2,2

((
TFP)

1,2

∥∥TFP
∥∥

1
(
TFP)

2,1

)
. (6)

The (SFP)1,1 element of the resulting scattering matrix defines the dependence of
the Fabry–Perot interferometer reflection coefficient for radiation directed into it from
the optical fiber side; (SFP)2,2 is the reflection coefficient from the external boundary for
radiation directed from the external medium; (SFP)1,2 is the transmittance coefficient for
radiation directed from the optical fiber side; and (SFP)2,1 is the transmittance coefficient
for radiation directed from the external medium side.

In general, all reflection and transmission coefficients are functions of the wavelength,
of the dielectric and magnetic permeabilities of all media and of the length of the internal
cavity of the interferometer.

3.2. Controlling the Parameters of the Fabry–Perot Interferometer with Temperature Changes

A change in ambient temperature directly affects all seven parameters of the inter-
ferometer, namely the dielectric and magnetic permeabilities of the three media as well
as the length of the interferometer’s internal cavity. As our previous studies have shown,
if the propagation medium is a quartz fiber, the interferometer inner cavity is a polymer
(dielectric), and the external medium is air; then the temperature effect on the Fabry–
Perot spectrum shift has a change only in the dielectric permittivity and the length of the
interferometer inner cavity [34].

To model the temperature change of the interferometer inner cavity, the linear depen-
dence of its dielectric permittivity and length on the temperature change was used:

ε2(T) = ε20(1 + Kε2 · ∆T), H(T) = H0(1 + α · ∆T), (7)

where Kε2 is the temperature coefficient of dielectric constant of the interferometer inner
cavity, α is the coefficient of thermal expansion of the polymer film, ε20 is the value of
dielectric constant, and H0 is the length of the interferometer inner cavity at the refer-
ence temperature. The permittivity of the optical fiber ε1 also has a linear temperature
dependence similar to (7) with the temperature coefficient Kε1.

The modelling result of the Fabry–Perot interferometer reflection spectrum obtained at
±1 ◦C temperature change is shown in Figure 2 (data obtained at ε1 = 2.1556, µ1 = 1.0, ε20 =
4.2025, µ2 = 1.0, ε3 = 1.0, µ3 = 1.0, H0 = 21 µm, Kε2 = 15 × 10−6 T−1, Kε1 = 8.6 × 10−6 T−1,
α = 1 × 10−6 T−1).

3.3. Probing Radiation

Optical frequency comb or spectral comb is an optical radiation, the spectrum of which
consists of discrete and evenly spaced spectral lines. Optical oscillators are capable of
generating several evenly spaced optical carriers with a minimum number of components.
Another method of optical frequency comb formation can be implemented based on a
superstructured array of homogeneous weakly reflective Bragg fiber gratings with phase
shifts between them. The superstructure consists of a periodically repeating nested struc-
ture, which is a combination of homogeneous weakly reflecting Bragg gratings arranged
with phase inhomogeneities of the form

{φi} = 2π
i
n

, i ∈ N, (8)
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determining the phase shift between the gratings, where n is the number of partitions of
the full circle [0, 2π] into sections φi. An example of a superstructure scheme consisting
of three separate structures, each formed from five homogeneous fiber Bragg gratings, is
shown in Figure 3. The red curly braces in the figure denote the structures, and the black
curly braces denote the homogeneous Bragg fiber gratings; φi denotes the phase shifts
configured by (8).
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Figure 3. Structural diagram of the optical frequency comb based on an array of weakly reflecting
fiber Bragg gratings, n = 4. Different colors denote separate homogeneous FBGs.

This approach to structure creation allows to form a frequency comb in the optical
range and at the same time significantly increase the reflectivity of its individual compo-
nents, as shown in Figure 4 obtained via numerical simulation using the transfer matrix
method. The model was implemented under the assumption of the structure implemen-
tation within a single-mode optical fiber with a core refractive index of 1.4586, induced
refractive index of 1 × 10−4, n = 4, homogeneous segment length of 5 mm and grating
period of 5.3129 × 10−7 m.
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Figure 4. Reflection spectrum of the superstructured FBG array with n = 4 (red line) and its envelope
(blue line). The total length of the structure is 25 mm, and the length of the homogeneous segment is
5 mm.

The envelope of the optical frequency comb spectrum coincides with the reflection
spectrum of the Bragg fiber array with a length corresponding to the length of one homoge-
neous segment, as shown in Figure 4. Varying the number of homogeneous segments in
the structure, as well as the number of structures in the superstructure, allows controlling
the number of frequency components in the reflection spectrum while maintaining the total
length of the structure. Thus, for example, at n = 1 (φi = 0) a single-frequency structure is
formed; at n = 1 (φi = π), a two-frequency structure with a difference frequency Ω between
the components; at n = 2 (φi = 0, π), a four-frequency comb with a difference frequency
Ω/2; at n = 3 (φi = 0, 2π/3, 4π/3), an eight-frequency comb with a difference frequency
Ω/3; etc.

Based on the analysis of works devoted to the implementation of optical frequency
combs [36–38], we can conclude that, in general, the spectrum of an optical frequency comb
can be considered a set of evenly spaced spectral components with a common envelope. In
the present work, we used a mathematical model of the optical frequency comb spectrum,
each component of which is described by a normal distribution function, with a common
envelope also described by a normal distribution function. This description of the optical
frequency comb spectrum allows controlling both the number of spectral components and
the distance between them, as well as the shape and parameters of the spectral components
and the common envelope. The mathematical model also allows replacing the normal
distribution function, for example, by a Lorentz function or similar. An example of an
optical frequency comb spectrum with a spectral width of 5 nm, a total number of optical
components equal to 5, a center wavelength of λ = 1551.8 nm, and a common envelope
with σ = 1.1 × 10−10 is shown in Figure 5.
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Figure 5. Example of the probing spectrum of an optical frequency comb with the number of
components equal to 5, a comb step of ∆λ = 20.8 pm (red line) and a common envelope with
σ = 1.1 × 10−10 (purple line).

The interaction spectrum of the probing radiation and the Fabry–Perot interferometer
is modelled by multiplication at the same wavelengths (frequencies) of the spectra of the
interferometer and the optical frequency comb, as shown in Figure 6.
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Figure 6. Interaction between the spectrum of the probing radiation and Fabry–Perot interferometer.

The displacement of the Fabry–Perot interferometer spectrum at temperature change
entails a change in the amplitudes of the spectral components of the probing study of the
optical frequency comb, the spectral position of which is assumed to be stabilized at the
middle of the linear section of the spectral response of the interferometer.



Optics 2024, 5 231

3.4. Photodetector

A photodetector is a nonlinear quadratic element, the output current of which is
proportional to the square of the modulus of the optical radiation incident on it. As a result,
on the photodetector there are cross-beatings of all components of the optical frequency
comb radiation falling on it. The spectrum of radiation falling on the photodetector is
modelled by a linear discrete spectrum, the detail of discretization of which can be chosen
as practically any. In practice, the sampling frequency is determined by the criterion of
model signal correspondence to the real one. The spectrum of the signal arriving at the
photodetector can be described as a discrete set of amplitudes {Ak}, k = 0, N; hence, the light
flux can be described as a set of monochromatic emissions at discrete frequencies:

Z(t) =
N

∑
k=0

Ak · ej· 2πc
λk

·t
=

N

∑
k=0

Ak · ej·ωk ·t, (9)

where N is the number of spectrum discretization points, Ak is the spectrum amplitude at
wavelength λk = λ0 + k·∆λ, ∆λ is the discretization step of the spectrum wavelength, c is
the speed of light, ωk = 2π·c/λk is the frequency, and ∆ω = 2π·c·∆λ/(λ2) is the frequency
discretization step. The output current of the photodetector is proportional to the square of
the modulus of the light flux incident on it:

P(t) ∼ |Z(t)|2 = Z(t)Z(t) =
N

∑
i=0

Ai × ejωit
N

∑
k=0

Ak × ejωkt (10)

If we open the brackets, we obtain

P(t) ∼
N

∑
i=0

A2
i + 2 ·

N−1

∑
n=1

N−n

∑
i=0

Ai · Ai+n · cos(n · ∆ω · t). (11)

Consequently, the photodetector output current at frequency Ωn = n·∆ω is propor-
tional to the sum of products of all amplitudes whose difference frequency coincides with
the frequency Ωn:

Pn(Ωn) ∼ 2 ·
N

∑
n=1

N−n

∑
i=0

Ai · Ai+n. (12)

The increase in the number of points of modelling the reflection spectrum and the pho-
todetector output current spectrum is directly proportional to the approximation accuracy
and inversely proportional to the modelling time, and within the model any number of
points in the spectra can be chosen, with it being an adjustable parameter. An example of
the photodetector spectrum model corresponding to the presented reflectance spectra of
the Fabry–Perot interferometer and the probing radiation shown in the previous figures is
presented in Figure 7.

The microwave photonic method involves the analysis of the photodetector output
signal at the difference frequencies of the optical frequency comb, which correspond to the
maximum peaks of the photodetector output current peaks. To select the amplitudes of the
photodetector output current at differential frequencies of the optical frequency comb, it is
necessary to filter the output current signal at multiple frequencies of the comb step. The
model uses a bandpass frequency filter whose amplitude–frequency response is described
by a normal distribution function. An example of the resulting spectrum, when selecting
frequencies by the bandpass filter, is shown in Figure 8.



Optics 2024, 5 232

Optics 2024, 5, FOR PEER REVIEW 9 
 

as practically any. In practice, the sampling frequency is determined by the criterion of 

model signal correspondence to the real one. The spectrum of the signal arriving at the 

photodetector can be described as a discrete set of amplitudes {Ak}, k = 0, N; hence, the 

light flux can be described as a set of monochromatic emissions at discrete frequencies: 

( )
2

0 0

,k k

c
N Nj t

j t

k k
k k

Z t A e A e


 
  

= =

=  =    (9) 

where N is the number of spectrum discretization points, Ak is the spectrum amplitude at 

wavelength λk = λ0 + k·Δλ, Δλ is the discretization step of the spectrum wavelength, с is 

the speed of light, ωk = 2π·с/λk is the frequency, and Δω = 2π·с·Δλ/(λ2) is the frequency 

discretization step. The output current of the photodetector is proportional to the square 

of the modulus of the light flux incident on it:  

( ) ( ) ( ) ( )
2

0 0

ω ω

= =

= =   i k

N N
j t j t

i k

i k

P t Z t Z t Z t A e A e  (10) 

If we open the brackets, we obtain 

( ) ( )
1

2

0 1 0

2 cos .
N N N n

i i i n
i n i

P t A A nA t
− −

+
= = =

 +      (11) 

Consequently, the photodetector output current at frequency Ωn = n·Δω is propor-

tional to the sum of products of all amplitudes whose difference frequency coincides with 

the frequency Ωn:  

( )
1 0

2 .
N N n

n n i i n
n i

P A A
−

+
= =

    (12) 

The increase in the number of points of modelling the reflection spectrum and the 

photodetector output current spectrum is directly proportional to the approximation ac-

curacy and inversely proportional to the modelling time, and within the model any num-

ber of points in the spectra can be chosen, with it being an adjustable parameter. An ex-

ample of the photodetector spectrum model corresponding to the presented reflectance 

spectra of the Fabry–Perot interferometer and the probing radiation shown in the previous 

figures is presented in Figure 7. 

 

Figure 7. Photodetector spectrum model corresponding to the given data. Figure 7. Photodetector spectrum model corresponding to the given data.

Optics 2024, 5, FOR PEER REVIEW 10 
 

The microwave photonic method involves the analysis of the photodetector output 

signal at the difference frequencies of the optical frequency comb, which correspond to 

the maximum peaks of the photodetector output current peaks. To select the amplitudes 

of the photodetector output current at differential frequencies of the optical frequency 

comb, it is necessary to filter the output current signal at multiple frequencies of the comb 

step. The model uses a bandpass frequency filter whose amplitude–frequency response is 

described by a normal distribution function. An example of the resulting spectrum, when 

selecting frequencies by the bandpass filter, is shown in Figure 8. 

 

Figure 8. Signal at the photodetector output after filtering at differential frequencies of the optical 

frequency comb. 

The parameters of the frequency bandpass filter at the output of the photodetector 

are flexibly adjustable, which allows us to use the model of this tool to build various signal 

processing tools. Theoretically, it would be possible to choose a bandpass filter with an 

arbitrary frequency response, but, as numerical experiments have shown, the influence of 

its shape is negligible. 

4. Data Format 

When starting work on this topic, the authors were guided by the hypothesis that the 

position of the Fabry–Perot reflection spectrum can be put in unambiguous correspond-

ence from the mutual ratio of amplitudes obtained by microwave photonic probing of the 

interferometer optical frequency comb with their separation at differential frequencies. A 

change in the external temperature leads to a change in the dielectric permittivity and film 

thickness of the Fabry–Perot interferometer and, as has already been shown, to a shift in 

the spectrum, and the shift in the spectrum, in turn, will lead to a change in the amplitudes 

of the probing signal and, as a consequence, to a change in the amplitudes of the beats of 

the photodetector output current at differential frequencies of the optical frequency comb. 

Thus, the task was to unambiguously compare the ratio of the photodetector output cur-

rent amplitudes at differential frequencies to the temperature value.  

To train the artificial neural network, microwave photonic processing data were gen-

erated for temperature values varying in the range from −15 to +15 °С with a discrete step 

of ΔT = 0.001 °С. The small data discretization step is due to the need to obtain a large 

amount of data required for training the artificial neural network in order to improve its 

accuracy. This resulted in a marked-up set of 30,100 data which were normalized into a 

dimensionless interval [0; 1] for input and output data, finally giving a normalized set of 

input and output data for training. 
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frequency comb.

The parameters of the frequency bandpass filter at the output of the photodetector are
flexibly adjustable, which allows us to use the model of this tool to build various signal
processing tools. Theoretically, it would be possible to choose a bandpass filter with an
arbitrary frequency response, but, as numerical experiments have shown, the influence of
its shape is negligible.

4. Data Format

When starting work on this topic, the authors were guided by the hypothesis that the
position of the Fabry–Perot reflection spectrum can be put in unambiguous correspondence
from the mutual ratio of amplitudes obtained by microwave photonic probing of the
interferometer optical frequency comb with their separation at differential frequencies. A
change in the external temperature leads to a change in the dielectric permittivity and film
thickness of the Fabry–Perot interferometer and, as has already been shown, to a shift in
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the spectrum, and the shift in the spectrum, in turn, will lead to a change in the amplitudes
of the probing signal and, as a consequence, to a change in the amplitudes of the beats of
the photodetector output current at differential frequencies of the optical frequency comb.
Thus, the task was to unambiguously compare the ratio of the photodetector output current
amplitudes at differential frequencies to the temperature value.

To train the artificial neural network, microwave photonic processing data were
generated for temperature values varying in the range from −15 to +15 ◦C with a discrete
step of ∆T = 0.001 ◦C. The small data discretization step is due to the need to obtain a large
amount of data required for training the artificial neural network in order to improve its
accuracy. This resulted in a marked-up set of 30,100 data which were normalized into a
dimensionless interval [0; 1] for input and output data, finally giving a normalized set of
input and output data for training.

5. Artificial Neural Network Model

In general, to build an artificial neural network corresponding to the task at hand,
we need a fully connected ANN designed for processing one-dimensional signals [39–41],
having at the input the number of neurons per unit less than the number of frequency
components of the optical frequency comb (equal to the number of frequencies of cross-
beats of the comb components) and the output (last) layer in the network must contain
one neuron that determines the temperature value. There are no special recommendations
for selecting the number of hidden (computational) layers and neurons in them; various
configurations have been tested in this work.

The logistic activation function was used for training. The accuracy of the model
performance was assessed simultaneously by two parameters: mean absolute error, MAE,
and mean relative error, MRPE, which were calculated using the formulas

MAE =
1
M

M

∑
i=1

|yi − pi| , MRPE =
1
M

M

∑
i=1

|yi − pi|
yi

· 100 % , (13)

where M is the number of data in the dataset, yi is the actual value, and pi is the predicted
value for the i-th dataset. Several of the tested configurations of the ANN are listed in
Table 1 with the corresponding MAE values obtained in the temperature range from −15
to +15 ◦C. In all of the configurations, the input layer consisted of four neurons, and the
output layer included one neuron.

Table 1. Error values for various configurations of ANN.

No. of ANN No. of Hidden
Layers

No. of Neurons in
Each Hidden Layer MAE, ◦C

(1) 1 50 4
(2) 1 200 3.5
(3) 2 50/20 1.5
(4) 2 100/50 1
(5) 3 50/20/20 0.5
(6) 3 150/100/50 0.48
(7) 4 100/100/50/50 0.39
(8) 4 700/500/300/200 0.15
(9) 4 1500/1000/500/400 0.12

The configuration No. 8 from Table 1 was used in the current study, which is a fully
connected ANN corresponding to probing with an optical frequency comb containing
five frequency components, the input layer of which consisted of four neurons, followed
sequentially by hidden layers containing 700, 500, 300 and 200 neurons, respectively. The
output layer consisted of one neuron. The activation function for all hidden layers was
LeakyReLU with a negative slope coefficient of 0.3, while for the output layer tanh function
was used. The ANN was implemented using Python 3.11 with the TensorFlow library.
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As part of the input data, as required by the training algorithms, the labelled dataset
was divided into a training dataset (90%) and a control dataset (10%). The training dataset
was used directly to adjust the weights, while the control dataset was used to determine
the accuracy of model performance between training iterations and was not used to adjust
the weights. Already after 1500 epochs of training, the value of the loss function did not
exceed 0.001, as shown in Figure 9.
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Values of absolute and relative errors of temperature determination are given in Table 2
below.

Table 2. Error values for temperature determination in various ranges for the developed ANN.

Range, ◦C MAE, ◦C MRPE, %

from −15 to +15 0.14698 2.508
from −14 to +14 0.0866 2.2023
from −13 to +13 0.064 2.1564
from −12 to +12 0.0467 2.1547
from −11 to +11 0.0291 2.1605
from −10 to +10 0.01859 2.2488

The obtained data show that the trained artificial neural network model has the
maximum error at the largest verifiable range, and as the range decreases, the error value
decreases significantly to 0.08 ◦C, which is good accuracy.

6. Conclusions

According to the results of the work, the following set of conclusions can be made.
Firstly, the empirical method was used to confirm the assumption that the position of the
Fabry–Perot reflection spectrum can be unambiguously compared with the amplitudes of
the signal obtained by microwave photonic probing of the Fabry–Perot interferometer by
an optical frequency comb with separation of the amplitudes of the photodetector output
current at differential frequencies. Secondly, the prospect of using the Fabry–Perot end-face
interferometer, implemented on the end of an optical fiber in the form of a thin polymer
film as a temperature sensor, which can be interrogated by microwave photonic methods,
is confirmed. Thirdly, it is shown that due to the choice of the network configuration and
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probing radiation, it is possible to achieve an accuracy of temperature determination from
0.146 to 0.018 ◦C, and a reduction in the range of temperature variation by two degrees leads
to a reduction in the average absolute error of temperature determination by 1.75 times.

In conclusion, the combination of artificial intelligence algorithms with microwave
photonic interrogation methods has great potential in the field of fiber-optic sensing. The
combination of microwave photonic methods together with artificial intelligence algorithms
can potentially produce more accurate results with higher frequency and at lower cost.
The proposed innovative approach can significantly contribute to the development of
high-precision measurement systems.
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