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Abstract: Weak interactions of temporal cavity solitons resulting from gain saturation and recovery
in a delay differential model of a long cavity semiconductor laser were studied numerically and
analytically using an asymptotic approach. This paper shows that in addition to the usual soliton
repulsion leading to a harmonic mode-locking regime, soliton attraction is also possible in a laser
with a nonzero linewidth enhancement factor. It is shown numerically that this attraction can lead
either to pulse merging or to pulse bound-state formation.
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1. Introduction

Temporal cavity solitons (TCSs) are short nonlinear optical pulses generated by mode-
locked lasers and optical microresonators that preserve their shape in the course of propa-
gation [1–3]. In lasers, unlike the usual self-starting mode-locked pulses generated above
the linear laser threshold, TCSs coexist with a stable laser off regime and require a finite
perturbation for their excitation. For example, when the cavity length of a laser with a
semiconductor gain medium is sufficiently large, usual mode-locked pulses can be trans-
formed into TCSs [4], corresponding to a non-self-starting mode-locking regime. In many
practical situations, when more than one TCS is exited in an optical cavity, weak interactions
among the TCSs may take place via their exponentially decaying tails. Spatial and temporal
dissipative soliton interaction in lasers with saturable absorbers have been studied in many
publications in cases in which the gain and absorption variables are eliminated adiabatically
and interactions take place only via the overlapping electric fields of the pulses [5–10]. The
interaction of mode-locked pulses in the presence of finite relaxation times of the gain
and/or absorber media has been less investigated. In this case, the electromagnetic field
saturates gain and absorption behind the pulse, and their slow relaxation can affect the
position of the next pulse traveling in the cavity. This type of interaction was studied in
refs. [11–15]. In particular, it was demonstrated theoretically and verified experimentally
with solid state and fiber lasers [11] that the interaction due to gain depletion and very slow
recovery can produce a repulsive force between adjacent pulses, leading to the formation of
a harmonic mode-locking regime. A similar conclusion was made in ref. [13] using the de-
lay differential equation (DDE) model [16–18] of a mode-locked monolithic semiconductor
laser, where similarly to ref. [11], the gain recovery time was much longer than the cavity
round-trip time. Here, using the same DDE model, I consider mode-locked pulse interac-
tion in the TCS regime, where the cavity round-trip time is sufficiently long—much longer
than the gain recovery time. Based on an asymptotic approach, the equations governing
the slow evolution of the time separation and phase difference of the interacting TCSs
are derived and analyzed. Asymptotic study of weak TCS interactions in DDE models of
optical systems has already been previously carried out in [19–21]. However, in ref. [21],
devoted to TCS interaction in nonlinear mirror mode-locked lasers, and in this paper, a
closed analytical form of the interaction equations is derived. Furthermore, among the
above-cited works, only refs. [13,15] are devoted to pulse interactions in semiconductor
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lasers. However, in ref. [13], a short cavity laser operating far away from the TCS regime
is considered, while the analysis in ref. [15] is more or less empirical. Therefore, a more
rigorous analysis of TCS interactions in semiconductor lasers that takes into account their
characteristic features, such as the linewidth enhancement factor, is required. This work
aimed to fill in this gap. Using interaction equations, I show that the TCS interaction
scenarios depend on the “interaction coefficients” introduced below and can be more rich
than those described in [11,13,15]. In addition to the pulse repulsion resulting in a har-
monic mode-locking regime, TCS attraction leading to either pulse merging or bound-state
formation can take place in a laser with a nonzero linewidth enhancement factor. Note that
soliton attraction leading to bound-state formation was previously observed in ref. [12] in
a complex Ginzburg–Landau equation-type mode-locked laser model with second-order
dispersion and in the DDE model of a nonlinear mirror mode-locked laser [21]. However,
unlike the present work, where the mode-locking mechanism is due to the interplay of gain
and absorption saturation and recovery [16], in both those papers, Kerr nonlinearity played
a decisive role in the process of mode-locked pulse formation. Furthermore, since ref. [12]
considered the limit of infinitely large gain recovery time, the mechanism of pulse inter-
action in this paper is different and can be attributed to the saturation and slow recovery
of absorption rather than gain. The results of this work might be useful for pulse spacing
manipulation in multipulse mode-locked lasers.

2. Model Equations

The DDE model of a passively mode-locked semiconductor laser for the electric field
amplitude (A(t)) at the entrance of the laser absorber section, the saturable gain (G(t)), and
the saturable absorption (Q(t)), can be written in the form [16–18]:

γ−1∂t A + (1 + iω)A = R(t− T)A(t− T), (1)

∂tG = g0 − γgG− e−Q
(

eG − 1
)
|A|2, (2)

∂tQ = q0 − γqQ− s
(

1− e−Q
)
|A|2, (3)

with
R(t) =

√
κe(1−iαg)G(t)/2−(1−iαq)Q(t)/2+iφ−iωT .

where t is the time variable; κ is the attenuation factor describing linear non-resonant
intensity losses per cavity round trip; and αg and αq are the linewidth enhancement factors
in the gain and absorber sections, respectively. The time delay parameter (T) stands for
the cold cavity round-trip time; γ is the spectral filtering bandwidth; γg and γq are the
normalized carrier relaxation rates in the gain and absorber sections; and s is the ratio
of the saturation intensities of these sections. The pump parameter (g0) depends on the
injection current in the gain section, while q0 is the unsaturated loss parameter, which
depends on the inverse voltage applied to the absorber section. Parameter φ is the phase
shift describing the detuning between the central frequency of the spectral filter and the
closest cavity mode and ω is the reference frequency.

It is well known that in a certain parameter domain, Equations (1)–(3) demonstrate
pulsed solutions corresponding to fundamental single pulse and harmonic multipulse
mode-locking regimes [16–18]. Furthermore, it was shown in [4] that when the laser
cavity is sufficiently long that the round-trip time is much larger than the gain relaxation
time, these pulses can be transformed into TCSs sitting on the stable laser off solution.
In this situation, two well-separated mode-locking pulses can interact only weakly via
their exponentially decaying tails. Furthermore, when the pulses are sufficiently far away
from one another, this interaction is mainly due to the gain component (G), which usually
decays much slower than the electric field envelope (A) and saturable absorption (Q). Note,
however, that when the distance between the TCSs becomes small enough, the interaction
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via absorption dynamics might also come into play and even lead to pulse bound-state
formation; see ref. [12], where the case of infinitely large gain recovery time is considered.

In order to derive the TCS interaction equations, we rewrite the model equations in a
more general real vector form

∂tU = Fω(U) + Hω [U(t− T)], (4)

where U =
(

U1 U2 U3 U4
)T is the real column vector with the components

U1 = <A, U2 = =A, U3 = G − g0/γg, and U4 = Q − q0/γq. The two vectors in the
right-hand side of Equation (4) are defined by

Fω(U) =


−γ(U1 −ωU2)
−γ(U2 + ωU1)

−γgU3 − e−U4−q0/γq
(

eU3+g0/γg − 1
)(

U2
1 + U2

2
)

−γqU4 − s
(

1− e−U4−q0/γq
)(

U2
1 + U2

2
)

,

and

Hω(U) =


−<[R(U1 + iU2)]
−=[R(U1 + iU2)]

0
0


with

R(t) = γ
√

κe(1−iαg)(U3+g0/γg)/2−(1−iαq)(U4+q0/γq)/2−iωT .

3. Temporal Cavity Soliton

Let us assume that the relation

γ−1 < γ−1
q < γ−1

g � T, (5)

for the relaxation rates in the model Equations (1)–(3) is satisfied. This means that the
round trip time in a multimode semiconductor laser cavity is sufficiently long, much longer
than the gain relaxation time. In this case, the DDE model can have TCS solutions [4]. Let
U = u =

(
u1 u2 u3 u4

)T and ω = ω0 be a TCS solution of Equation (4) correspond-
ing to a narrow mode-locked pulse with the duration τp ∼ γ−1. Here, u(t) = u(t + T0) is
periodic in time with the period T0 close to the delay time T. In terms of the original model
Equations (1)–(3) we have

u =
[
<A0(t) =A0(t) G0(t)− g0/γg Q0(t)− q0/γq

]T ,

where A0(t), G0(t), and Q0(t) is a T0-periodic TCS solution of these equations. A numeri-
cally calculated intensity time trace of the TCS solution is shown in Figure 1a.

The decay rates of the TCS tails are determined by the following linearization [22–24]
of Equation (4) on the solution U = 0:

γ−1∂ta + (1 + iω0)a = R0a(t + δ), (6)

∂tv3 = −γgv3. (7)

∂tv4 = −γqv4, (8)

where a = v1 + iv2, v =
(

v1 v2 v2 v4
)T is a small perturbation vector,

R0 =
√

κe(1−iαg)g0/(2γg)−(1−iαq)q0/(2γq)+iφ+iω0δ,
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and the time advance parameter is δ = T0 − T. It follows from Equations (7) and (8) that
the decay rates of the TCS gain and absorption components at large positive times t are
determined by the two eigenvalues λg,q = −γg,q, while Equation (6) has an infinite number
of eigenvalues defined by

λk = −γ(1 + iω0)− δ−1Wk

[
−γδe−(1+iω0)γδR0

]
. (9)

here Wk is the Lambert function with the index k = 0,±1,±2 . . . . For the parameter values
of Figure 1 we get λ0 = −3.741 and λ−1 = 16.892, while all the other eigenvalues are
complex and have positive real parts greater than λ−1.

Figure 1. Intensity time trace of the periodic TCS solution of Equations (1)–(3) (a). Temporal
evolution of the logarithm of the absolute values of the field envelope (blue), gain (red) and loss
(green) components of the TCS solution (b). The parameters are: αg = αq = 0, g0 = 0.5, q0 = 4.0,
κ = 0.8, s = 10.0, γ = 5.0, γg = 0.2, γq = 1.0, and T = 50.0. The solution period is T0 = 50.138425
and ω0 = 0.

Assuming that the origin of the time coordinate, t = 0, is located at the TCS power
peak, we determine based on (7)–(9) that at sufficiently large t > 0 the TCS trailing edge
can be represented as

u1,2 ∼ b1,2eλ0t, u3 ∼ b3e−γgt, u4 ∼ b4e−γqt, (10)

where b1,2,3,4 are real constants, which can be calculated numerically.
Further, let us consider the leading tail of the TCS at negative times, t < 0. Since

Equations (7) and (8) have no eigenvalues with positive real parts, gain and absorption
components of the TCS leading edge, u3 and u4, decay faster than exponentially in negative
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time [22]. The field component u1 + iu2 of the leading tail decays exponentially at t < 0,
with the decay rate determined by the eigenvalue λ−1 having the smallest positive real part.
Since the inequality γg,q < |λ0| < λ−1 is satisfied, the field component of the TCS decays
faster in both time directions than the gain and absorption components in positive time.
This means that the interaction via the electromagnetic field dynamics can be neglected
when considering the interaction of two well-separated TCSs. Such a type of interaction
is typical of lasers with slow gain and absorption and can be viewed as the long-range
interaction [21], in contrast with the short-range interaction due to the overlap of the
electric fields considered in [5–9,25]. Furthermore, since gain and absorption components
of a TCS decay faster than exponentially in negative time, the leading tails of the TCSs
can be neglected in the derivation of the interaction equations. Figure 1b shows the time

evolution of the absolute values of field envelope
√

U2
01 + U2

02, gain |U03|, and absorption
|U04| components of this solution in logarithmic scale. It is seen from this figure that the
gain component dominates over the field and absorption ones during almost the whole
time interval between the two consequent pulses.

The stability of the TCS depends on the spectrum of the linear operator L obtained
via linearization of Equation (4) at the solution U = u and ω = ω0. Since the model
Equations (1)–(3) are invariant under time translations, U(t) → U(t− t0), and phase
shifts, U1 + iU2 → (U1 + iU2)eiφ0 , with arbitrary constants t0 and φ0, the operator L has
two zero eigenvalues corresponding to the neutral (Goldstone) modes given by θ = ∂tu
and ϕ =

(
−u2 u1 0 0

)T , respectively, Lθ = −∂tθ + Bθ + CTθ(t− T) = 0 and
Lϕ = 0. Here, B = B(u) and CT = C[u(t− T)] are the linearization matrices of Fω0(U)
and Hω0 [U(t− T)] at U = u. Below, it is assumed that the TCS is stable and the rest of
the spectrum of the operator L is located in the left half of the complex plane. The adjoint
linear operator L† also has two zero eigenvalues associated with the so-called adjoint
neutral modes θ† and ϕ†, L†θ† = ∂tθ

† + θ†B + θ†(t + T)C = 0 and L†ϕ† = 0. Let the
adjoint neutral modes be biorthogonal to the neutral modes,

〈
θ† ·ϕ

〉
=
〈
ϕ† · θ

〉
= 0 and〈

θ† · θ
〉
=
〈
ϕ† ·ϕ

〉
= 1, where

〈
x† · y

〉
=
∫ τ0

0 x† · ydt. Asymptotic behavior of the row

vector adjoint neutral modes θ† =
(

θ†
1 θ†

2 θ†
3 θ†

4
)

and ϕ† =
(

ϕ†
1 ϕ†

2 ϕ†
3 ϕ†

4
)

at
sufficiently large negative times t < 0 is given by

θ†
1,2 ∼ c1,2e−λ0t, θ†

3 ∼ c3eγgt, θ†
4 ∼ c4eγqt, (11)

ϕ†
1,2 ∼ d1,2e−λ0t, ϕ†

3 ∼ d3eγgt, ϕ†
4 ∼ d4eγqt, (12)

where c1,2,3,4 and d1,2,3,4 are real coefficients, which can be calculated numerically. Similar to
the leading tail of the TCS solution, the gain and absorption components of the trailing tail
of the adjoint neutral modes decay faster than exponentially at t > 0. Therefore, trailing tails
of the adjoint neutral modes can be neglected in the derivation of the interaction equations.
The temporal evolution of the field, gain, and loss components of the translational adjoint
neutral mode θ† =

(
θ†

1 θ†
2 θ†

3 θ†
4
)

are shown in Figure 2. One can see that, similar to
Figure 1, the gain component θ†

3 of the adjoint neutral mode dominates almost everywhere
between the consequent mode-locked pulses. Therefore, one can conclude that the pulse
interaction via the field and absorption dynamics can be neglected for the parameter values
of these figures.
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Figure 2. Field intensity of the adjoint neutral mode θ† as a function of time (a). Temporal evolution
of the logarithm of the absolute values of the field (blue), gain (red), and loss (green) components of
the translational adjoint neutral mode θ† (b). Parameters are the same as in Figure 1.

4. Interaction Equations

To derive the equations describing slow evolution of the time coordinates and phases
of weakly interacting TCSs, let us look for the solution of Equation (4) in the form of
a sum of two unperturbed TCS solutions plus a small correction, w(t) = O(ε), due to
the interaction:

U =
2

∑
k=1

uk + w, (13)

where uk =
(

u1k u2k u3k u4k
)T with u1k + iu2k = [u1(t− τk) + iu2(t− τk)]e−iφk ,

u3k = u3(t− τk), and u4k = u4(t− τk). Coordinates τk and phases φk of the interact-
ing TCSs are assumed to be slow functions of time, ∂tτk, ∂tφk = O(ε), k = 1, 2. The small
parameter ε characterizes weak overlap of the TCSs. Similar to the case of dissipative
soliton interaction in partial differential equation laser models [9,25–27], the right-hand
side of the interaction equations obtained from our DDE model can be expressed in terms
of the TCS solutions and their adjoint neutral modes evaluated at the point between the two
TCSs [21]. The details of the calculations are given in the Appendix A, where it is shown
that the interaction equations for the time separation ∆τ = τ2 − τ1 and phase difference
∆φ = φ2 − φ1 of a pair of interacting T0-periodic TCS take the form

∂t∆τ ≈ θ†
1(T0/2)u2(T0/2)− θ†

2(0)u1(0), (14)

∂t∆φ ≈ ϕ†
1(T0/2)u2(T0/2)−ϕ†

2(0)u1(0), (15)
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where θ†
k = θ†(t− tk) and ϕ†

k = ϕ†(t− tk) are the adjoint neutral modes evaluated at the
kth TCS (k = 1, 2) and without loss of generality, one can assume that t = 0 and t = T0/2
correspond, respectively, to the middle point between the two interacting TCSs and the
opposite point on a circle with the circumference T0.

Substituting asymptotic Expressions (10)–(12) into the interaction Equations (14) and (15)
and neglecting the field components we get

∂t∆τ = Kτg

[
e−γg(T0−∆τ) − e−γg∆τ

]
+ Kτq

[
e−γq(T0−∆τ) − e−γq∆τ

]
, (16)

∂t∆φ = Kφg

[
e−γg(T0−∆τ) − e−γg∆τ

]
+ Kφq

[
e−γq(T0−∆τ) − e−γq∆τ

]
(17)

with Kτg = b3c3, Kτq = b4c4, Kφg = b3d3, and Kφq = b4d4.
Interaction Equations (16) and (17) describe the long-range interaction of two well-

separated TCS via gain and absorption dynamics and do not take into account the short-
range interaction due to weak overlap of the electric field envelopes of the TCSs. They
reflect the fact that in a ring cavity, the interaction of two TCSs is twofold. The trailing tail
of the first (second) TCS overlaps with the leading tail of the adjoint neutral mode of the
second (first) TCS, which is located at distance ∆τ (T0 − ∆τ) behind it. This is reflected by
the presence of the two exponential terms in the square brackets of Equations (16) and (17).
In the case of TCS repulsion (Kτg < 0), this type of twofold interaction leads to a regime with
two equally spaced pulses per cavity round trip corresponding to a harmonic mode-locking
regime. As I have already noted, due to the inequality γq > γg typical of semiconductor
lasers, the interaction force related to absorption dynamics decays much faster than that
due to gain dynamics and the terms proportional to Kτq and Kφq can be neglected in the
interaction equations.

5. Results of Numerical Simulations

For the parameter values of Figures 1 and 2 corresponding to zero linewidth en-
hancement factors, αg = αq = 0, numerically, we get Kτg = −1.120 and Kτq = 2.145 in
Equation (16). Due to the relation Kφg = Kφq = d3 = d4 = 0, which is the consequence
of ω0 = =A0 = 0, the second interaction Equation (17) transforms into ∂t∆φ = 0. For
negative values of Kτg the TCS interaction is repulsive, while positive Kτq corresponds to
TCS attraction via absorption dynamics. However, as discussed above, for the parameter
values of these figures, the interaction via gain dynamics dominates for almost all suffi-
ciently large soliton separations, and the soliton attraction due to absorption dynamics is
hardly possible to observe. The repulsive interaction is illustrated in Figure 3 obtained
via numerical integration of Equations (1)–(3) using the RADAR5 code [28]. The initial
condition was taken as a sum of two or more well-separated unperturbed TCSs. Figure 3a
shows the standard mechanism of the harmonic mode-locking regime formation as a result
of the repulsion of a pair of TCSs due to the interaction via gain dynamics. Figure 3b
was obtained using the same parameter values as in Figure 3a, but with smaller initial
separation of the two TCSs. It is seen that during the first stage of the interaction, there
is still repulsion between the TCSs, but later, the second TCS becomes smaller and finally
disappears. The equation ∂t∆φ = 0 implies that the TCS phase difference remains almost
constant in the course of the interaction. This difference is affected only by a very weak
overlap of the field components which were neglected in the derivation of the interaction
Equations (16) and (17). Repulsive interaction of three and four TCSs leading to the devel-
opment of harmonic mode-locking regimes with three and four pulses per cavity round
trip is illustrated in Figure 3c and Figure 3d, respectively. Here, the transformation of a
train of initially non-equidistant pulses into an equidistant pulse train clearly indicates the
repulsive nature of the interaction. Note that in order to produce Figure 3 with minimized
common TCSs drift, which is close to the single TCS drift T0 − T per cavity round trip,
the following procedure was used. The intensity time trace obtained through numerical
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solution of Equations (1)–(3) was split into consecutive intervals of equal duration T0. Then,
these intervals were associated with consecutive round trip numbers.

Figure 3. TSC repulsion due to the interaction via gain dynamics leading to a harmonic mode-locking
regimes with two (a), three (c), and four (d) pulses per cavity round trip. Colorful lines indicate
the trajectories of the interacting TCSs. Panel (b) illustrates repulsive interaction resulting in the
annihilation of the second pulse. (a–c)—g0 = 0.5. (d)—g0 = 0.8. Cold cavity round trip time is
T = 50. Other parameters are the same as in Figure 1.

The dependence of the interaction coefficient Kτg on the linewidth enhancement
factor in the gain section αg is shown in Figure 4a. It is seen that this dependence is
non-monotonic and has a pronounced resonant character. The interaction coefficient is
negative (TCS repulsion) when the linewidth enhancement factor is sufficiently small, and
it becomes positive (TCS attraction) with the increase in αg, showing a sharp peak around
αg ≈ 0.94. A further increase in the αg leads to a non-monotonic gradual decrease in the
interaction coefficient, which becomes negative again at αg ' 2.37. The results of numerical
simulations of Equations (1)–(3) with αg = 2.0 corresponding to a small positive values of
the interaction coefficient are illustrated in Figure 5. It is seen that the interaction is very
asymmetric; see refs. [15,21,26] and Appendix A. Figure 5b corresponding to q0 = 4.0 and
positive Kτg ≈ 0.854× 10−2 shows the TCS attraction leading to the merging of two pulses
when one of them disappears after collision. In Figure 5a obtained for q0 = 5.0 and
Kτg ≈ 1.076× 10−2 the soliton attraction leads to a formation of a pulse bound state. Since
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for αg 6= 0, the relation d3 = d4 = 0 does not hold any more, the TCS phases are evolving
with time in the course of interaction. Therefore, the bound state shown in Figure 5a
is similar to the “incoherent” bound state described in [21] with the phase difference ∆φ
between two pulses growing monotonically with time (see Figure 6 illustrating the intensity
time trace and the evolution of the TCS phase difference of the incoherent bound state).
It was demonstrated in [21] that due to the electric field overlap of the interacting TCS,
such types of bound states are characterized by slightly oscillating time separation ∆τ.
However, since the interaction via electric fields is extremely weak, for the bound state
shown in Figure 5a, such oscillation is hardy possible to detect. Figure 4b shows the
evolution of the inter-soliton time separation ∆τ as a function of the round trip number
obtained via direct numerical simulation of the laser model (1)–(3). The parameter values
are the same as in Figure 4a. It is seen that for αg = 0.5, when the interaction coefficient
Kτg is negative, the TCS interaction is repulsive and leads to a harmonic mode-locking
regime. On the contrary, for αg = 1.0, 1.5, 2.0, which correspond to Kτg > 0, the interaction
results in the formation of a pulse bound state. Furthermore, comparing Figure 4b with
Figure 4a, we can see that the smaller the interaction coefficient, the weaker the interaction
force and, hence, the longer the transient time before the equilibrium inter-pulse time
separation is achieved. The final inter-pulse distance in the bound state is, however, almost
independent of αg and Kτg. Note that the time separation of the pulses in the incoherent
bound state shown in Figure 5a is of the same order of magnitude as the gain relaxation
time. This is why the pulses in this bound state have significantly different peak powers (see
Figure 6a) and cannot be considered as individual TCSs any more. Therefore, the interaction
Equations (16) and (17) are not valid when the pulses are so close to one another. Indeed, in
order for a bound state to be formed, the attraction predicted by the interaction equations
should be compensated by a repulsion at sufficiently small inter-pulse distances. This
repulsion dominating at small pulse separations might be related to the pulse repulsion in
a laser with a cavity round trip time shorter or much shorter than the gain relaxation time
discussed in [11,13].

Figure 4. Interaction coefficient Kτg as a function of αg (a) and pulse time separation as a function of
the round trip number (b). Different curves in panel (b) correspond to different linewidth enhance-
ment factor values, αg = 0.5, 1.0, 1.5, 2.0, as indicated in the panel. g0 = 0.8. Other parameters are the
same as in Figure 1.
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Figure 5. TCS interaction resulting in pulse bound state formation at q0 = 5.0 (a) and pulse merging
at q0 = 4.0 (b). Colorful lines indicate the trajectories of the interacting TCSs. g0 = 0.8, αg = 2.0,
αq = 0. The cold cavity round trip time is T = 50. Other parameters are as shown in Figure 3.

Figure 6. Intensity time-trace (a) and pulse phase difference (b) of the TCS bound state. Parameters
are the same as in Figure 5a.

6. Conclusions

The interactions of two well-separated TCSs in a long cavity semiconductor laser
were studied numerically and analytically using the DDE mode-locking model. Interaction
equations governing the slow evolution of the time separation and phase difference of the
TCSs were derived and analyzed in the parameter range typical of semiconductor lasers,
where the interaction via the gain saturation and recovery dominates over the interaction
via absorption and field dynamics. Analytical results were compared to direct numerical
simulations of the DDE mode-locking model. It was demonstrated that in addition to usual
pulse repulsion predicted in [11,13], an attractive TCS interaction is also possible in a laser
with a nonzero linewidth enhancement factor. This attractive interaction can result either
in pulse merging or in a formation of an incoherent pulse bound state. In the latter case, the
repulsion force counteracting the soliton attraction force might be attributed to the standard
mechanism of the mode-locking pulse repulsion described in [11,13], which acts beyond
the TCS limit. The incoherent bound pulse state discussed here is similar to that observed
experimentally [29] and described theoretically [21] in a nonlinear mirror mode-locked
laser. It is also similar to the “type A” pulse bound states reported in [12]. The mechanism
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of the latter bound states formation is, however, different from that described here and can
be related to the TCS attraction due to the interaction via the absorption component of the
pulsed solution in a laser with an infinitely large gain relaxation time.
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Appendix A. Derivation of the Interaction Equations

Substituting Equation (13) into Equation (4), collecting the first order terms in small
parameter ε, and applying the solvability conditions [30] to the resulting equation yield

∂tτk = −
〈

θ†
k · P

〉
, ∂tφk = −

〈
ϕ†

k · P
〉

, (A1)

P =− ∂tuΣ + Fω0(uΣ) + Hω0 [uΣ(t− T)], (A2)

where uΣ = u1 + u2, 〈·〉 =
∫ T0

0 ·dt and θ†
k (ϕ†

k ) is the adjoint translational (phase) neutral
mode evaluated on uk, k = 1, 2.

Since uk is the solution of Equation (4), the equality

2

∑
k=1
{−∂tuk + Fω0(uk) + Hω0 [uk(t− T)]} = 0

is satisfied. Subtracting this equality from (A2) we get

P = Fω0(uΣ)−
2

∑
k=1

Fω0(uk) + Hω0 [uΣ(t− τ)]−
2

∑
k=1

Hω0 [uk(t− T)].

Therefore, the equation for τ2 in (A1) is

∂tτ2 = −
〈

θ†
2 · P

〉
= −

〈
θ†

2 ·
{

Fω0(uΣ)−
2

∑
k=1

Fω0(uk)

+ Hω0 [uΣ(t− T)]−
2

∑
k=1

Hω0 [uk(t− T)]

}〉
. (A3)

Using T0 periodicity of θ†
2 and u1,2, Equation (A3) can be rewritten as

∂tτ2 = −
〈

θ†
2 ·
[

Fω0(uΣ)−
2

∑
k=1

Fω0(uk)

]〉

−
〈

θ†
2(t + T) ·

[
Hω0(uΣ)−

2

∑
k=1

Hω0(uk)

]〉
. (A4)

Next, we split the integral 〈·〉 =
∫ T0

0 ·dt into two parts 〈·〉 = 〈·〉1 + 〈·〉2, where

〈·〉1 =
∫ 0
−T0/2 ·dt and 〈·〉2 =

∫ T0/2
0 ·dt are the integrals over the intervals [−T0/2, 0] and

[0, T0/2], respectively:
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∂tτ2 = −
2

∑
j=1

〈
θ†

2 ·
[

Fω0(uΣ)−
2

∑
k=1

Fω0(uk)

]〉
j

−
2

∑
j=1

〈
θ†

2(t + T) ·
[

Hω0(uΣ)−
2

∑
k=1

Hω0(uk)

]〉
j

.

On the first interval [−T0/2, 0], where u2 is small, one obtains

Fω0(uΣ)− Fω0(u1) ≈ B1u2, Hω0(uΣ)−Hω0(u1) ≈ C1u2,

and
Fω0(u2) ≈ B0u2, Hω0(u2) ≈ C0u2

where B1 = B(u1) and C1 = C(u1) [B0 = B(0) and C0 = C(0)] are the linearization
matrices of Fω0(U) and Hω0(U) at U = u1 (U = 0). Similarly, on the second interval
[0, T0/2], where u1 is small, one gets

Fω0(uΣ)− Fω0(u2) ≈ B2u1, Hω0(uΣ)−Hω0(u1) ≈ C2u1,

where B2 = B(u2) and C2 = C(u2) and

Fω0(u1) ≈ B0u1, Hω0(u2) ≈ C0u1. (A5)

Consequently, one obtains

∂tτ2 ≈ −
〈

θ†
2 · (B1 −B0)u2

〉
1
−
〈

θ†
2(t + T) · (C1 − C0)u2

〉
1

−
〈

θ†
2 · {(B2 −B0)u1}

〉
2
−
〈

θ†
2(t + T) · (C2 − C0)u1

〉
2
,

where the first two terms in the right hand side containing the product of two small
quantities θ†

2 and u2 on the first interval [−T0/2, 0] can be neglected. This yields

∂tτ2 ≈ −
〈

θ†
2 · (B2 −B0)u1

〉
2
−
〈

θ†
2(t + T) · (C2 − C0)u1

〉
2
.

Since u1 is the solution of Equation (4), it satisfies the equation−∂tu1 + Fω0(u1) +Hω0

[u1(t− T)] = 0. Using the relations (A5) valid on the second interval [0, T0/2], one can
rewrite it in the form

−∂tu1 + B0u1 + C0u1(t− T) ≈ 0. (A6)

The adjoint neutral mode θ†
2 satisfies the equation

∂tθ
†
2 + θ†

2B2 + θ†
2(t + T)C2 = 0. (A7)

Multiplying Equation (A7) by u1, subtracting from the resulting equation
Equation (A6) multiplied by θ†

2, and integrating over the second interval [0, T0/2], one gets〈
θ†

2 · (B2 −B0)u1

〉
2
≈ −

〈
∂tθ

†
2 · u1 + θ†

2 · ∂tu1

〉
2

−
〈

θ†
2(t + T)C2 · u1 − θ†

2 · C0u1(t− T)
〉

2
.

Substitution of this relation into (A6) gives

∂tτ2 ≈
〈

∂tθ
†
2 · u1 + θ†

2 · ∂tu1

〉
2
+
〈

θ†
2(t + T)C2 · u1

−θ†
2 · C0u1(t− T)2 − θ†

2(t + T) · (C2 − C0)u1

〉
2
.
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Finally, integrating the full derivative ∂t

(
θ†

2 · u1

)
over the interval [0, T0/2] leads to

∂tτ2 ≈ θ†
2(T0/2)u1(T0/2)− θ†

2(0)u1(0)

+
〈

θ†
2(t + T) · C0u1 − θ†

2C0 · u1(t− T)
〉

2
. (A8)

Note, that all the elements of the 4× 4 matrix C0 are equal to zero, except those in the
upper 2× 2 diagonal block. Hence, the last term in Equation (A8),〈

θ†
2(t + T) · C0u1 − θ†

2C0 · u1(t− T)
〉

2

= −
(∫ δ

0
+
∫ T/2+δ

T/2

)[
θ†

2(t + T)C0u1

]
dt,

contains only the asymptotic expressions for the field components, which are assumed to be
small and are neglected in this study. Therefore, we can drop the last term in Equation (A8).

The equation for slow evolution of τ1 is derived in a similar way to Equation (A8):

∂tτ1 ≈ θ†
1(0)u2(0)− θ†

1(T0/2)u2(T0/2)

+
〈

θ†
1(t + T) · C0u2 − θ†

1C0 · u2(t− T)
〉

1
. (A9)

Note, that the terms θ†
2(T0/2)u1(T0/2) and θ†

1(0)u2(0) in Equations (A8) and (A9),
respectively, can be neglected due to the fast decay of the leading tail of the TCS solution and
trailing edge of the adjoint neutral mode. The remaining terms, θ†

2(0)u1(0) in Equation (A8)
and θ†

1(T0/2)u2(T0/2) in Equation (A9), have very different magnitudes except for the
case, where the TCSs are nearly equidistant in the cavity, ∆τ = τ2 − τ1 ≈ τ0/2. This means
that except for this case the TCS interaction is strongly asymmetric and does not satisfy
Newton’s third law [15,21,26]. Thus, keeping only the second terms in the right hand sides
of Equations (A8) and (A9), one gets the following equation for the TCS time separation
∆τ = τ2 − τ1:

∂t∆τ ≈ θ†
1(T0/2)u2(T0/2)− θ†

2(0)u1(0). (A10)

The equation for the slow evolution of the phase difference ∆φ = φ2 − φ1 can be
derived in a similar way. This equation reads:

∂t∆φ ≈ ϕ†
1(T0/2)u2(T0/2)−ϕ†

2(0)u1(0). (A11)
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