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Abstract: We present new results obtained from the modeling of a tulip-like variable curvature mirror
(VCM) in the case of a central force that reacts to its contour. From Nastran finite element analysis,
we shows that 3-D optimizations, using non-linear static flexural option, with an appropriate solution
sequence, provide an accurate fulip-like VCM thickness distribution. This allows us to take into
account boundary conditions, including the thin outer collarette and its link to a rigid ring. Modeling
with a quenched stainless steel chromium substrate provides diffraction-limited optical surfaces.
Rayleigh’s quarter-wave criterion is performed over a zoom range from flat up to f /3.5 convexity over
a 13 mm clear aperture and 10 daN central force. The optical testing results of a prototype tulip-like
VCM elaborated from the previous analytic theory, show quasi-diffraction-limited figures for a zoom
range up to f /5. The present modeling results should significantly help in the future construction of
such VCMs with a zoom range extended up to f/3.5.

Keywords: active optics; modeling; variable curvature mirrors; zoom mirrors; finite element analysis;
elasticity theory; actuator

1. Introduction

Geometrical deformable configurations with the ability to generate variable curvature
mirrors (VCMs) were discovered by Lemaitre [1,2]. These three configurations were derived
from the elasticity theory of the small deformations of thin plates with variable thickness
distributions. Such VCMs—sometimes called zoom mirrors—have either a cycloid-like or
tulip-like thickness distribution.

The first manifold is a cycloid-like form that requires a uniform load—as air pressure—
applied over the mirror back surface and reacts in a ring force along its circular contour
without requiring any bending moment. This particular VCM configuration is of practical
interest because it can easily generate accurate optical curvatures varying from plane at rest
up to f/3.5 when under stress [2].

The second manifold are tulip-like forms where the static equilibrium is a combination
of two sets of acting forces: a central axial force in reaction to either (i) a uniform load or
(ii) an axial perimeter ring force. We present here the first case of a tulip-like VCM that
provides, from modeling, a zoom range from plane at rest up to f /3.5 when under stress.

For such a large zoom range, Ferrari and Lemaitre [3] and Ferrari [4] carried out
analytic investigations with the elasticity theory of large deformations. This theory takes
into account radial and tangential stresses at the middle surface of the plate. A review of
these theories and construction results can be found in Astronomical Optics and Elasticity
Theory—~Active Optics Methods by Lemaitre [2]. Some preliminary prototype tulip-like VCMs
were built around the 1990’s at the Observatoire de Marseille—moved to the newly created
Laboratoire d’Astrophysique de Marseille (LAM) in the 2000s—that were equipped with
a motorized force actuator. A variable curvature mirror, generated by perimeter bending
moments, was developed in a search as an optimal variant for a resonator of an electric
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discharge CO, laser. This was studied using either a germanium exit mirror or metallized
mirrors with central apertures of different diameters (Belomestnov et al. [5]). Grazing
incidence mirrors were actively bent into an ellipsoidal shape to increase the detection
efficiency. This was obtained by applying bending moments at their contour as developed
for micro focalization experiments at the European Synchrotron Radiation Facility (ESRF)
(Ziegler et al. [6]). Characteristics of a mechanically bent-shaped mirror for X-ray optics
using a long trace profiler (LTP) was evaluated by Kamachi et al. [7], where the “arm method”
mirror bender controls the mirror curvature with little effect on the slope error. Modeling
of a VCM designed as a thin elastic plate with an exponential thickness distribution
was actuated with a uniform pressure under simply supported boundary conditions (Xie
etal. [8]). An active optics method, for making smooth and curved freeform mirrors from an
elastically deformable matrix, was developed to generate curvature modes using bending
moments. The matrix replication technique provided the curved astigmatism correction of
a reflective off-axis segment of a Schmidt plate without the need to make a full-size plate
(Lemaitre and Lanzoni [9]).

The remainder of the paper is organized as follows: In Section 2, we introduce the
theory. Section 3 describes the introducing features: optical focal-ratio, buckling instability,
VCM zoom range and metal choice. Section 4 is the simulation methodology. Section 5
describes the simulation results. Section 6 details the experimental results. Finally, Section 7
presents the conclusions.

2. Theory—Thin Circular Plate VCMs
2.1. Preliminarily Definition of the Curvature Mode

The first-order modes of the triangle optical matrix characterizing a wavefront shape
are the curvature mode (Cv-1) and tilt mode (Tilt-1). These are the two fundamental
modes involved in Gaussian optics. As a tilt mode is trivially obtained by a global rotation
of a rigid substrate, investigations to achieve elastic deformation modes only reduce to
deformable mirrors generating the Cov-1 curvature mode.

Let us denote z(r) the figure achieved by the flexure of a circular plate, which is flat at
rest. In the thin plate theory of small deformations, the Cv-1 curvature mode is represented by

a paraboloid flexure:

1
_ - 2
z = Apr = —ZRr 1

where Ay is a constant coefficient of the optics triangle matrix [2], and 1/R the variable
optical surface curvature.

The two classes of thickness that can provide a curvature mode Cv-1 with the thin
plate theory are constant thickness distributions (CTDs) and variable thickness distributions
(VTDs) [2]. The first class requires a larger aperture diameter than that required, whilst the
second class is the easiest for practical reasons.

2.2. Analytic Theory—VCM with Constant Thickness Distribution (CTD)

Constant thickness distributions (CTDs) may generate the first-order curvature mode
Co-1 provided a constant bending moment is applied along the circular contour of the
plate. This requires VCM designs that use concentric two-zone configurations and opposite
loading circular forces in each area [2]. We can remark that CTDs provide a conveniently
accurate Co-1 mode only for the inner zone.

2.3. Analytic Theory—V CMs with Variable Thickness Distribution (VTD)

Let us consider a plane circular plate with variable thickness #(r) having a rigidity D(r)
classically expressed by:

D(r) = E£3(r)/ [12 (1 - vzﬂ 2)
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where E and v are the Young’s modulus and Poisson’s ratio, respectively. Denoting a and
to the edge radius and a dimensional mean thickness, respectively, the non-dimensional
parameters p and T can be defined as:

p=r/a and Ty =t/ ©)

The thin plate theory applied to VCMs leads to three manifolds of variable thickness
distributions (VIDs) as elaborated for active optics applications. The first-order curvature
mode, Cv-1, is achieved by the use of easy load systems where the thicknesses #(r) are
denoted cycloid-like forms or tulip-like forms (Figure 1).

Figure 1. VCMs derived from the VTD class leading to a cycloid-like form and two tulip-like forms.
The three dimensionless thicknesses T, with p = r/a, p € [0, 1] (Lemaitre [2]), are as follows: top
left: cycloid-like VCM with uniform loading and reaction at the edge, Tpo = (1 — pz)l/ 3; top right:
tulip-like VCM with axial force at center and edge reaction, Tay = (—In p?)'/3; down: tulip-like VCM
with uniform loading and central reaction, Ty = (/o2 —1In p2 — /3,

As it is easily achievable in practice by means of a single force actuator and without
requiring any uniform load, we consider, hereafter, only the case of a tulip-like VCM with
a central force and edge reaction. The analytic dimensionless thickness—before the finite
element analysis—is then Ty = t/ty = (—In p?)1/3, for which we defines preliminarily
associated quantities as the central force acting on the VCM hereafter.

2.4. Tulip-like VCM with a Central Force and Edge Reaction

From the definitions of radial and tangential bending moments, M, and M;, respec-
tively, the axisymmetric case of a thin circular plate leads to [2,10]:

A2z vdz 1dz d2z
MrD<dr2+rdr> and MtD(]’d}’ +1/dr2> (4)

and denoting Q;, as the shearing force, the static equilibrium of a plate element can be
written as:

dM
Mr‘f’rdrr_Mt‘f'rQr:O )
After substitution, the resulting equation is:
d /o d’>z  vdz\dD
b (v Z)*(azrzﬂdr)dr—@ ©

where the Laplacian value is V2z = 44, from substitution in Equation (1). The shearing
force Q; depends on each case of the three VIDs associated to external loads that generate
the curvature mode Cv-1 (Figure 1). Each of them requires a particular shearing force.
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Recall the results obtained from the thin plate theory for a substrate deflected by an
axial force F applied to its center that gives rise to a uniform reaction—F—at the edge
contour. If we consider an equivalent uniform load g applied to its entire surface, we may
define the equivalent central force by F = 7ta?q applied onto a tiny area. The associated
shearing force Qr satisfies F + 27t Qr = 0. We also select a null bending moment at the edge
r = a by selecting the rigidity D(a) = 0. Integration lead us to the rigidity [2]:

FR r2
D=+ (_maZ) @

As the infinite thickness at 7 = 0 and of the vertical tangents at the substrate edge, we
call this thickness distribution a tulip-like form.

Theorem 1. From the analytic elasticity theory of thin plates, a variable curvature mirror of

curvature 1/R is obtained by an axial force F at the center and a reaction at the edge if, and only if,

its thickness distribution t = Ty tg is a tulip-like shape, such as:

FR 1'/3
} ®)

r? 1/3 to

where the product FR is negative.

The thickness distribution is in the form (—In p?)!/3 around the center and then T(0)
— 00. As this distribution looks like a stem at the center, it has been called a tulip-like VCM.
In practical applications, it is always possible to limit the central thickness to a finite value.
A convenient truncation of the stem allows respecting optics Rayleigh’s quarter-wave
criterion (A/4) during the flexure around the central area. The axial force F is then applied
onto a small area, say, typically at a stem radius of a/50.

3. Optical Focal Ratio, Buckling Instability, VCM Zoom Range and Metal Choice
3.1. Optical f-Ratio

We can determine an optical f-ratio generated by the Cv-1 deformation mode. Assum-
ing a flat mirror when in an unstressed state, let us define this f-ratio as (). Considering a

mirror diameter 24,
Q= |f/2a] = |R/4a| = |1/(8aAy)|. 9)

Recalling that the central force F is related to a uniform load g by F = 7ta%q and that tg
=t/Ty, we obtains, as a function of the f-ratio (),

1/3

tEa?

2 — 121 =)0 (10)

3.2. Buckling Instability

Self-buckling instability may happen during a curvature change. This effect is similar
to the meniscus shell “jumping toy” in polymer material, which is manually brought,
temporarily, to opposite curvature. Avoiding buckling instability requires taking into
account the radial and tangential tensions N,, and N;, which exist at the middle surface
and showing that the maximum compression value of N, shall remain small compared to a
critical value.

Self-buckling instability is avoided by restricting curvatures to always having the same
algebraic sign during zooming. Furthermore, all three VIDs decreasing to zero towards the
edge prevents this instability.
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3.3. VCM Zoom Range

As self-buckling instability is avoided, it is useful to consider a basic alternative where
a VCM is polished flat when unstressed, and define a zoom range as follow: All curvatures
1/R; should remain in the same algebraic sign, i.e., remaining in the same direction of
the curvature when stressed [2]. To prevent self-buckling instability, this lead us the
anti-buckling criterion as follows:

All varying curvatures 1/R; shall remain in the same direction for the whole zoom range.

From various cycloid-like VCM experiments in quenched stainless steel alloy Fe67Cr13,
with aspect ratios 22/4(0) = 50 and zoom ranges varying in convexity from f /oo to f/3.5, it
has been shown that the middle-surface curvature will not entail any self-buckling effect.

3.4. Metal Choice

We select VCM substrates in quenched chromium stainless steel alloy Fe67Cr13 with
post-quenched ageing from Ugitex Corp. [11] which shows a large elastic deformability much
superior to that of fused silica or glass ceramics. Deformability is characterized by the ratio
of maximum working stress over the Young’s modulus, i.e., the oy ws/E ratio.

Other stainless steel chromium alloys with somewhat larger elastic deformability
than the quenched Fe67Cr13 may exist, as selected here, for instance, by including 1-2%
molybdenum. Other linear alloys, i.e., showing linear stress—strain relationships, are of
interest for VCMs, such as titanium alloy Ti90Al6V4 or beryllium alloy Be95Cu5, but are
more brittle. However, minimizing the lathe-machining chip-cutting size should be tested
for the lathe-cutting finishing operation.

4. Simulation Methodology—FEA of a Tulip-like VCM Bent by a Central Force

From Section 2, concerning the small deformation theory, the flexural results are valid
only if the flexural sags Zmax = a2 /2R are small compared to the substrate mean thickness
to, i.e., when the relationship of flexure vs. loading (zmax, g) is linear. When sags zmax
become non-negligible compared to the thickness fj, the radial and tangential stresses
at the plate middle surface must be considered. Investigations with the large deformation
theory of thin plates led us to conclude that non-linear results cannot be taken into account
for convenient boundaries at the contour. Due to the remarkable calculation accuracy of
the MSC Nastran [12] code by the MSC software code of finite element analysis (FEA), we
present, hereafter, results derived from Vola. This uses 3-D optimizations with the large
non-linear static flexural option applied to a model where the VCM could be linked, in a
single piece, to an outer rigid ring via a very thin collarette (Figure 2).

Figure 2. Schematic of a tulip-like VCM with central truncated stem showing the plate-collarette-ring
geometry.
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4.1. Modeling of VCM for the Plate Alone

Each finite element boundary provides equilibrium by use of a complete local equation
set. FEA analyses was carried out preliminarily with VCM thickness t = ty (—In p?)!/3,
2a = 16 mm diameter, in quenched stainless steel chromium FeCr13 alloy and post-quench
ageing that shows high ultimate strength with Young’s modulus E = 205 GPa and Poisson
ratio v = 0.315.

The central pushing force, equivalent to F = 7'[a2q, is in an axial reaction with the
mirror contour. Due to the infinite thickness at center from the thin plate theory, T = t/ty
= [~In(r?/a?)]'/3, the mirror design is conveniently truncated near the center. The stem
truncation provides a negligible effect with respect to the quarter-wave Rayleigh’s criterion.

Preliminarily, the geometry of the plate alone is defined by a truncated central thickness
as t. = 618 um, expanding up to r = 0.1 mm. We define the equivalent thickness as
top = 300 pm for r = 4.85 mm. We also assume a conical shape for 7.6 < ¥ < 8 mm that leads to
t(a) = 100 um.

We consider Nastran modeling with the solution sequence SOL106 (Vola) where the
central push forces from F = 0 to F = 14 daN generate a convex shape. The flexural deviation
from a paraboloid shape is processed by the least mean square. The Nastran boundary
conditions are as follows: all nodes at the edges of the VCM are fixed along the mirror axis
(Z-axis) but are free to move radially. In addition, we remark that the model, in geometry
and in loads, is axisymmetric. This means that no tangential displacement, at any node of
the mesh, is permitted. To achieve this, we model only a quarter of the mirror and impose
onto all nodes of the two created radial sections a null out-of-plane displacement; in other
words, with degree-of-freedom (DOF) terminology, an X-DOF is fixed on section YZ, and
Y-DOF is fixed on section ZX.

The results confirm that the deflections z(r) are non-linear (Figure 3). Nastran shows
deviations Az(r) from a purely paraboloid shape (Figure 4). The model gives a total sag of
377 um for a medium intensity force of 10 daN (Figure 5).

— 2daN
— 4.daN

6 daN
— 8daN
—10 daN
—12daN.
— 14 daN

2 4 6 8
Current radius r [mm]

Figure 3. Flexures vs. current radius for tulip-like VCM. Thickness T = t/ty = [fln(p)z]l/ 3 for
0.0125 < p < 0.95 and fy = 300 um. Truncated central thickness t. = 618 um for p < 0.0125. Conical
thickness for p > 0.95 with t (0 = 1) = 100 pum.
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Deviation of VCM surface from paraboloid - Load intensity vs current radius

* | I I — 2daN
—_— Thickness t=1 [—In(rz/az)]w3 — 4daN
E 3 6 daN
o — 8daN
2 2= —10daN
c —12daN
'g — 14 daN
© |
=
[
©
B _
=
>
@
|.|_ o

-2 | | | |

0 2 4 6 8

Current radius r [mm]

Figure 4. Least mean-square flexural deviations. Thickness distribution as before.

TULIP-LIKE — NASTRAN Modeling 377-
v=0.315
E =205 GPa
F=10daN
a=8mm 301-
o= 300 um
226-
151-
75.3+
0. -
Axial displacements [um]

Figure 5. Axial displacements for medium intensity force F = 10 daN. Thickness distribution as
before.

Due to an important local effect shown as a bump shape near the center by of the
previous flexural deviations (Figure 4), one somewhat increases the central diameter of
the stem to provide a better optimization with Nastran next calculation. Conserving the
central thickness f. = 618 pm as unchanged, we expand the truncation radius up to 0.4 mm
(instead of 0.1 mm), i.e., a truncation at p = 0.05 (instead of 0.0125 previously). The flexural
deviation is then improved (Figure 6).
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Deviation of VCM surface from paraboloid - Load intensity vs current radius

Thickness t=t [-In(r?/a*)]"* — 4daN

Flexural deviation Az [um]

— 2daN

6 daN |
— 8daN
—10daN
— 12 daN
— 14 daN

2 4 6 8
Current radius r [mm]

Figure 6. Least mean-square flexural deviations with truncated radius at p = 0.05 and stud thickness
to =618 um. Thickness T =t/fg = [—ln(pz)]l/3 for 0.05 < p < 0.95 and ¢y = 300 pm. Conical for p > 0.95
with #(1) = 100 um.

4.2. Modeling of VCM with an Outer Cylinder Collarette and Rigid Ring

For the practicable reasons of fabrication and avoiding interface problems, the tulip-like
form VCM plate shall be completed in a monolithic geometry using the implementation of
an outer radially thin cylinder—or collarette—linked to a rigid outer ring. The combina-
tion plate-collarette-ring is a one-piece construction. Considering the flexural deviations
obtained above that show the lack of rigidity of the plate conical area, we slightly enlarge
the conical area and somewhat increase its edge thickness.

The Nastran model is built with the same logic as the previous one without the
collarette. The degree-of-freedom Z-DOF boundary condition is now applied on the base
of the rigid ring instead of on the mirror edge. Here, we also use the axisymmetry of the
problem for modeling only a quarter VCM and then fixing X-DOF on the radial section YZ
and Y-DOF on the radial section ZX. The VCM edge thickness is now f (p = 1) = 120 um,
and the narrow collarette is set up with three-layer meshing for a total thickness of 20 pm
(Figure 7). The collarette flexibility ratio over plate-edge thickness is 1/6° = 1/216, which
provides a negligible bending moment at the contour, i.e., an idealized articulation.

Flexural deviations are carried out with the central truncation at p = 0.05. The central
thickness t. = 618 um is unchanged and looks like a tiny stud at the center. The results
show important deviations in this case (Figure 8).

Due the important flexural deviation obtained with this complete geometry, we re-
strain, hereafter, (i) in limiting the maximum central force up to F = 12 daN and (ii) in
optimizing the flexural deviations to a current radius * <7 mm, i.e., p < 0.875. Furthermore,
we will investigate the modifications for two cases of thickness distribution in the VCM
area for 0.05 < p < 0.9.

In order to reduce the amplitude of the flexural deviations, we now consider a thick-
ness t/ty = [~In p? — & (0> — 2p* + p®)]'/3, where ¢ is a dimensionless parameter. The
optimization process with ¢ = 0.6 leads us to a maximum flexural deviation max(Az) = 1.4 pm
up to F <12 daN.
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TULIP-LIKE VCM - NASTRAN Modeling 458

367 -

275

184

93.1

Axial displacements [um] 0.0

w

)]

Flexural deviation Az [um]
(] —

1
=y

1
)]

ness t=t [-In(r¥a®)]"* — 4daN

Figure 7. Axial displacements for maximum force F = 14 daN. Mesh model plate-collarette-ring.
T=t/tg=(—In pz)l/3 for 0.05 < p < 0.9 and ty = 300 um. A conical shape is designed for 0.9 <p <1
with t (o = 1) = 120 um. Collarette thickness 20 um.

Deviation of VCM surface from paraboeloid - Load intensity vs current radius

[ l l — 2daN

6 daN
— 8daN
—10 daN
—12 daN
—14 daN

o

2 4 6 8
Current radius r [mm]

Figure 8. Least mean-square flexural deviations. Conical shape for 0.90 < p < 1. #(1) = 120 um.
Collarette 20 um width.

The second investigation, made with t/ty = [—In p? — & (p* — p®)]'/3 and & = 0.4,
provides a similar maximum deviation max(Az) = 1.5 pm up to F < 12 daN. However, for
the range F < 10 daN, the flexural deviation is the best one with max(Az) = 0.7 um, so we
select the latter result (Figure 9). The total deflection amount vs. forces for the full range
2-12 daN is updated (Figure 10). The final resulting geometry £(r) from the FEA design
(Table 1) includes the thickness * (r) for the CNC lathe machining with 10 um constant
over-thickness. A scale drawing of the front part of the VCM, as investigated below for
the FEA analyses, includes the degree-of-freedom (DOF) of the boundary conditions of the
outer ring (Figure 11).
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Deviation of VCM surface from paraboloid - Load intensity vs current radius

4 T T I T
E 4 Thickness t=t,[-Inp*-e(p*-p*)]"° — 2daN| |
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= _2 1 | | |

0 2 4 6 8

Current radius r [mm]

Figure 9. Flexural deviations from paraboloid for central forces up to F =12 daN over a 14 mm

aperture diameter. In the range F < 10 daN over 13 mm aperture diameter, deviations to a paraboloid

remain smaller than 0.6 pum PTV, i.e., 0.1 um RMS.

0.5 ; : : :
t=t,[-Inp*—e(p*-p*) 1" — 2daN
04 *——_\\ =04 — 4daN |-
=) 6 daN
E 55 \ 8daN | |
§y —— 10 daN
" —— 12 daN
< pe ,
>
o
L
0.1 .
0 |
0 7 4 6 8

Current radius r [mm]

Figure 10. Flexure amplitude vs. current radius for central forces in the range intensity 2-12 daN

over 16 mm full diameter. The flexural sag is 418 pm for F = 12 daN and 355 um for F =

10 daN.

Table 1. Thickness #(r) of tulip-like VCM from Nastran modeling. Truncated center thickness
tc = 618 pm for r < 0.4 mm. ty = 300 um. Radial thickness of outer cylinder collarette 20 um.

Thickness #*(r) is t(r) + 10 pm constant over-thickness for CNC lathe machining.

titg = [—In p2 — £ (p* - p®)]3 for 0.4 < r = p, a < 7.2 mm. Conical 7.2 < r <8, ¢ = 0.4

Units: ¥ [mm] ¢, £* [um]

R 0 04~ 0.4* 4 6 72 8~ 8 8* 12
t 618 618 545 333 241 163 120 6750 6000 6000
t* 628 628 555 343 251 173 130 6750 6000 6000
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Yy X inY and 2
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Figure 11. Drawing section, in (x, z) plane, of the VCM front part showing the degree-of-freedom
(DOF) boundaries. These conditions applies to the previous FEA modeling as blocked, i.e., non-
movable, in the axial and tangential directions, i.e., z and y and is free to move in the x-direction. The
force F = 10 daN is applied over p < 0.03125, i.e., 0.25 mm radius area.

The definition layout for the lathe-turning execution (Figure 12) requires including
some extra-thicknesses before cubic boron nitride (CBN) rectification of the collarette outer
part at 18,000 rpm, where its 50 um radial thickness becomes 20 um. The next operations
involve figuring the VCM optical surface with 6 and 3 um diamond grain-size and polishing
with Al,O3 of 1, 0.3 and 0.05 pm grain-size on pitch tools.

o224
] 15.950——I 7

—f—-— t=0628

CNC lathe machining - Layout

Figure 12. Definition layout for the CNC lathe-turning execution. Dimension units (mm).

5. Simulation Results
5.1. Final Data of the Tulip-like VCM Modeling

We summarize the modeling parameters of the VCM as designed from Table 1 and
Figures 11 and 12. The VCM is in quenched chromium stainless steel Fe87Cr13 alloy with
post-quench ageing. For practical applications, we take into account a restrain force range
up to F < 10 daN corresponding to a 355 um flexural sag over 16 mm diameter. This later
force range provides diffraction-limited optical surfaces for a clear aperture diameter of
13 mm. The elasticity data and modeling optical geometry are shown in Table 2.

Table 2. Results from optics and elasticity parameters of the tulip-like VCM modeling.

Poisson ratio v=0315 Young’s modulus E =205 GPa
Mean thickness to =300 pm Nastran optimal profile 04<r<72mm
Central cut thickness tc =618 um COliili‘irreler;dlal Ar =20 pm
Force range F <12 daN Collarette stress max Omax = 920 MPa
Flexural sag F = 10 daN zp = 355 um Radius of curvature R'=90.1 mm
Outer diameter 24 =16 mm Zoom f-ratio f/oo—f/2.82

Clear aperture dia. dopt =13 mm Zoom f-ratio f/oo—f/3.47
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5.2. Maximum Stresses, Pre-Stressing and Creep Deformation

The Nastran results show that, for a central force F = 10.1 daN, the stresses are not
maximal at the surface of the plate but are, by far, along the collarette surfaces. The
maximum tensile stresses of the Fe67Cr13 alloy, also named X30C13 by Aubert and Duval
Corp. [13] and as denoted ultimate stress, is oy = 1700 MPa, and the corresponding 0.2%
elastic elongation stress is 0y = 1500 MPa.

The previous 3-D mesh is not refined enough to allow a correct stress analysis of the
collarette area. We use an axisymmetric calculation in which only the radial cross section
of the VCM is modeled. The collarette is meshed with 12 layers of triangular elements.
This allows the accurate determination of the Von Mises’s stress areas. For a central force
F=10.1daN, the results from the stress analysis show a maximum stress of omax = 2100 MPa
at the collarette inner surface. Due to the convexity during loading, this stress corresponds
to an elongation, which then overpasses the oy, of the material. In fact, there is a metal
creeping—creep deformation or fluage in French—of the metal that reduces the maximum
stresses [14]. This creeping effect can be drastically modelled using Nastran by artificially
introducing the lower Young’s modulus E = 100 GPa (instead of E = 205 GPa) for the most
stressed areas. This shows that the VCM can provide a much larger flexure than the results
obtained from the basic calculation (Figure 13).

van Mises stresses
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Figure 13. Results from stress analysis of the collarette at F = 10 daN with a mesh axisymmetric
model. For a constant modulus E = 205 GPa everywhere, the scale shows a maximum stress omax
= 2100 MPa (left). Due to the overpassed limit stress of the material compared to oy, we take into
account the creeping effect—or fluage—by artificially introducing a smaller modulus E = 100 GPa
in the most stressed zones. We obtain, from Nastran, a more realistic stress distribution, where
Omax < 1480 MPa (center and right).

6. Experimental Results
6.1. Mechanical Assembly of a Prototype and Actuator

The tulip-like VCM design uses a motorized translator lead screw as a force actuator
that generates the curvature variation. A central thrust ball bearing provides contact to
generate the axial push forces at the stem of VCM rear surface. This requires a preliminary
set up prepositioning of the VCM and back-part assembly with a radial screw (Figure 14).
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VCM

Figure 14. Tulip-like VCM assembly.

The VCM actuator is a high-precision motorized actuator made in France by Micro-
Controle-Spectra Physics Corp. [15] and is able to deliver push forces up to 12 daN with
a bidirectional repeatability of +0.30 um over a 25 mm travel range. The motor type is a
UE17CC, 12V-DC, 0.2 Amp. Mazzanti elaborates specific codes with the implementation of
a dedicated electronic PC card for control command. The translation driver module uses
an encoder close-loop control with initialization set up and a limit switch for maximum
VCM deflection [16] (Figure 15).

VMACE 896 204405 W58
PRS= 0.0A9MBE EncoderSMC
Molor UETICE U=120DC \=02

Figure 15. Actuator of the push force control system by Micro-Contréle Corp.

6.2. Results from Realization and Optical Testing

Before the FEA optimization modeling presented in Section 4, a tulip-like VCM was
designed from the analytic plate deflection theory, plate alone, i.e., without taking into
account the effect of the outer collarette and ring. Some VCMs—a plate-collarette-ring in a
single piece—were built by Gauthier Precisions Corp., using a NC lathe and polished at
LAM by Lanzoni. A prototype VCM (Figure 16) was adapted to a motorized push force
actuator. For a moderate zoom range from f /100 to f /5, the He-Ne interferograms with
respect to curvature radii [2800, 420, 230 and 140 mm] show slight wave-front deviations
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to paraboloid for the clear aperture 22 = 14 mm, then showing quasi-diffraction-limited
results of the mirror surface (Figure 17).

Figure 16. View of prototype tulip-like VCM#5 with its rear central tip.

E .
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Figure 17. He-Ne interferograms of tulip-like VCM#5 without over-thickness at the central tip.
Curvature variation from £ /100, f /15, f /8.2 to f /5 (left to right) for a 14 mm clear aperture diameter.
Curvature radii RC = 2800, 420, 230 and 140 mm, respectively. A realization by use of modeling from
Table 1, i.e., including an over-thickness at the tip—should avoid present local deviation errors near
the center.

The surface plot and aberration table of VCM#5 (Figure 18) are for the maximum
central force corresponding to f/5 at RAC = 140 mm. It was designed with a thickness close
to T =t/tg = [~In(p?)]'/3 as a preliminary shape, i.e., as in Figure 6, without over-thickness
at the tip. This partly explains the central deviation error near the VCM center that would
be improved by the use of the design in Table 1.

It may be remarked from Figure 18 (right) that the astigmatism and spherical aberra-
tion remain negligible, whilst the coma deviation error is dominating with a 0.4 He-Ne
wavelength (A = 633 nm) in RMS fringes. This is due to a lack of the over-thickness at the
tip or mainly a non-uniformity of the collarette radial thickness and/or some decentering
of the force actuator. The surface plot shows a local deviation is the central area. However,
for a zoom range up to f/5 and a 14 mm clear aperture, the RMS results are not far from
the limit of diffraction.
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Figure 18. Surface plot (left) and aberration table (right) of VCM#5 at full clear aperture 14 mm for
the maximum curvature deformation at f /5, corresponding to a curvature radius 140 mm.

7. Conclusions

Compared to both cases of the cycloid-like VCMs [17] and present tulip-like VCMs,
this FEA modeling with a plate-collarette-ring in a one-piece assembly will require high
geometric precision in the execution. This because, for a similar deflection amplitude up to
f/3.5, the edge thickness of the plate is much thinner in the tulip-like case.

For a central force range where F < 10 daN, our results show, from the FEA Nastran
modeling of a tulip-like VCM, that a diffraction-limited surface quality is achieved. The
flexural deviations to a paraboloid all remain smaller than 0.1 pm of RMS error for a 13 mm
optical aperture and a zoom range from f /oo to f/3.5.

Compared to our previous results from the thin single-plate deflection analytic theories,
leading us to the construction of the first prototype giving a zoom range restrained to f /5,
the present modeling results should significantly help in the future construction of such
VCMs with a larger zoom range.

8. Patents

Lemaitre, G.R. French patent submitted 1976, “Miroirs a focale variable et procédés
d’obtention”, registered No. FR2343262, 1977.

Lemaitre, G.R. US patent submitted 1976, “Mirrors with a variable focal distance”,
registered No. US4119366, 1978.

Author Contributions: Conceptualization, G.R.L. and P.V.; methodology, P.V. and P.L.; software,
PV. and PL.; validation, G.R.L., PV. and PL.; formal analysis, P.V. and PL.; investigation, G.R.L.;
resources, P.V. and P.L.; data curation, P.V. and P.L.; writing—original draft preparation, G.R.L. and
P.V,; writing—review and editing, G.R.L.; visualization, G.R.L., P.V. and P.L.; supervision, G.R.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Lemaitre, G.R. Elasticité et miroirs a focale variable. Comptes Rendus Académie Des. Sci. 1976, 282B, 87-89. Available online:
https:/ /gallica.bnf.fr/ark: /12148 /bpt6k62352030/f101.item (accessed on 1 June 2022).

2. Lemaitre, G.R. Elasticity Theory and Astronomical Optics—Active Optics Methods; Springer-Verlag Edt.: Heidelberg, Germany, 2009;
ISBN 978-3-540-68905-8.

3. Ferrari, M.; Lemaitre, G.R. Analysis of large deflection zoom mirrors for the ESO VLTI. Astron. Astrophys. 1993, 274, 12-18.
Available online: https:/ /adsabs.harvard.edu/full /1993A%26A...274...12F (accessed on 1 June 2022).


https://gallica.bnf.fr/ark:/12148/bpt6k62352030/f101.item
https://adsabs.harvard.edu/full/1993A%26A...274...12F

Optics 2023, 4 54

10.

11.

12.

13.

14.

15.

16.

17.

Ferrari, M. Development of variable curvature mirrors for the delay lines of the VLTI Astron. Astrophys. Suppl. Ser. 1998, 128,
221-227. [CrossRef]

Belomestnov, P1; Vyazovich, E.I; Soloukhin, R.I; Yakobi, Y.A. Tunable resonator with a mirror of variable curvature. Sov. J.
Quantum Electron. 1974, 3, 347-348. [CrossRef]

Ziegler, E.; Hignette, O.; Morawe, C.; Tucoulou., R. Miroir simple ou multi-couches a courbure variable pour microfocalisation de
rayonnement synchrotron X. J. Phys. IV France 2001, 11, 7-21. [CrossRef]

Kamachi, N.; Endo, K.; Ohashiound, H.; Ishikawaound, T. Characteristics of mechanically—Bent—Shaped mirror: Experimental
study on stability using LTP II. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2004; Volume
705, p. 788. [CrossRef]

Xie, X.; Hugot, E.; Li, C.; Xu, L.; Lemared, S.; Liu, M.; Fan, X.; Zhao, H. Elastic bending of variable curvature mirrors: Validation
of a simplified analytical method. Appl. Opt. 2019, 58, 7121-7126. [CrossRef] [PubMed]

Lemaitre, G.R.; Lanzoni, P. Active optics—Freeform segment mirror replications from a deformable matrix. Photonics 2022, 9, 206.
[CrossRef]

Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill Edt.: NewYork, NY, USA, 1959; ISBN 0-07-
085820-9.

Ugitech Corp. UGIMA 4028W. 1990. Available online: https://eservices.ugitech.com/CatalogDocuments/BarProducts.pdf
(accessed on 1 June 2022).

MSC Software Paris. Parc Technopolis—Immeuble Gamma, 3 Avenue du Canada, 91978 Courtaboeuf—Les Ulis, France. Available
online: https://www.mscsoftware.com/fr/terms-and-conditions-use-and-disclaimer (accessed on 1 June 2022).

Aubert & Duval Corp. Strength of Quenched Chromium Stainless Steel. 2000. Available online: https://www.aubertduval.com/
wp-media/uploads/sites/2/pdf/fr_X13.pdf (accessed on 1 June 2022).

Yadav, HK.; Yadav, HK,; Ballal, A.R.; Thawre, M.M.; Vijayanand, V.D. Creep studies of Cold Worked Austenitic Stainless Steel.
In Procedia Structural Integrity; Elsevier Edt.: Amsterdam, The Netherlands, 2019; Volume 14, pp. 605-611. [CrossRef]
Micro-Controle-Spectra Physics Corp. Now Associated with Newport Corp., Is Based at ZI, 7 Rue Des Plantes, 45340 Beaune-La-
Rolande, France. Available online: https:/ /pdf.directindustry.fr/pdf/micro-controle-spectra-physics-7436.html (accessed on 1
June 2022).

Lemaitre, G.R.; Mazzanti, S.; Ferrari, M. Tulip form variable curvature mirrors: Interferometry and field compensation. In
Proceedings of the SPIE Conference on Astronomical Interferometry, Kona, HI, USA, 24 July 1998; Volume 3350, pp. 373-380.
[CrossRef]

Lemaitre, G.R.; Vola, P.; Lanzoni, P.; Mazzanti, M.; Dérie, EJ.; Gonté, EY. Active optics—Progress and modeling of cycloid-like
variable curvature mirrors for the VLTI Array. Photonics 2022, 9, 66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1051/aas:1998137
http://doi.org/10.1070/QE1974v003n04ABEH005518
http://doi.org/10.1051/jp4:2001707
http://doi.org/10.1063/1.1757914
http://doi.org/10.1364/AO.58.007121
http://www.ncbi.nlm.nih.gov/pubmed/31503983
http://doi.org/10.3390/photonics9040206
https://eservices.ugitech.com/CatalogDocuments/BarProducts.pdf
https://www.mscsoftware.com/fr/terms-and-conditions-use-and-disclaimer
https://www.aubertduval.com/wp-media/uploads/sites/2/pdf/fr_X13.pdf
https://www.aubertduval.com/wp-media/uploads/sites/2/pdf/fr_X13.pdf
http://doi.org/10.1016/j.prostr.2019.05.074
https://pdf.directindustry.fr/pdf/micro-controle-spectra-physics-7436.html
http://doi.org/10.1117/12.317099
http://doi.org/10.3390/photonics9020066

	Introduction 
	Theory—Thin Circular Plate VCMs 
	Preliminarily Definition of the Curvature Mode 
	Analytic Theory—VCM with Constant Thickness Distribution (CTD) 
	Analytic Theory—VCMs with Variable Thickness Distribution (VTD) 
	Tulip-like VCM with a Central Force and Edge Reaction 

	Optical Focal Ratio, Buckling Instability, VCM Zoom Range and Metal Choice 
	Optical f-Ratio 
	Buckling Instability 
	VCM Zoom Range 
	Metal Choice 

	Simulation Methodology—FEA of a Tulip-like VCM Bent by a Central Force 
	Modeling of VCM for the Plate Alone 
	Modeling of VCM with an Outer Cylinder Collarette and Rigid Ring 

	Simulation Results 
	Final Data of the Tulip-like VCM Modeling 
	Maximum Stresses, Pre-Stressing and Creep Deformation 

	Experimental Results 
	Mechanical Assembly of a Prototype and Actuator 
	Results from Realization and Optical Testing 

	Conclusions 
	Patents 
	References

