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Abstract: In many optical engineering applications, a spherical cap shaped optical element is widely
used such as concave or convex mirrors in reflective optics. Such an element can also tilt around
the vertex which corresponds to an off-axis optical design. The optical backscattering of such an
optical element sometimes could be important. For example, in the space-based gravitational wave
detection, the backscattering of such an element could be superimposed with the local oscillator and
limits the sensitivity of the spacecraft. The scattered contributions depend on the scattering property
of the mirror surfaces and the geometrical arrangement including the radius of curvature, the tilt and
the interval between the scattering source and detector plane. Based on random estimation method,
this paper starts from the radiometry, combines these variables and calculates the theoretical amount
of back scattered light for both diffuse and superpolished surfaces. The results are compared with
analytical and ray tracing solution. The conclusions can be used to further improve the optical design
of the telescope or extended to other cases where the backscattered light should be controlled.

Keywords: optical scattering; stray light analysis; gravitational waves; Taiji

1. Introduction

Light scattering can be considered as an unwanted source that causes image degra-
dation, output reduction, polarization jitter or phase disturbance. For an image system,
the optical surface scattering is one of the critical sources that results in stray light. the
irradiance of scattered light that received by a detector is related to the scatter properties
of the surface and the geometry of the optical system [1]. The scattering properties of
an optical surface can be related to imperfections of the surface such as roughness [2,3],
contaminations [4,5], subsurface damage [6] etc.al. These imperfections are inevitable even
for high quality system and limits the final performance of an optical system.

In real optical systems, the geometrical effect also plays an important role and relies
highly on the optical configuration. However, compared with intrinsic scattering, the
geometrical effect can be controlled and hence the expected stray light performance of an
optical system can be achieved through rational arrangement of the optical elements. For
example, an off-axis design, together with the field stop and the Lyot stop, could exhibit
a lower level of stray light than an on-axis design [7]. Furthermore, Gary L. Peterson [8]
derived the in-field scattered light contribution of a single element in the optical paths and
James E. Harvey [9] applies the calculation into a two-mirror system. It shows that the
contribution of the stray light of a component is affected by the beam radius. These methods
assume that the in-field scattering direction is the same with the direction of the specular
rays which is called forward scattering. However, in some special arrangements, the scatter-
ing path is different from specular rays where scattering is backward. For example, in LISA
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or Taiji gravitational wave (GW) detection program [10,11], the telescope is a four mirror
off-axis system. The space-borne telescope delivers the optical signal from the far-end
spacecraft to the inner interferometer and transmits the laser beam from the interferometer
simultaneously [12]. The backscattered light of transmitted beam from the telescope is an
important source of noise for the received signal and limits the sensitivity of detection. Gen-
erally, the additional noise is positively correlated with the fraction of transmitted power
which is backscattered and recoupled to the receiving beam [13]. Detailed coupling mecha-
nism can be found in Section 2.2. In order to quantify the backscattered light, a common
way is to place the virtual collector plane at the exit of the local optical bench. The optical
scattering path is different from that of the sequential imaging system which cannot be
calculated directly. The tertiary and the quaternary mirror contribute most of the scattered
light [12] and superpolished surfaces are necessary. The measurement of the backscattered
light together with the optical path stability acquire a lot of attention these years [14–16].
The quaternary mirror, which directly faces the virtual collector, delivers the scattering from
the other surfaces and plays an important role to the backscattering contribution. Therefore,
in the telescope design phase, it is important to accurately determine the theoretical limit of
the scattering performance with different methods. This paper starts from the radiometry
and calculates the flux of a tilted spherical cap shaped sample based on the randomly
sampling positions. Diffuse, directional scattering and the inhomogeneous light source
are all considered. Relevant error analyses are also demonstrated. The parameters for the
scattering control include the scattering distribution of the surface, the radius of curvature,
tilt angle and the distance between the vertex of the sample and the detector. In the first
section, the relevant quantities are introduced. Next, the flux is calculated based on two
types of surfaces. An example of backscattered flux calculation is demonstrated based on
the quaternary mirror of GW telescope and the results are compared with analytical results
and that from a ray tracing software. The method is accurate, flexible and can be applied
for direct scattering or illumination system design.

2. Theoretical Background
2.1. Definitions

The scattering from an optical reflective surface can be described by the bidirectional
reflectance distribution function (BRDF) which is the differential radiance (Ls) of a certain
scattering surface over the differential irradiance Ei of the incident surface [17]:

BRDF(θi, θs,ϕs) =
dLs(θi, θs,ϕs)

dEi(θi)
≈ Ps/Ωs

Pi cos θs
(1)

where Ps, Pi is the scattered power and the incident power. Ωs is the solid angle of the
scattered beam. θi, θs,ϕs is the incident angle, scattering angle and azimuth angle. The
unit of BRDF is 1/Sr. The relevant geometry is shown in Figure 1. For an isotropic surface,
BRDF exhibits rotational symmetry and can be reduced to an in-plane scattering [18].
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Figure 1. Scattering geometry for the definition of BRDF.

The radiometric definition of the scattering is straightforward. However, the accu-
rate measurement and modeling can be difficult. The scattering signature is a result of
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the roughness, the surface structure, contaminations, scratches, the wavelength and the
polarization. Furthermore, the digital noise, optical alignment also makes the signature
even more complicated. In this paper, the scattering of the spherical cap is assumed to
be roughness. There are a lot of existing models to simulate the scattering of roughness
scattering such as Harvey model [19], K-correction [20], ABG [21] and so on. Detailed
comparisons of these models are not the goal of this paper. The model used in this paper is
the two-parameter Harvey model.

The total integrate scattering (TIS) is defined as the ratio of total power scattered by
a surface in the reflected or transmitted direction to the incident power. For an opaque
surface, TIS is defined as:

TIS =

2π∫
0

π/2∫
0

BRDF · sin(θs) cos(θs)dθsdϕs (2)

For high quality isotropic smooth surfaces, the TIS can be used to estimate the root-
mean-square roughness which is:

σrms =
λ

4π

√
TIS (3)

On the other hand, when BRDF is independent from the incident angle or scattering
angle, BRDF is a constant and the scattering type is Lambertian. Then the ratio of TIS to
BRDF is π. These relations are later used to verify the modeling.

As for the radiation transfer, referring to two randomly oriented surfaces in Figure 2,
the differential flux d2Φ emitted from dA1 with radiance L and received by dA2 is deter-
mined by:

d2Φ =
L · cos(θ1) · cos(θ2)

r2 dA1dA2 (4)

where r is the distance between the two infinitesimal surfaces, θ1, θ2 is the angle of the
scattered ray with respect to the surface normal vector

→
n1 and

→
n2. When finite surfaces

are involved, the total transferred flux can be derived by integration over the total area A1
and A2:

Φ =
∫

A1

∫
A2

L · cos(θ1) · cos(θ2)

r2 dA1dA2 =
∫

A1

∫
A2

BRDF · Ein cos(θ1) cos(θ2)

r2 dA1dA2 (5)
Optics 2022, 3, FOR PEER REVIEW  4 
 

 

Figure 2. Basic geometry for radiation transfer. 

As can be seen, the total received flux depends highly on the geometrical layout in‐

cluding the shape, distance, orientation and the area of the surfaces. When the scattering 

source is Lambertian, the radiance term L can be extracted from the integral and the rest 

divided by the area is often called configuration factor. Some common geometries with 

different methods can be found in [22]. In the following section, the surface 1 is considered 

to be a tilted spherical cap and surface 2 is assumed to be a circular planar detector. For 

simplicity, the view edge effect is not considered which can be found in [23]. 

When focusing more on the geometrical flux emission characteristics of the emitter 

itself, the radiance term in Equation (5) can be ignored and the rest is often called Étendue 

or optical throughput which is defined as [24,25]: 

cos( ) cos( )1 2
22 1

θ θ
ξ dA dA

r


    (6) 

Étendue can be used to determine the theoretical flux transfer of an optical system 

and is often used in non‐imaging or illumination design. 

2.2. Mathmetical Modeling 

The configuration of the system is shown in Figure 3. Relevant symbols can be found 

in Table 1. The optical axis is along Z axis. The detector is a disk with radius  1r   on XY 

plane and the polar coordinate of the infinitesimal patch of the detector is  ( )2ρ2 0 ρ2 r  , 

( ) 2 2φ φ 2π0 . Then the height of the vertex  0z   is determined by: 

2 2
0 0z d R R ρ      (7) 

Figure 2. Basic geometry for radiation transfer.

As can be seen, the total received flux depends highly on the geometrical layout
including the shape, distance, orientation and the area of the surfaces. When the scattering
source is Lambertian, the radiance term L can be extracted from the integral and the rest
divided by the area is often called configuration factor. Some common geometries with
different methods can be found in [22]. In the following section, the surface 1 is considered
to be a tilted spherical cap and surface 2 is assumed to be a circular planar detector. For
simplicity, the view edge effect is not considered which can be found in [23].
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When focusing more on the geometrical flux emission characteristics of the emitter
itself, the radiance term in Equation (5) can be ignored and the rest is often called Étendue
or optical throughput which is defined as [24,25]:

ξ =
x cos(θ1) · cos(θ2)

r2 dA1dA2 (6)

Étendue can be used to determine the theoretical flux transfer of an optical system and
is often used in non-imaging or illumination design.

2.2. Mathmetical Modeling

The configuration of the system is shown in Figure 3. Relevant symbols can be found
in Table 1. The optical axis is along Z axis. The detector is a disk with radius r1 on XY
plane and the polar coordinate of the infinitesimal patch of the detector is ρ2(0 < ρ2 < r2),
ϕ2(0 < ϕ2 < 2π). Then the height of the vertex z0 is determined by:

z0 = d− R +
√

R2 − ρ0
2 (7)
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surface dA2 at the positions of A0, A and B.

Table 1. Relevant Symbols.

Nomenclature

R Radius of curvature
θ Tilt angle
d Distance between the detector and vertex of the spherical cap
N Number of random point pairs

xO1, yO1, zO1 The center of spherical cap before rotation
xO2, yO2, zO2 The center of spherical cap after rotation

x0, y0, z0 Cartesian coordinates of the sample before rotation
ρ0,ϕ0, z0 Cylinder coordinates of the sample before rotation
x1, y1, z1 Cartesian coordinates of the sample after rotation
x2, y2, 0 Cartesian coordinates of the detector

r Distance between two differential patches.
A1, A2 Area of spherical cap and the detector

dA1, dA2 The differential area of A1, A2
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The radiation source is in the shape of a spherical cap and the center, with a height
of d radius R, is on the Z axis. The spherical center O1 is (0, 0, d− R). The mirror rotates
around X axis with an angle of θ which is common for an off-axis optical layout. After
rotation, the spherical center becomes O2 with the coordinate: xo2

yo2
zo2

 =

 0
d sin(θ)− (d− R) sin(θ)

d− d cos(θ) + (d− R) sin(θ)

 (8)

For an arbitrary point A0, with the polar coordinate ρ0(0 < ρ0 < r1),ϕ0(0 < ϕ0 < 2π),
the point after rotation becomes A and the Cartesian coordinates x1, y1, z1 are: x1

y1
z1

 =

 ρ0 cosϕ0
ρ0 cos(θ) sin(ϕ0) + d sin(θ)− z0 sin(θ)

d− d cos(θ) + z0 cos(θ) + ρ0 sin(ϕ0) sin(θ)

 (9)

Then, the distance r is:

r =
√
(x1 − x2)

2 + (y1 − y2)
2 + z1

2 (10)

For an arbitrary point B on the detector, the normal vector is along Z-axis. The normal

vector of point A on the spherical cap is along vector
→

AO2. Therefore cos(θ1) and cos(θ2)
can be calculated as:

cos(θ1) =
→

AO2·
→

AB∣∣∣∣ →AO2

∣∣∣∣∣∣∣∣ →AB
∣∣∣∣

cos(θ2) =
z1
r

(11)

After plugging Equations (7)−(11) together with dA1, dA2 into Equation (5), the total
flux emitted from the spherical cap, received by the detector can be derived through the
integration. In order to solve the high dimensional integration, a simple feasible method is
based on random estimation (Monte Carlo method) where N random pairs of patches Ai, Bi
are introduced. The basic idea is to randomly sample detector and the spherical cap and the
vectors from Ai to Bi are assumed to be the scattered rays. The Cartesian coordinate of Ai is
(x1i, y1i, z1i) which is a random patch on the spherical cap whereas Bi, with the coordinate
of (x2i, y2i), is a random patch on the detector. Then total transferred flux become:

Φ ≈ A1A2

N

N

∑
1

cos θ1 cos θ2

r2 =
A1A2

N

N

∑
1

BRDFi · Ein

→
AiO2 ·

→
AiBi∣∣∣∣ →AiO2

∣∣∣∣∣∣∣∣ →AiBi

∣∣∣∣
zi

r3 (12)

The Monte-Carlo method has the following advantages. First, the standard deviation
is proportional to 1/

√
N regardless the dimension and smoothness of the integrand [26].

Therefore, it is useful to solve high dimension integrals, or the integrand is not continuous.
Furthermore, Equation (12) directly samples the positions of the differential patches which
maximizes the collecting efficiency compared with sampling direction aimlessly. The
Monte-Carlo method also exhibits a great flexibility especially when a visibility function is
introduced. For example, a Circ function can be inserted in Equation (12) which means that
the scattered rays are selected by an aperture.

In the following parts, Equation (12) is used to calculate the backscattering of the
quaternary mirror of the telescope for the Taiji GW detection program. The space-borne
instrument can be divided into two parts. The first part is the optical bench contains an
interferometer and a Proof Mass. More details can be found in Ref. [10]. The other part is a
four mirror off-axis telescope which transmits the laser from interferometer and received
the laser from the far-end telescope simultaneously. The telescope delivers a gaussian laser
beam (wavelength λ = 1064 nm, transmitted power Ptot = 2 W, beam waist w = 1.875 mm)
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to the far-end telescope with a 400 mm entrance pupil. The received power for the receiving
end is around 700 pw. The phase noise φbsc(t) introduced by the backscattered light
is [13,27]:

φbsc(t) =
4π
λ
(l0 + δldis(t)) = φstatic + δφdis(t) (13)

where l0 is the static optical path length while δldis(t) is the displacement noise from the
scattering surfaces. φstatic and δφdis(t) are the corresponding phase. Then the backscattered
field Ebsc produces an amplitude and phase modulation to the undisturbed interferometer
field Ein:

Ein + Ebsc = Ein(1 +

√
fr

Ptot

Pin
ei(φstatic+φdis(t))) (14)

where Pin is the power inside the interferometer at a reference point for calculation. fr is the
fraction of the transmitted power which is backscattered by the telescope and recoupled
with the receiving beam. Since Ptot, Pin are fixed, fr in Equation (14) should be kept small to
reduce the impact of backscattering. In order to keep the phase noise at picometer level,
the fraction fr is set to at a level of 10−10 according to the specification of the current Taiji
program. Moreover, due to the high coherence of the laser, the impact scattered light can be
described by additional phase or amplitude. The additional phase noise can be suppressed
by frequency stabilization [28] and then the amplitude noise is dominant [13].

The local optical layout of the tertiary and the quaternary mirror is shown in Figure 4.
The scattering from the tertiary mirror is temporarily not considered. The quaternary
mirror, which directly faces to the entrance of the optical bench, delivers the scattering from
the other surfaces and plays a major part in the backscattering. So, in the design phase, it is
particular critical to accurate estimate the scattering contributions of the quaternary mirror.
Assuming the telescope is fed by a fundamental mode gaussian beam with total power Ptot,
Beam waist of w, the irradiance at a certain position of the mirror is:

Ein(x1i, y1i) =
2Ptot

πw2 e−2(x1i
2+y1i

2)/w2
(15)
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Plugging Equation (15) into Equation (12), the total flux of the backscattered light can
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In Equation (16), BRDFi is a function of wavelength, incident angle θi and scattering
angle θs. Since the incident gaussian beam is along Z-axis and the considered scattering is
backward, the scattering angle is minus and hence the angle of incidence and the scattering
angle fulfill:

cos(θi) =
→

AiO2·
→
n2∣∣∣∣ →AiO2

∣∣∣∣∣∣∣→n2

∣∣∣
cos(θs) =

→
AiBi·

→
n1∣∣∣∣ →AiBi

∣∣∣∣∣∣∣→n1

∣∣∣
(17)

3. Results

In this section, the results of the scattering flux of a spherical cap are presented. In this
paper, two kinds of samples are considered, Section 3.1 demonstrates the results for the
diffuse sample under different configurations and the results are compared with existing
models. Section 3.2 shows the results of the backscattering of a quaternary mirror of the
GW telescope which is superpolished. The scattering model here used is the two-parameter
Harvey model. In the model, the parameters of b and s are introduced where b means the
BRDF value at 0.573◦ from the direction of specular direction and s means the slope of
BRDF on the log-log plot. Section 3.3 demonstrates the relevant error analysis.

3.1. Diffuse Samples

A perfect diffuse surface scatters the incident beam equally in all directions meaning
that BRDF is independent from incident angle and the scattering angle. For a diffuse and
homogeneous incident beam, the scattered radiance is a constant and can be extracted from
the integration. Then Equation (5) can be simplified to:

Φ = L
∫

A1

∫
A2

cos(θ1) · cos(θ2)

r2 dA1dA2 = MA2F (18)

where M is the exitance and F is usually called configuration factor, which is:

F =
1

A2π

∫
A1

∫
A2

cos(θ1) · cos(θ2)

r2 dA1dA2 (19)

For such a surface, the geometrical effect is predominant and the configuration fac-
tor denotes the fraction of energy emitted or reflected and is collected by the detector.
The determination of the configuration factor under different layouts is well-established.
Common ways are:

1. Direct analytical method.
2. Statistical method, since the scattering is independent from direction, the configuration

factor approximates the number of rays received by the detector divided by the
number of rays emitted from the scattering source.

3. Algebraic method, the laws of closeness, reciprocity, distribution and composition can
be applied to derive the target configuration factor.

4. Projection method, under some special layouts, the target surface can be projected on
a unit sphere in order to simplify the calculation.

For a spherical cap, by considering the tilt angle, shape, size and the distance, a rig-
orous analytical integral can be developed however it is complicated to solve. With the
numerical methods, an approximate solution can be applied to the problem and exhibits
considerable freedom for arbitrary arrangements. In the following, the calculated configu-
ration factors at some special cases are compared with the existing analytical solutions. The
results of the diffuse spherical cap are shown in Figure 5 and the number of random patch

pairs are 1500. In Figure 5a, R = 330 mm, r1 =
√

2/2 · R, d ranges from R−
√

R2 − r2
1 to R,



Optics 2022, 3 184

ρ2 ranges from 1 to r1. When the size of the detector is much smaller than d, the detector
can be considered to be infinitesimal and the configuration is calculated though:

F =
A2

A1

R2 sin2 α

[d− (R− R cosα)]2 + R2 sin2 α
(20)

where sinα = r1/R Detailed derivations with Stokes theorem can be found in Appendix A.
The result is plotted as the red solid line in Figure 5a. Another interesting case is that d

becomes close to R−
√

R2 − r2
1. In such a case, the detector plane is on the projection plane

of the spherical cap. Since all the radiation emitted from the detector can be collected by
spherical cap, the configuration factors can be easily derived with reciprocity relation. The
analytical configuration factor for such a case is A2/A1 and when ρ2 = r1, the configuration
factor is cos2(α/2). The results are also plotted as the blue solid line in Figure 5a. The
analytical results are in good agreement with the analytical solutions. For larger r2, it
shows more relative errors. The reason is straightforward: the standard deviation is inverse
proportional to square root of N. Therefore, a larger area needs more sampling pairs which
is one of the key parameters for accurate Monte Carlo estimation. More details will be
explained in Section 3.3.
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Figure 5. The calculated results of the configuration factors under different optical layouts. (a) The
configuration factors as a function of distance d, detector size r2. The blue and orange solid lines are
the analytical results; (b) The plot of configuration factors as a function of radius of curvature R and
tilt angle. The curve is the analytical results and the grid is for the calculated result.

The other case is the configuration factor changes with the radius of curvature and tilt
angle. In the optical layout, r2 = 2.5 mm, d = 118 mm R ranges 330 mm to 5000 mm, θ from
0◦ to 30◦. The results are shown in Figure 5b where the grid is for the calculated results
and the blue curve is for the analytical results. Full analytical expressions can be found in
Appendix A. The figure shows that as R increasing, the spherical cap becomes close to a
disc and the result for this case fulfills the following well-known relation:

F =
1
2
[X−

√
X2 − 4

(
Y1

Y2

)2
] (21)

Relevant quantities can be also found in [29]. On the other hand, it can be seen that
the scattering from a spherical cap has small dependence on the orientation which meets
the assumption of Lambertian scattering.
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3.2. Backscattering of the Quaternary Mirror of Taiji GW Telescope

In this section, a superpolished spherical cap is considered. Compared with the diffuse
sample, the most obvious difference is that the scattering is directional. On the other
hand, in practice the profile of the incidence irradiance is also not necessary to be uniform.
Therefore, the radiance term in Equation (5) has to be kept in the integral and a quite
different conclusion can be drawn. This section deals with such a case and in order to
calculate the backscattering of the quaternary mirror of Taiji GW telescope. For simplicity,
the total power of the incident gaussian beam is set to be unit which is easy to calculate the
fraction fr. The diameter of the mirror is 8 mm and the diameter of the collector is 5 mm.
The scattering distributions of the mirror are simulated with Harvey model. Figure 6 is the
illustration of BRDF under different angle of incidence where b = 0.001, s = −2. With the
considered configuration, TIS is 17.9 ppm which corresponds to σrms ≈ 0.36nm. In practice,
these parameters should be modified according to the real measured data. Then, the flux of
the backscattered light can be calculated as a function of scattering distribution, tilt angle
and radius. The calculated results are compared with commercial soft ASAP [30] which
is famous for the outstanding capability, flexibility, speed and accuracy. The scattering
calculation of ASAP is based on ray tracing which additionally generates a set of scattering
direction cosines in the importance edges and the energy is not always conserved [31].
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Figure 6. Scattering distribution simulation based on two-parameter Harvey model.

The calculated backscattering flux changes with distance d is shown in Figure 7a
where the mirror has tilt angle of 5◦. For Monte-Carlo estimation, 10,000 random pairs of
patches are chosen and the backscattered flux is plotted the blue curve and the gray curve
is the corresponding standard deviation. The results are in good agreement with ASAP
calculation (Figure 7a red curve) for large distance. The backscattering flux of Monte-Carlo
methods at d = 118 mm is 3.09× 10−10W whereas the ASAP result is 4.5134× 10−10W. The
flux increases dramatically as the distance decreases which is because the detector goes
into the specular reflected paths which can be seen in Figure 4. On the other hand, for small
distance, a larger variance can be witnessed which can be explained by the geometrical
effects. As mentioned, BRDF is a strong function of angle of incidence and scattering angle.
When the distance is small, the normal vectors of the spherical cap different positions are
different meaning that the local patches scatter the incident beam differently. However,
as the distance increases and when the area of the spherical cap is much smaller than the
distance, the geometrical shape of the scattering source has little effect on scattering. This
assumption is commonly used in remote sensing. In some literature, the geometrical effect
is simplified to the solid angle when d is much larger than the size of scattering source.
Figure 7b shows the evolvement of the average of incidence angle and the scattering angle
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from small distance to large distance. The error bars represent the standard deviation of
the incident and scattering angles at different positions. For the considered case, the angle
of incidence (Blue curve in Figure 7b) is near a constant of 5◦ which corresponds to the tilt
angle of the spherical cap. The scattering angle (Red curve in Figure 7b) are minus meaning
the backward scattering and both the average and the variance for small distance are larger
than that of larger distance.
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Figure 7. The backscattering behavior of a superpolished spherical cap. (a) The backscattering as
a function of distance d. the gray curve is standard deviation of Monte-Carlo estimation. (b) the
angle of incidence and scattering angle with respect to the distance and the corresponding standard
deviation for different position.

Furthermore, the standard deviation of scattering angle has the same tendency of the
standard deviation of the final scattering flux which also explains the reason why large
distance calculation is stabler and more accurate. So, threshold distance dthreshold is the
position from which the geometrical effect becomes stable. It defined as the distance where
the standard deviation product of the scattering angle σi(d) and incident angle σs(d) equals
to 1/e of the maximum. In detail, the distance dthreshold fulfills:

σ(dthreshold) =
max[σs(d) · σi(d)]

e
(22)

In Equation (22), the standard deviation of angle of incidence and scattering angle are
chosen rather than that of the final backscattering which can minimize the impact of the
numerical calculation. For the considered configuration, dthreshold is calculated as 34 mm.

Another important parameter for backscattering control is the tilt angle of the spherical
cap. As mentioned, the reflection becomes directional and as a result, the backscattering
performance of a superpolished surface relies highly on the tilt angle and hence the per-
formance of backscattering can be controlled. This fact is illustrated in Figure 8. where
the backscattering flux is calculated as a function of tilt angle and the roughness of the
mirror. The blue curves are from the Monte-Carlo method and the red curves are for ASAP.
The solid lines are for the calculations whose RMS = 0.36 nm, the dashed lines are for the
surface with 0.6 nm and the dotted lines are for RMS = 1.42 nm. The backscattering flux
increases as the roughness increases. The Monte-Carlo method and the ASAP calculation
show the same tendency of decreasing of the total flux with the increasing of the tilt angle.
From the graph, one orders drop of backscattering flux can be seen as the tilt angle from 5◦
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to 10◦. A larger tilt angle usually means a larger scattering angle. As mentioned before, the
scattering angle with respect to the specular ray is approximately equals to twice of the
tilt angle for a large distance and radius of curvature. Therefore, the received flux can be
controlled by properly arranging the tilt angle of the mirror.

Optics 2022, 3, FOR PEER REVIEW 12 
 

flux increases as the roughness increases. The Monte-Carlo method and the ASAP calcu-

lation show the same tendency of decreasing of the total flux with the increasing of the tilt 

angle. From the graph, one orders drop of backscattering flux can be seen as the tilt angle 

from 5° to 10°. A larger tilt angle usually means a larger scattering angle. As mentioned 

before, the scattering angle with respect to the specular ray is approximately equals to 

twice of the tilt angle for a large distance and radius of curvature. Therefore, the received 

flux can be controlled by properly arranging the tilt angle of the mirror. 

 

Figure 8. Backscattering flux as a function of tilt angle for reflective spherical cap with different 

roughness. The blue curves are the calculation with Monte-Carlo method and the red curves are for 

ASAP results. 

On the other hand, it is also found that when the optical layout fulfills Equation (22), 

the standard deviation of the incident angle and the scattering angle are small meaning 

that the ratio of backscattered flux to BRDF is around a constant which equals to: 

cos( ) cos( )
( , )

1 2

1 2
in 22

A A

1

θ θΦ
E dA dA

BRDF
x

r
y


     (23) 

Figure 9 shows the ratio of backscattered flux to BRDF under different roughness, As 

can be seen, the ratio is a constant around 9.5143 410 SrW−   and is independent from 

the roughness of the surface. Moreover, when the incident irradiance is homogeneous, 

Equation (23) can be further related to Étendue and the scattered flux can be easily calcu-

lated with: 

iΦ BRDF E ξ=     (24) 

Figure 8. Backscattering flux as a function of tilt angle for reflective spherical cap with different
roughness. The blue curves are the calculation with Monte-Carlo method and the red curves are for
ASAP results.

On the other hand, it is also found that when the optical layout fulfills Equation (22),
the standard deviation of the incident angle and the scattering angle are small meaning
that the ratio of backscattered flux to BRDF is around a constant which equals to:

Φ
BRDF

≈
∫

A1

∫
A2

Ein(x, y) · cos(θ1) · cos(θ2)

r2 dA1dA2 (23)

Figure 9 shows the ratio of backscattered flux to BRDF under different roughness,
As can be seen, the ratio is a constant around 9.5143× 10−4W · Sr and is independent
from the roughness of the surface. Moreover, when the incident irradiance is homoge-
neous, Equation (23) can be further related to Étendue and the scattered flux can be easily
calculated with:

Φ = BRDF · Ei · ξ (24)
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3.3. Error Analysis

The quality of the integral can be increased with the following strategies. The first
and the simplest one is to increase the number of samplings. As mentioned before, the
standard deviation is inverse proportional to

√
N which makes Monte-Carlo to be a practical

technique for high dimension problems. However, the square root of the number of
samplings may lead to low efficiency and in practice there always exists a convergence rate
issue even though the N is large.

Importance sampling reduces variance by changing the probability density function.
In Equation (12), the probability density function is set to be uniform which is A1A2.
Therefore, variance always exist because of the mismatch between the probability density
function and the integrated function. An ideal case is to find a probability density function
that is proportional to the function and the variance is zero. However, such a distribution
is difficult to find. Since the value of the integral must be known beforehand. A common
method is to estimate the probability density function according to a certain known term
is of the integrand [26]. Since the function is smooth and continuous for the considered
optical layout, the improvement is limited and the probability density function is kept
uniform. However, the quality of the randomness is critical and directly affects the accuracy
of the results. A pseudorandom process appears to be random but is not. It will cause the
mismatch between the samplings and the probability density function in Equation (12) and
is fatal to the results. More details about such an effect can be found in [32,33]. Modern
methods to generate random points include: N-Rooks [34], Multi-jittered [35] which are
aiming at acquiring better randomness during the sampling.

The other practical technique is to control the source of variance. Since the sampling
patches are independent, by controlling the source of variance can reduce the overall
variance. In this paper, controlling the rays with extreme value is an effective method. After
verification, the largest source of variance in Equation (12) is the BRDF term especially
when near the specular direction. These rays should be less weighted or resampled in the
iteration in order to increase the robustness and the accuracy of the algorithm. More details
can be found in the source code.

4. Discussion

In this paper, a method of calculating the direct scattering flux is raised which is not
only suitable for diffuse surfaces but also for the case where the incident irradiance and the
scattering distribution of the scattering source are not uniform. The calculation starts from
radiometry with the method of random estimation. The basic idea is to choose a larger
number of random patch pairs between the scattering surface and detector surface and
calculate the radiation transfer between these patches. In this way, the collecting efficiency
can be maximized. It is also demonstrated that how the integral of flux calculation is
simplified under different situations. The result can be applied to heat transfer, optical
scattering or illumination calculation. For diffuse surfaces, the configuration factors are
calculated and are in good agreement with the analytical solutions under some specific
configurations. As for the scattering flux for a superpolished surface, the theoretical best
backscattering performance of the quaternary mirror of off-axis telescope in space GW
detection is estimated where the incident beam is gaussian. The results show that the
distance between the spherical cap and the detector, tilt angle, and the scattering property
are the key parameters in scattering control. With the current design, it is recommended
that the root mean square roughness smaller than 0.4 nm and the tilt angle larger than
5◦. It is worth mentioning that these conclusions only consider the stray light effects. For
the final optical design, more effects should be taken into consideration and therefore, a
compromised value should be chosen. For example, a larger tilt angle usually introduces
more off-axis aberration such as coma. However, the results could be a reference in the
optical design phase. The relevant error analyses are also given in this paper. It shows that
the randomness of the sampling and the controlling of the extreme values are crucial for
the algorithm. The random estimation method exhibits great flexibility and accuracy for
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high dimension problems. By following the structure of the paper, the scattering flux of
other geometrical layouts could also be calculated. In addition, based on the approach, the
problem of radiation transportation could be further solved which is indirect scattering or
multi-scattering. Moreover, with random estimation, more information can be integrated
such as the visibility or polarization reaction of the surface.
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Appendix A

The configuration factor of a tilted spherical cap can be analytically derived as follows.
According to the Stokes theorem, the configuration factor can be expressed as:

F = n1

∫ y1dx1 − x1dy1
2πr2 (A1)

Plugging Equations (7)–(11) into (A1), the result is:

F =
A2

A1

∫ 2π

0

C + D · sinϕ0

2π(A + B sinϕ0)
dϕ0 (A2)

The parameter used are defined as follows:

A = d2 + 2R2 − r12 − 2R
√

R2 − r12 + ρ0
2 + 2d

(
−R +

√
R2 − r1

2
)

cos θ

B = 2dr1 sin θ
C = −r1

2 cos θ

D = r1(
√

R2 − r1
2 − R) sin θ

(A3)

When θ = 0, B and D become 0 and Equation (A2) can be simplified into Equation (20).
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