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Abstract: Deep Neural Networks (DNNs) are nurturing clinical decision support systems for the de-
tection and accurate modeling of coronary arterial plaques. However, efficient plaque characterization
in time-constrained settings is still an open problem. The purpose of this study is to develop a novel
automated classification architecture viable for the real-time clinical detection and classification of
coronary artery plaques, and secondly, to use the novel dataset of OCT images for data augmentation.
Further, the purpose is to validate the efficacy of transfer learning for arterial plaques classification. In
this perspective, a novel time-efficient classification architecture based on DNNs is proposed. A new
data set consisting of in-vivo patient Optical Coherence Tomography (OCT) images labeled by three
trained experts was created and dynamically programmed. Generative Adversarial Networks (GANs)
were used for populating the coronary aerial plaques dataset. We removed the fully connected layers,
including softmax and the cross-entropy in the GoogleNet framework, and replaced them with the
Support Vector Machines (SVMs). Our proposed architecture limits weight up-gradation cycles to
only modified layers and computes the global hyper-plane in a timely, competitive fashion. Transfer
learning was used for high-level discriminative feature learning. Cross-entropy loss was minimized
by using the Adam optimizer for model training. A train validation scheme was used to determine
the classification accuracy. Automated plaques differentiation in addition to their detection was
found to agree with the clinical findings. Our customized fused classification scheme outperforms
the other leading reported works with an overall accuracy of 96.84%, and multiple folds reduced
elapsed time demonstrating it as a viable choice for real-time clinical settings.

Keywords: optical coherence tomography; classification; arterial plaques; lumen; objective function;
convolutional neural networks; penetration depth

1. Introduction

Deep Neural Networks (DNNs) are fueling medical imaging technology, medical
diagnostics, and healthcare in general [1]. DNNs also continue to be of significance in the
field of cardiovascular imaging for the detection of coronary arterial plaques [2,3]. Coronary
plaques are cholesterol deposits in the wall of the heart arteries and are the leading cause of
death globally (projected one in four deaths). According to the World Health Organization
(WHO), 85% of these deaths were due to plaque buildup that resulted in the narrowing of
the coronary arteries through a process termed atherosclerosis.
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Each layer of DNN optimized its weights based on the Boltzmann machine [4] to avoid
overfitting and vanishing gradients when used in cardiac imaging problems. DNNs with
sufficient depth can foster compact representation that requires fewer training examples to
tune the parameters and produces better classification results [5,6]. Due to their ability to
correlate deep features with each layer, they are preferred over conventional architectures
for improved patient outcomes [7–12]. However, the bulk of parameters sometimes leads
to overfitting and poor generalization [13], and this paved way for the evolution of other
leading architectures including AlexNet, ResNet, and GoogleNet [14–18]. These deep learn-
ing models embed Cartesian and polar image representations for multi-path classification
architectures [19–21] but at the cost of computational effort.

The resolve of this paper is to develop a time-efficient classification architecture for
real-time clinical support systems and to validate Generative Adversarial Networks (GANs)
for data augmentation. We propose a time-efficient hybrid fused Convolutional Neural
Networks (CNNs) classifier. Our proposed architecture with Support Vector Machines
(SVMs) embedded in high-density layers reduced the computational burden. Data aug-
mentation was done to remove the class imbalance [22,23]. The objective functions of the
generator and discriminator were optimized via the gradient descent method to make
perfect aliases. Transfer learning was used to train our OCT dataset by freezing early layers
of the architecture and fine-tuning them later on. For ground-truth annotation, three trained
experts with daily experience in OCT-assisted interventions determined the plaque type in
an A-Scan. All experts were partially provided the same and different images for labeling.
For the same images, the final label was determined based on the consensus between the
experts. The proposed architecture recorded the best classification performance in mini-
mal time compared to other leading architectures, with potential viability for enhancing
decision-making in clinical settings.

2. Methods

A novel dataset of 53 coronary stenosis in 39 patients was assessed using labels by
an OCT available system (C7-XR, St. Jude Medical, St. Paul, MA, USA) using the C7
Dragonfly intravascular OCT catheter (St. Jude). This system provides spatial resolution
up to 10 µm and tissue penetration up to 3 mm. Target vessels were those with stenosis
(>30% diameter stenosis visual estimation). Serial stenosis, left main stenosis, by-pass graft
stenosis, and anatomical characteristics were excluded from the study, as this would distort
results. The study was approved by Galway Clinical Research Ethics Committee (GCREC)
and informed consent was obtained from the patients. The dataset was built from acquired
OCT images having A-scans. All experts were partially provided the same images and
different images for labeling. For the same images, the final label was determined based
on consensus between the experts. We classified based on the particular label versus the
rest. Preprocessing steps were applied to raw OCT acquired images, and the A-line values
within the guidewire were set to zero. Vulnerable plaques were determined and excluded
using the flow diagram as illustrated in Figure 1.

Finally, we had 20% images labeled as “calcified,” 20% as “lipid plaques,” 15% were
labeled as “fibro-lipidic plaque,” 15% “fibro-calcified,” 5% were labeled as “mixed plaque,”
and 25% labeled as “no plaque”.

2.1. Data Augmentation Using GANs

For data amplification, we used GANs, as these networks facilitate hybridization and
ease merging pre-existing models [24–27]. GAN generator consisting of a fully connected
layer was used. It helps in projecting input to the next layers using stride convolutions and
is presented in Figure 2. We approximated unknown distribution through a generator that
maps samples from a fixed prior distribution. The Generator (G) was trained in parallel
with a Discriminator (D) by searching a saddle point. Batch normalization was performed
in each layer.
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Figure 1. A schematic flow of the steps performed by the clinicians for the detection and characteri-
zation of different arterial plaques.

Figure 2. An illustration of the CWGAN routine used for data synthesis.

The generator creates realistic samples, and a discriminator was then used to distin-
guish between real and real-like copies as illustrated in Figure 3.

2.2. Proposed Fused Deep Learning Classifier

Figure 3a represents the leading CNN architecture (GoogleNet), where each block
represents the input and output features maps. Figure 3b is our proposed fused classifica-
tion architecture, where the densely connected layers of the CNNs were replaced by SVMs
as indicated using dotted blocks. Radial Basis Function (RBF) was used to ensure faster
convergence of the global hyper-plane. As reported elsewhere [28,29], we implemented
transfer learning to ensure improved learning in the target domain. The labeled data was
fed to the classifier and, via transfer learning, different features were extracted at different
levels in the network. For transfer learning, we removed the final layer and used GoogleNet
as our pre-trained model. Then, we unfroze convolution layers 4 and 5 while keeping the
first three blocks frozen for the second pass of training. Finally, the replaced end layers
were trained by freezing all convolutional layers of the module (GoogleNet). Fine-tuning
was done by removing the fully connected nodes and embedding new layers as illustrated
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in Figure 3b. We normalized our network predictions based on the cross-entropy between
the true label distribution and the predicted label. Hinge Loss was set up for the SVM
classifier based on maximum margin classification. For model training, we minimized the
cross-entropy loss by using the Adam optimizer with a learning rate of Lr = 10−4. To find
the optimal schedule, we reduced the learning rate by a factor of two when the validation
error saturated. In total, we trained each model for 100 epochs.

Figure 3. The models we employ in our dataset. The upper architecture (a) is of CNN (GoogleNet), the
lower (b) is the proposed fused CNN architecture. In each block number of input and output feature
maps is exhibited. Our modified model replaced the fully connected layers with RBF multiclass SVM
within the CNN model for classification.

In our model, the intermediate output value Z was obtained as a result of convolution
input data A from the previous layer with weight tensor W, as indicated in Equation (1).
The model was trained without partitioning the replicas for memory optimization.

Zl = W l ·Al−1 + bl (1)

where l is the number of layers and b is the bias term.
We minimized the cross-entropy loss L in our classification tasks using Equation (2).

L = −
m

∑
i=1

yilogYi (2)

where m represents the number of classes, y is the ground truth label, and Y represents the
softmax normalized model prediction.
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Our model utilizes specific learning rates and suitable hyper-parameters including
epoch count, batch size, and filter counts for each layer. Langrangian function (LF) loss for
back-propagation was computed using the expression in Equation (3).

LF =
m

∑
i=1

aiyiRb + b (3)

where ai represents the Langrangian multiplier and Rb is the Radial Basis Kernel function.

3. Results and Discussion

The gain of our proposed solution is that it not only detects but also characterizes
coronary arterial plaques in real-time clinical settings. It provides better classification
accuracy with much less computational effort as compared to the other leading classification
architectures. Data Augmentation through GANs has proven handy for our limited arterial
plaques dataset. However, data variability in other clinical datasets is yet to be validated in
terms of generalization. Similarly, the effect of distributional shift caused by externalities is
another key issue.

For all the experiments presented in this section, a train validation-test scheme was
utilized. The presented results were calculated on the test set where the selection of hyper-
parameters was made over the validation set. In the rest of this section, we compare the
performance of different leading CNN-based classification architectures with our proposed
fused CNN architecture for this dataset. Calculated results were cross verified with the
preliminary expert’s marking and their automated characterization results as illustrated in
Figure 4.

The confusion matrix was computed by calculating True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), and False Negative Rate (FNR) along with
Positive Predicted Value (PPV) and Negative Predicted Value (NPV) [30]. This is presented
in Table 1.

The numbering on the left side and at the bottom of Table 1 represents different classes.
Diagonal elements in the confusion matrix represent the number of correct predicted frames
against each class label during the testing process. The cells in the last column indicate
the percentage of correctly identified positive predictions (specificity) against each class.
It was confirmed that the precision value for AlexNet remained above 77% for each of
the six classes. The cells in the last row indicate the sensitivity of the model. Finally, the
last diagonal cell is indicative of overall accuracy that remained 81.6%. After the training
phase, the model was cross-validated by picking up a few random frames to mark its
accuracy against real-time frames. The same procedure was repeated for the DenseNet
model and the results are illustrated in Table 2. GoogleNet resulted in calcified plaque
detection with PPV of 58.3% and an overall accuracy of 80.2%, whereas Table 3 highlights
that our proposed architecture has achieved the highest classification accuracy of 96.84%.

Figure 5a demonstrates the training process of AlexNet with a layer size of 25. AlexNet
was fed with an input tensor having a dimension of 227 × 227 × 3 and the learning rate was
kept initially at 0.5 for low-level feature learning. It achieved 83.20% validation accuracy
for 40 epochs after 29 iterations for the pre-defined six classes. The training process took
2900 iterations and the elapsed time remained 380 min and 22 s. Figure 5b revealed that
the training DenseNet with the same layer size and an input tensor having a dimension of
227 × 227 × 3 achieved 79.37% validation accuracy. However, the training process took
2900 iterations and the measured elapsed time was 3215 min and 31 s. Though both these
architectures provide reasonable accuracies, they suffer from intense time computations.
Hence, they are not ideal for any real-time clinical decision support.
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Table 1. Confusion Matrix for AlexNet Architecture.
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0
0

1
0.8

0
0

0
0.0

1
0.8

84.6
15.4

2 0
0

23
18.4

2
1.6

2
1.6

1
0.8

1
0.8

79.3
20.7

3 0
0

3
2.4

33
26.4

1
0.8

1
0.8

0
0

86.8
13.2

4 1
0.8

3
2.4

2
1.6

21
16.8

0
0

0
0

77.8
22.2

5 0
0

0
0

2
1.6

0
0

7
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0
0
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22.2

6 2
1.6

0
0

0
0

0
0

0
0

7
5.6
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22.2

78.6
21.4

79.3
20.7

82.5
17.5

87.5
12.5

77.8
22.2

77.8
22.2

81.6
18.4

1 2 3 4 5 6

Figure 4. Characterization of coronary plaques using developed scheme (a) outlines the fibrous
plaques using the method. (b) exhibits marking for calcified plaque. (c) differentiates lipid plaque-
based automation routine. (d) highlights the characterization of fibro-lipidic plaque. (e) identifies the
fibro/calcific plaque. (f) represents the mixed plaque based on the proposed architecture of Figure 3b.
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Table 2. Confusion Matrix for DenseNet architecture.

1 7
5.6

3
2.5

0
0

2
1.7

0
0

0
0

58.3
41.7

2 0
0

9
7.4

0
0

0
0

2
1.7

0
0

81.8
18.2

3 0
0

0
0

24
19.8

1
0.8

3
2.5

1
0.8

82.8
17.2

4 0
0

2
1.7

4
3.3

33
27.3

1
0.8

1
0.8

80.5
19.5

5 1
0.8

0
0

0
0

0
0

17
14.0

0
0

89.5
10.5

6 1
0.8

0
0

0
0

1
0.8

1
0.8

7
5.8

77.8
22.2

77.8
22.2

64.3
35.7

85.7
14.3

89.2
10.8

70.8
29.2

77.8
22.2

80.8
19.9

1 2 3 4 5 6

Table 3. Confusion Matrix for the proposed CNN architecture.
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As illustrated in Figure 6, the validation accuracy for the GoogleNet was found to be
83.4% with an elapsed time of 92 min and 37 s, but our modified architecture with SVM
embedded in the output layers of GoogleNet resulted in an accuracy of 96.84%. This is
16% more than the state-of-the-art GoogleNet with an elapsed time of 20 s that is ideal for
real-time implementations.

In this paper, cutting-edge models [31–36] were compared to our proposed architec-
ture. DenseNet, AlexNet, and GoogleNet architectures were implemented and tested with
our newly created dataset. AlexNet includes repeating convolutional layers, followed by
max-pooling and then a few dense layers operations, whereas DenseNet relied heavily on
the extensive computations. GoogleNet, with a quite different architecture from both, uses
combinations of inception modules and 1 × 1 feature convolutions for feature selection.
Each inception module captured salient features at different levels and concatenated them
before feeding them to the next layer. Our proposed architecture is unique as it takes advan-
tage of multi-level feature extraction, both general (5 × 5) and local (1 × 1), concurrently.
The output format of our fully connected layer is 1 × 10 which significantly reduces the
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number of training parameters as compared to a conventional CNN model. By exploiting
batch normalization, the sample distribution characteristics within the same layer were
preserved while the distribution gap between layers was eliminated.

Figure 5. Accuracy and loss plots for AlexNet and DenseNet frameworks. (a) represents the validation
accuracy, training time, and loss computations for AlexNet. (b) exhibits the validation accuracy,
training cycles, and loss profile for DenseNet.

Figure 6. Accuracy and loss plots for the proposed method and its cross-verification on real-time
frame passing.

Table 4 indicates the accuracy of leading architectures against our proposed archi-
tecture in terms of elapsed time, number of iterations, and number of layers involved.
Elapsed time was found to be a function of several parameters. Proposed fused CNN
took a minimum of 17 iterations per epoch to reach the highest classification accuracy of
96.84%. This inter-comparison substantiates the motivation behind the development of the
proposed architecture.
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Table 4. Inter-comparison of the proposed architecture with the leading classification schemes in
terms of accuracy and time.

Sr. No. Pre-Trained Model Input Dimensions Elapsed Time No of Epochs Accuracy

1 AlexNet 227 × 227 × 3 380 min and 22 s 100 81.6%

2 GoogleNet 224 × 224 × 3 92 min and 37 s 100 82.64%

3 ResNet 50 224 × 224 × 3 1509 min and 21 s 100 79.34%

4 ResNet 101 224 × 224 × 3 1711 min and 8 s 100 73.73%

5 Densenet 224 × 224 × 3 3215 min and 31 s 100 80.17%

6 Proposed architecture 224 × 224 × 3 20 s 70 96.84 %

4. Conclusions

We presented an in-depth exploration of plaque detection in OCT pullbacks using
hybrid CNNs. We validated our model by creating a new dataset of OCT acquired images
labeled by three trained experts. GANs were implemented for the synthetic creation of
OCT images. Insertion of fully connected SVMs in the GoogleNet at the Softmax layer leads
to better extraction of cross-entropy features and multi-class label prediction. Real-time
processing in a few seconds is indicative of the potential of our model to become integrated
into catheter laboratories for real-time assessments.
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