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Abstract: Most oral injuries are diagnosed by histopathological analysis of invasive and time-
consuming biopsies. This analysis and conventional clinical observation cannot identify biochemi-
cally altered tissues predisposed to malignancy if no microstructural changes are detectable. With
this in mind, detailed biochemical characterization of normal tissues and their differentiation features
on healthy individuals is important in order to recognize biomolecular changes associated with
early tissue predisposition to malignant transformation. Raman spectroscopy is a label-free method
for characterization of tissue structure and specific composition. In this study, we used Raman
spectroscopy to characterize the biochemistry of in vivo oral tissues of healthy individuals. We
investigated this biochemistry based on the vibrational modes related to Raman spectra of four oral
subsites (buccal, gingiva, lip and tongue) of ten volunteers as well as with principal component (PC)
loadings for the difference between the four types of oral subsites. Therefore, we determined the
biochemical characteristics of each type of healthy oral subsite and those corresponding to differen-
tiation of the four types of subsites. In addition, we developed a spectral reference of oral healthy
tissues of individuals in the Brazilian population for future diagnosis of early pathological conditions
using real-time, noninvasive and label-free techniques such as Raman spectroscopy.

Keywords: optical spectroscopy; biophotonics; biomedical optics; oral; head and neck; disease
diagnosis; pathology; clinical translation; Raman spectroscopy

1. Introduction

Currently, there is an increasing need for techniques capable of providing biochemical
characterization of tissues in real time. A range of applications requires development of
those techniques in order to improve the accuracy of tissue identification, disease detection
and surgical guidance. One of these applications is oral cancer diagnosis. During the
progression of cancer, biochemical changes occur within the cancer cells [1], altering the
levels of nucleic acids, lipids and carbohydrates that can serve as biomarkers for monitoring
diseases [2–9].

Although histopathological examination is currently the most accurate and reliable
method of diagnosis, this examination has several limitations. For example, surgical
biopsies are invasive, require sample preparation and take a long time to analyze, which
can cause anxiety and discomfort to patients, resulting in treatment delays. In addition,
histopathological analysis is associated with interobserver variability. For all the aforemen-
tioned reasons, a non-invasive, real-time point-of-care method to detect and accurately
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diagnose cancer and premalignancies at early stages could benefit patients as well as de-
crease the risk of oral cancer incidence and mortality. One of the most cost-effective methods
to diagnose cancer is the optical biopsy [1,3,10–18]. The term optical biopsy is widely used
in optical spectroscopy [6,14,19–24], which assists in the diagnostic process and analyzes
optical properties [19,25–27] associated with tissue biochemistry [3–9,14,16,23–25,28–51].
Among optical spectroscopic techniques, Raman spectroscopy is highlighted as one of the
most molecular-specific methods which does not suffer interference from water absorption.

Raman spectroscopy is a non-invasive optical technique based on inelastic light scatter-
ing (Raman scattering), which changes the wavelength of the incident light depending on
the structure of vibrational energy levels of tissue biomolecules such as lipids, proteins and
nucleic acids [11,12,52–54]. Raman spectroscopy has the ability to extract molecular-specific
information of tissue constituents and their functional groups and molecular conforma-
tions based on the vibrational modes of tissue biomolecules [13,52,55]. This spectroscopic
technique can provide a molecular-level signature of the biochemical composition and cell
structure with submicrometric spatial resolution and can be useful for monitoring changes
in composition for the diagnosis of early and non-invasive cancer in ex vivo and in vivo
tissues. The qualitative and quantitative analysis of Raman spectra allows rapid detection
of subtle biochemical changes during the onset of diseases (e.g., early tissue predisposi-
tion to malignant transformation) which cannot be identified with conventional clinical
observation and other methods relying on tissue microstructural alterations [13,52,55].
Furthermore, early biochemical changes without microstructural manifestation may even
be overlooked by the gold-standard histopathological analysis [56,57].

In our previous work [42] using the same raw data as this paper, we have characterized
the biochemical content of each type of healthy oral subsite, and built a tissue classifier for
comparison of these subsites based on Raman spectra in order to identify the correct tissue
location for future comparison with potentially malignant tissues. However, the description
of features of biological sources of tissue differentiation is not clear from average quantities
of biochemical compounds reported in our previous study. Understanding of sources
of tissue differentiation requires multivariate analysis specifically designed for feature
extraction which is exploited in our present study.

With the above in mind, our aim in the present study is to contribute to the elucidation
of the biochemical components identified from Raman spectra of in vivo normal oral
tissues. In particular, we have identified the biochemical compounds associated with
Raman vibrational modes most responsible for differentiation among buccal mucosa, lip,
gingiva and tongue tissues. We believe that this article will serve as a basis for future
studies using Raman spectroscopy to diagnose oral lesions.

2. Materials and Methods
2.1. Clinical Protocol and Research Ethics

The study was approved by the Research Ethics Committee of Universidade do Vale
do Paraíba (UNIVAP) via submission to Plataforma Brasil Brazil (number 1132237-2015).
Informed consent was obtained for all patients participating in the study. All methods
involving human participants were carried out in accordance with relevant guidelines and
regulations, including the ethical standards of the institutional and/or national research
committee, and with the 1964 Helsinki declaration and its later amendments or comparable
ethical standards.

Our study included 10 healthy volunteers. In these volunteers, we collected three
Raman spectra of each oral subsite, including lip, buccal mucosa, tongue and gingiva.
Therefore, the dataset of this study consists of 120 spectra in total (30 spectra per oral subsite).

2.2. Raman Spectroscopy Equipment and Data Collection

Our Raman spectroscopic measurements were performed by using a laser emitting
in the 785 nm wavelength (60 mW of power) coupled to a fiber optic probe (EMVision,
Loxahatchee, FL, USA) responsible for delivering the excitation light to biological tissues
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and sending the collected backscattered light to a Raman spectrometer (Kaiser Optical
Systems imaging spectrograph Holospec, f/1.8i-NIR, Ann Arbor, MI, USA). Our probe
comprised a central 100 µm fiber with a band-pass filter at its tip for 785 nm laser excitation
laser surrounded by six 100 µm fibers with long-pass filter at the probe tip for collection of
the diffuse reflected light. The excitation and collection fibers were separated following
a Y style so that the diffuse reflected light which propagated through a tissue volume
was sent to the detection module. In this module, this light passed through a dichroic
mirror and a holographic notch filter before being focused on the entrance aperture of
the spectrometer so that only the filtered Raman scattered light reached the spectrometer.
In the spectrometer, the Raman signal was obtained by using a CCD detector (Andor
IDUs 420 Series) with approximately 95% of quantum efficiency. All components of our
Raman spectroscopy system including dichroic mirror, a holographic notch filter, band-
pass filter and customized fiber optic probe were part of the commercial Holospec Raman
spectrometer system and Andor Solis detector. The Raman spectroscopy instrumentation
used to collect the Raman spectra tissue of this study is shown in Figure 1. In this study,
Raman spectra were acquired through the average of 20 iterations (repetitions) of 2 s
per spectrum.
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In this study, Raman spectra collected from gingiva tissue included signals from
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Figure 2. Schematic anatomical drawing of the longitudinal section of a premolar and associated
periodontal tissues. Adapted from Cope [58].

2.3. Data Analysis

Once Raman spectra were collected, the Raman spectra had their baseline removed
by subtracting a polynomial of order five from the local minima of each spectrum. Next,
the spectra were smoothed by using a Savitsky–Golay filter (5th order, frame size 7).
The wavenumber range between 800 and 1730 cm−1 was chosen for analysis, as the Ra-
man background of silica/quartz fibers is strong from 600 cm−1 up to the quartz peak
at 800 cm−1 [59,60], and the range 1730–1800 cm−1 was considered irrelevant for differ-
entiation of tissues in this study. In fact, Raman vibrational modes are tabulated only
up to 1756 cm−1 by Talari et al. and Movasaghi et al. [61]. We used the tabulated data
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by Talari et al. and Movasaghi et al. for assignment of the Raman vibrational modes
of spectra of principal component (PC) loadings obtained from the principal component
analysis (PCA) used in this study. Briefly, PCA created a new set of linearly independent
variables based on linear combinations of the original variables (wavenumbers) so that
maximum variance of the dataset is explained. The new variables (principal components
or PCs) were ordered from the highest to the lowest explained variance (relative to the
total variance of the dataset). With this in mind, first order components (e.g., PC1, PC2 and
PC3) represent the dimensions where Raman tissue data are most “spread”. Since Raman
data vary mostly across these dimensions, first order components contain the information
about the wavenumbers where tissue of all oral subsites (lip, buccal mucosa, tongue and
gingiva) are most spread, and, thus, have a higher chance of being differentiated. In order
to not bias data on wavenumbers where the amplitude of the Raman signal is higher, the
data were scaled by z-scoring each value of Raman intensity at each wavenumber. The
z-scores for each wavenumber were centered to have mean 0 and scaled to have standard
deviation 1. Once PCA was performed, the new coordinates of each sample (PC scores)
were composed of a weighted sum of Raman intensities at each wavenumber and could
be used to check the differentiation among oral subsites. The weight (loading) of each
original variable (wavenumber) on the composition of a PC determined the importance
each wavenumber was given at each PC. Then, the combination of weights (PC loadings)
showed the wavenumber ranges influencing most of the variance in the dataset. By ex-
cluding the wavenumbers out of the spectral region of interest (800–1730 cm−1), we could
evaluate indicators of tissue differentiation using vibrational modes within this range by
looking at PC scores and cumulative explained variance by PCs. A flowchart illustrating
the steps of Raman spectral analysis is shown in Figure 3.Optics 2021, 2, FOR PEER REVIEW 5 
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3. Results
3.1. Biological Variability and Tissue Heterogeneity

Figure 4 suggests that the average Raman spectra of buccal mucosa, lip, gingiva and
tongue have similar characteristics to those found in previous studies [62,63]. Prominent
characteristics include the peaks at 938 cm−1 and 1130 cm−1 most prominent in tongue
tissues, the phosphate peak at 960 cm−1 in gingiva and the peaks at 1271 cm−1, 1303 cm−1,
1447 cm−1 and 1657 cm−1 in buccal mucosa and lip. On the other hand, the characteristic
peaks of certain tissues may not be useful for the understanding of the tissue differentiation
in terms of biochemical content due to the biological intra- and inter-patient variability.
This variability is one of the sources of confusion when discriminating diseased and healthy
tissues. Insights into the biological variability or heterogeneity of the healthy oral subsites
investigated can be drawn from the progression of cumulative explained variance upon
consideration of increasing numbers of PCs.
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Figure 4. Average Raman spectra of buccal mucosa (blue), gingiva (red), lip (yellow) and tongue
(purple) normalized (divided) by the maximum intensity value among all the average Raman spectra.

The relatively slow progression of the cumulative variance explained as we increase
the number of considered PCs (Figure 5) suggests high biological variability among the oral
subsites considered in this study. The first 3 PCs (PC1, PC2 and PC3) explained 68.9% of the
variance of the dataset, whereas 81.7% was explained with 7 PCs, 85.1% with 10 PCs, 90%
with 20 PCs and 95% with 40 PCs. Still, the PC scores plot (Figure 6) indicates PC1, PC2
and PC3 lead to a clear separation of buccal mucosa, gingiva and tongue tissues, whereas
lip may be confused with the other three tissues due to its high heterogeneity.
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3.2. Raman Vibrational Modes Leading to Differentiation of Healthy Oral Subsites

Accurate characterization of each oral subsite regardless of biological variability
requires complete understanding of biochemical compounds leading to the tissue differ-
entiation among subsites. Therefore, we have identified the peaks of absolute values of
PC loadings, which correspond to the wavenumbers leading to the larger variance in the
analyzed dataset and, as shown in Figure 6, highest differentiation among buccal mucosa,
gingiva, lip and tongue tissues.

Figure 7 shows the loadings of PC1 (32.9% of total variance of the dataset) as a function
of wavenumber. Here, we showed both positive and negative loadings in order to retain
fidelity to which wavenumber ranges were considered independent when calculating
PCs. Vibrational modes were assigned to peaks of absolute amplitude of PC1 loadings
according to Table 1. The relationship between vibrational modes assigned to peaks of
PC1, PC2 and PC3 loadings and oral biology and biochemistry has been included in the
discussion section.
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Table 1. Vibrational modes assigned to peaks of absolute values of PC1 loadings [61].

PC1 Loadings Vibrational Modes Biochemical Compound

824 cm−1 Out-of-plane ring breathing Phosphodiester bonds
906 cm−1 Out-of-plane ring breathing Tyrosine
998 cm−1 ν45(CC) Red blood cells

1064 cm−1 Skeletal C-C stretch of lipids Fatty acids
1133 cm−1 Out-of-plane ring breathing Palmitic acid
1245 cm−1 Out-of-plane ring breathing Amide III
1428 cm−1 B, Z-marker Deoxyribose
1641 cm−1 Amide I band Proteins

In contrast to the PC1 loadings, Figure 8 indicates that the loadings of PC2 (21.4% of
total variance of the dataset) as a function of wavenumber were mostly positive values. As
can be observed, bands corresponding to tissue differentiation occur in completely different
wavelength ranges compared to those of loadings of PC1 and PC3, which confirms that
the PCs are independent and contain complementary information for that differentiation.
Vibrational modes were assigned to peaks of absolute amplitude of PC2 loadings according
to Table 2.
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Table 2. Vibrational modes assigned to peaks of absolute values of PC2 loadings [61].

PC2 Loadings Vibrational Modes Biochemical Compound

946.3 cm−1 Skeletal modes or single bond
stretching vibrations Polysaccharides

970.3 cm−1 Phosphate monoester groups Phosphorylated proteins and
cellular nucleic acids

1074 cm−1 Glucose, triglycerides, C-C (lipid)
1335 cm−1 CH3CH2 wagging or twisting Collagen or nucleic acids
1495 cm−1 C-C stretching in benzenoid ring
1680 cm−1 Bound and free NADH

Compared to the loadings of PC1 and PC2, those of PC3 (14.5% of total variance of the
dataset) have a much higher frequency of variation and narrower peaks (Figure 9), which
suggests that a large range of biomolecules contributes to small variations of the Raman
signal of healthy oral subsites. Vibrational modes were assigned to peaks of absolute
amplitude of PC3 loadings according to Table 3.
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Table 3. Vibrational modes assigned to peaks of absolute values of PC3 loadings [61].

PC3 Loadings Vibrational Modes Biochemical Compound

813.6 cm−1 C-C and C5′-O-P-O-C3′ Stretching of phosphodiester bond RNA
842.6 cm−1 Out-of-plane ring breathing Glucose–saccharide
962.3 cm−1 Phosphate symmetric stretching vibration Calcium hydroxyapatite
1212 cm−1 C C6H5 stretching mode and Tyrosine and phenylalanine

ν18(δ: CmH) Red blood cells
1305 cm−1 CH2 deformation Lipids, adenine, cytosine
1380 cm−1 δCH3 symmetric (CH3 bond) Lipids
1440 cm−1 δ(CH2), CH2 and CH3 deformation vibrations Lipids
1525 cm−1 In-plane vibrations of the conjugated -C=C- Carotenoids
1627 cm−1 Cα=Cα stretch and amide C=O stretching absorption β-form polypeptide films
1688 cm−1 Disordered structure; non-hydrogen bonded Amide I

4. Discussion

The clinical aspects of the healthy gingival mucosa appear in a pale pink color, firm,
soft consistency and dotted surface, similar to an orange peel. According to Lascala et al. [64],
in the histological point of view, the periodontium consists of connective tissue, cov-
ered by stratified parakeratinized squamous epithelium, which can vary with the degrees
of keratinization (Figure 9). When the gingiva has abnormalities in its structure, there may
be an increase in the thickness of the epithelium.

Berkovitz et al. [65] stated that the jugal mucosa is composed of stratified non-
keratinized squamous epithelial tissue, containing cells rich in glycogen and loose con-
nective tissue, underlying the epithelium. However, in the lingual mucosa tissue, we find
connective tissue with blood and lymph vessels, nerve ganglia, nerves, adipose tissue
and lymphoid tissue, filiform papillae, fungiform papillae and circumvented papillae.
The portion of the tongue facing the palate is called the lingual dorsum and the portion
facing the buccal floor is called the lingual belly. Berkovitz et al. [66] also indicated that
in this region, the lining epithelium is a keratinized stratified pavement. In the connec-
tive tissue below, we find hair, sweat glands and sebaceous glands. The intermediate
portion, known as the red zone of the lip, has a stratified squamous epithelium slightly ker-
atinized (1133 cm−1; Table 1), and whose adjacent connective tissue (1212 cm−1, 1245 cm−1,
1335 cm−1, 1641 cm−1, 1688 cm−1; Tables 1–3) is richly capillary. Finally, the inner lining
of the lips and cheeks (mucous membrane of the oral cavity) is covered by the buccal
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mucosa. In this case, the epithelium is stratified, non-keratinized, with a lamina of loose
connective tissue.

Considering the results obtained in this research, in the epidermis, the lipids (1064 cm−1,
1074 cm−1, 1305 cm−1, 1380 cm−1 and 1440 cm−1; Tables 1–3) that make up the barrier
cell membranes consist mainly of cholesterol, free fatty acids and ceramides (1064 cm−1,
1074 cm−1, 1305 cm−1, 1380 cm−1 and 1440 cm−1; Tables 1–3) [67]. The palate epithelium
and gingiva appear to be more similar to the epidermis, and both areas are keratinized
and produce flat scales on the surface, and there are particles of membrane lining in their
nucleated cells [65,68].

The observed distribution of lipids in the epidermis and the different regions of the
oral epithelium is in accordance with the water permeability data [69]. The epidermis,
palate and gingiva, all of which are keratinized (1133 cm−1; Table 1), contain acylceramides
and ceramides (1064 cm−1, 1074 cm−1, 1305 cm−1, 1380 cm−1 and 1440 cm−1; Tables 1–3),
which have been associated with barrier function [70,71].

Cytosine is an important part of DNA and RNA (813.6 cm−1, 824 cm−1, 906 cm−1,
970.3 cm−1, 1335 cm−1 and 1428 cm−1; Tables 1–3), as it is one of the nitrogenous bases
which encode the genetic information of these molecules, and may be modified in different
bases to carry epigenetic information. In DNA, adenine and thymine are present in the
same percentages and are always paired with each other. Watson and Crick showed that
the DNA molecule is a double helix made up of two paired strands, held together by weak
chemical bonds, known as hydrogen bonds, each with its nucleotide sequence—adenine,
thymine, cytosine and guanine, which can be referred to as A, T, C and G—complementing
the other. That is, adenine is paired with thymine and cytosine with guanine.

Currently, more than 600 specimens of carotenoids (1525 cm−1, Table 3) have been
identified, structurally classified into seven different types and distributed in various
isomeric forms [72]. The name “carotenoids” is derived from the scientific name of the
carrot. According to Krinsky et al. [72], carotenoids (1525 cm−1, Table 3) in the human
body are partially converted to vitamin A (retinol), playing an important nutritional role,
in addition to exercise and other actions. In this way, carotenoids can reduce the risk of
chronic non-communicable diseases, prevent cataract formation and reduce aging-related
macular degeneration. In addition, carotenoids (1525 cm−1, Table 3) play a fundamental
role as a protector against photooxidation.

Mesquita et al. [73] suggested that natriuretic peptides type B (BNP) and amino
terminal fraction of proBNP (NT-proBNP) are considered standard biomarkers in decom-
pensated heart failure. Some materials correlated with calcium phosphate have generated
interest in researchers. What motivates this interest is the chemical compatibility and simi-
larity that exists between minerals (calcium phosphates and apatites (962.3 cm−1; Table 3))
and different parts of the human body, such as bone and dental tissues [64].

Schnieders et al. [74] discussed the porous morphology of calcium phosphates (962.3 cm−1;
Table 3), presenting the possibility of incorporating drugs on its surface. Upon drug
adsorption on the surface of calcium phosphates, it is possible to generate a biomaterial
that can be used in denture coating and even as cement material in a dental restoration procedure.

Kuroki et al. [75] carried out a comparative study and have showed that to maintain the
proliferation of human cells, palmitic acid (1133 cm−1; Table 1) is essential as energy storage.
The epithelium of the oral mucosa (both basal and suprabasal layers) showed a significantly
higher percentage composition of palmitic acid (1133 cm−1; Table 1) than the epidermis,
but no difference in its distribution between the two layers. These results suggested a much
higher energy metabolism in the oral mucosa. The percentage composition of palmitic
acid (1133 cm−1; Table 1) was significantly higher in keratinocytes (1133 cm−1; Table 1)
of the oral mucosa (non-keratinization; 28.58 ± 5.25) and the gingiva (parakeratinization;
23.00 ± 1.40) compared to in the epidermis (orthokeratinization; 17.54 ± 0.37).

Finally, it is worth mentioning that Raman spectroscopy could be combined with other
optical techniques enabling qualitative tissue evaluation through structural analysis. One



Optics 2021, 2 143

of these techniques is optical coherence tomography, which could potentially be used to
ensure the Raman signals are captured only from the tissue of interest [76,77].

5. Conclusions

In this study, we have analyzed the vibrational modes of peaks of absolute loading
amplitudes of principal components (PCs) of Raman spectra in order to determine the
biochemical compounds leading to the differentiation of buccal mucosa, lip, gingiva
and tongue tissues. In addition, we have provided insight into the biological variability
and heterogeneity of healthy oral tissues, as well as the biochemical characteristics for
differentiation and accurate characterization of the four types of oral subsites (buccal
mucosa, lip, gingiva and tongue). Upon definition of the tissue biochemistry of healthy
oral subsites, we developed a spectral reference of oral healthy tissues of individuals in the
Brazilian population for future diagnosis of early pathological conditions using real-time,
noninvasive and label-free techniques such as Raman spectroscopy.
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