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Abstract: Photoacoustic imaging (PAI) is a powerful imaging modality that relies on the PA effect.
PAI works on the principle of electromagnetic energy absorption by the exogenous contrast agents
and/or endogenous molecules present in the biological tissue, consequently generating ultrasound
waves. PAI combines a high optical contrast with a high acoustic spatiotemporal resolution, al-
lowing the non-invasive visualization of absorbers in deep structures. However, due to the optical
diffusion and ultrasound attenuation in heterogeneous turbid biological tissue, the quality of the
PA images deteriorates. Therefore, signal and image-processing techniques are imperative in PAI to
provide high-quality images with detailed structural and functional information in deep tissues. Here,
we review various signal and image processing techniques that have been developed/implemented
in PAI. Our goal is to highlight the importance of image computing in photoacoustic imaging.

Keywords: photoacoustic; signal enhancement; image processing; SNR; deep learning

1. Introduction

Photoacoustic imaging (PAI) is a non-ionizing and non-invasive hybrid imaging
modality that has made significant progress in recent years, up to a point where clinical
studies are becoming a real possibility [1–6]. Due to the hybrid nature of PAI, i.e., optical ex-
citation and acoustic detection, this modality benefits from both rich and versatile optical
contrast and high (diffraction-limited) spatial resolution associated with low-scattering
nature of ultrasonic wave propagation [7–11]. Photoacoustic imaging breaks through
the diffusion limit of high-resolution optical imaging (~1 mm) by using electromagnetic
energy induced ultrasonic waves as a carrier to obtain optical absorption information of
tissue [12,13]. PAI, being a relatively new imaging modality, can effectively realize the
structural and functional information of the biological tissue, providing a powerful imaging
tool for studying the morphological structure, physiological, pathological characteristics,
and metabolic functions in biological tissues [14–16].

The PA effect initiates when optically absorbing targets (absorbers/chromophores)
within the tissue are irradiated by a short (~nanosecond) pulse laser [17]. The pulse energy
is absorbed by the target and converted into heat, generating a local transient temperature
rise, followed by a local acoustic pressure rise through thermo-elastic expansion [18–21].

The pressure waves propagating as ultrasonic waves, are detected by ultrasonic
transducers present outside the tissue, termed as raw data (Figure 1). These data carry
information of inherent acoustic and optical properties (as presented in [22]) of the ab-
sorbers in combination with noisy data originating from electromagnetic interferences.
The acquired data are further processed (known as signal processing) to extract the de-
sired PA signal from the noisy background and utilized to reconstruct a PA image [23,24].
These images represent internal structures and corresponding functionality of the tissue
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target region [25–31]. Several image reconstruction algorithms have been studied for PA
imaging [30,32–34] where the reconstruction algorithms can be interpreted as an acoustic
inverse source problem [35]. Conventional PA image reconstruction algorithms assume that
the object of interest possesses homogeneous acoustic properties [36]. However, the tissue
medium in reality is heterogeneous with spatially variant sound of speed and density
distribution [37]. This introduces varying effects known as acoustic aberration (i.e., ampli-
tude attenuation, signal broadening, mode conversion) that eventually amplifies the low
frequency signals and affects the small wavelengths, corresponding to the microstructures
and sharp edges. Consequently, image resolution; one of the main contributions of PAI,
is forsaken. Moreover, due to variable acoustic aberration, significant distortions and
artifacts are also introduced [38–40]. There have been advancements of PA image recon-
struction algorithms that can compensate for variations in the acoustical properties [41–46],
however, further image enhancement in terms of post-processing is essential.
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To accurately obtain the morphological and functional information of the tissue chro-
mophores, the initial goal is to retrieve the initial pressure distribution inside the object
due to the absorbed laser energy [47]. Therefore, knowledge of the local optical fluence (op-
tical energy per unit area) in biological tissue is of fundamental importance for biomedical
PA imaging [48]. However, initial pressure distribution is a function of depth (lateral and
axial), wavelength, thermal properties (i.e., specific heat, Gruneisen parameter) and optical
properties (i.e., absorption and scattering coefficient, anisotropy factor, and refractive index)
of the medium including the tissue target. To simplify the initial pressure distribution
retrieval process, the amount of optical fluence reaching the region-of-interest (ROI) neces-
sitates to consider homogenous distribution of light [49]. However, in reality, the strong
optical absorption by heterogeneous turbid superficial tissue structure pose major obstruc-
tion in irradiating the actual target located deep inside the tissue medium with sufficient
optical energy [7,10,16]. This limits accurate quantification measurement such as oxygen
saturation, blood volume calculations etc. [50]. There are several methods [36,51] have
been proposed to optimize the fluence decay, however, these models are based on optical
properties of different tissue types available in literature. Unfortunately, the exact optical
properties of biological tissues are unknown, the medium is not homogeneous, which limits
the practicality of these methods [48]. Moreover, optical fluence incident upon the tissue
must be limited within the pre-defined safety limit. In addition, the scattering characteris-
tics of the tissue alters the generated PA signal [10]. Therefore, the amplitude of a raw PA
signal generated from a deep tissue structure is very low. This limited penetration depth
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and optical contrast also leads to the aliasing effect. Typically, detected PA signals of ideal
optical absorbing particle are of bipolar N-shape [52–54] however, the PA signals produced
within a complicated biological tissue can be the combination of individual N-shape pulses
from adjacent microstructures. Consequently, the PA signals from small targets are dete-
riorated and even buried by the bipolar signal originating from a nearby relatively large
target. These phenomena lead to aliasing and distortion in the final image [52]. In addition
to the aliasing effect, the efficacy of the conversion from optical absorption to acoustic
wave generation is often affected by the presence of high background noise [55,56]. The PA
signals are often corrupted by background noise, from the medium and the transducer,
respectively [18]. White Gaussian noise is one of the most common models for these types
of randomly distributed thermal and electronic noise [57]. Furthermore, fixed-pattern
noise caused by electromagnetic interference is another major source of background noise.
The combination of these different types of noises offsets the PA signal, leading to a low
signal-to-noise ratio (SNR), consequently producing low quality images [58–61].

Therefore, several studies have attempted to develop signal enhancement and image
post-processing algorithms to either extract the original, attenuated PA signal or to improve
the existing one by various filtering techniques. [58,62,63]. In many cases, these approaches
were incorporated into the image reconstruction algorithms to achieve noise- and artifact-
free PA images [64–70]. To further improve the prevalent image processing technique,
different deep learning architectures have also been proposed [71,72].

The objective of this review article is to categorically discuss the attributes of various
signal and image processing techniques used in PA. The review process is categorized
into three aspects of improving PA images: (i) PA signal pre-processing prior to image
reconstruction and (ii) image post processing after the image reconstruction, and (iii) deep
learning techniques. The search protocol used for this review study is as follows. For the
first aspect, a PubMed database search of “photoacoustic” AND “signal processing” yielded
141 results with 61 published in the last five years. For the second aspect: “photoacoustic”
AND “image enhancement” yielded 207 results with only 55 published in the last five years.
Finally, the third aspect: photoacoustic” AND “image processing” yielded 198 articles
published in the last 5 years. Among these articles 10 are associated with “image seg-
mentation”, 10 articles are relevant to “image classification”. Here, we have considered
only the publications where the processing concept and development methods are clearly
demonstrated with appropriate experimental evaluations. To date, several major review
articles have been published regarding the photoacoustic imaging and most are based on
instrumentation and configurations. However, according to the authors’ best knowledge,
there is no dedicated review article that summarizes the key aspects of the signal and image
processing in photoacoustic imaging.

Initially, we explored the root causes of diminished PA signal and corresponding
degraded image quality. This follows with exploring the merit and demerits of various
approaches to improve the photoacoustic signal and image quality as pre- and post-
processing techniques respectively. Finally, we explore the articles where different deep
learning based image processing algorithms have been utilized for improving diagnostic
purposes such as classification and segmentation.

2. Photoacoustic (PA) Signal Pre-Processing Techniques

The complex biological tissue structures consist of several overlaying chromophores
with different absorption coefficients. The PA signal from a less absorbing chromophore is
either lost or overshadowed by a nearby comparatively higher absorbing chromophores.
Moreover, the incident laser energy limitation imposed by ANSI (American National
Standards Institute) and the optical path being highly attenuated due to the scattering
in the tissue [73], results in generating a low amplitude PA signal by poorly illuminated
deeper structures within the tissue. This results in the PA signal being camouflaged within
the background noise upon reception by the transducer, leading to a reconstruction of a
very low SNR images [18]. Specifically, when a low-cost PA system based on low power
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light-emitting diodes (LEDs) are utilized, the PA signals generated from imaging target
are strongly submerged in the background noise signal [37]. A typical PA signal is usually
contaminated with background noises (i.e., combination of electronic and system thermal
noise [56,58]. These noises are generally originated from external hardware (i.e., trans-
ducer elements, acquisition system, and laser sources). Usually, the noise from the laser
source dominates at the kilohertz frequency range and attenuates following an inverse func-
tion of frequency (1/f) [74,75]. At the megahertz frequency range, the noise from the laser
source becomes less dominant [76]. Instead, the signal amplifier, the photodetector, and the
data acquisition card become the major noise sources. On the other hand, biological tissue
being a highly scattering medium introduce major attenuating events for the generated
PA signal before it propagates and is received by transducers [73]. Several pre-processing
techniques to improve the PA signal to noise ratio upon reception by transducers are
reviewed in the following subsections.

2.1. Averaging

Signal averaging is perhaps the easiest and most common way of improving the
signal quality by getting rid of uncorrelated random noise [77]. For signal averaging two
schemes can be employed: (1) the raw pressure signals can be averaged coherently prior
to signal processing; or (2) each of the received chirps is processed independently and
the resulting correlation amplitudes are averaged [78]. These two methods define the
logistics of data acquisition and may influence design of the system hardware and software
for efficient signal processing. The former technique demands strict phase consistency
of multiple excitation chirps and accumulation of multiple waveforms, while the latter
allows for rapid processing of incoming chirps and summation of the final products to
reduce noise [79]. However, the latter technique does not consider the phases of individual
chirps and constitutes incoherent averaging during post-processing. Averaging specifically
improves the SNR of the PA signals, particularly if the PA signal components being aver-
aged are correlated as shown in Figure 2. A distinctive improvement by averaging method
necessitates the acquisition of large number of PA signals from the same location. This ac-
quisition number typically ranges from few hundreds to several thousands which makes
this technique extremely time consuming, computationally exhaustive, and ineffective for
moving targets [54].
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2.2. Signal-Filtering Techniques

Signal-filtering techniques are often more effective when used with Fourier trans-
formation methods. It involves selective component discarding of specific frequency
bands. However, losing components of the actual PA signal along with the noise in those
frequency ranges is inevitable [60]. To avoid this scenario, in [59], an adaptive and fast-
filtering method to denoise and enhance the PA signal was presented. However, unlike a
conventional adaptive noise canceller, this method does not require a prior knowledge of
the characteristics of the signal. In fact, the reference signal was basically a time shifted
version of the primary input signal. Due to using a reduced number of epochs in aver-
aging, this algorithm created a smaller PA peak time-shift and signal-broadening. A PA
microscopy image with the size of 200 × 200 pixels using the proposed method took
about 1 s, allowing near real-time PA microscopy. Najafzadeh et al. [64] proposed a signal
denoising method based on a combination of low-pass filtering and sparse coding (LPFSC).
In the LPFSC method, the PA signal can be modeled as the sum of low frequency and
sparse components, which allows for the reduction of noise levels using a hybrid alter-
nating direction method of multipliers in an optimization process. Fourier and Wiener
deconvolution filtering are two other common methods used for PA signal denoising prior
to back projection algorithm [80–82]. Typically, a window function is used to limit the
signals within a specific bandwidth and leads the high-frequency components to zero [83]
followed by a convolution between PA signals and illumination pulse and/or ultrasound
transducer impulse response. A Wiener filter is specifically utilized to remove the additive
noise. Sompel et al. [84] compared the merits of a standard Fourier division technique,
the Wiener deconvolution filter, and a Tikhonov L-2 norm regularized matrix inversion
method. All the filters were used with the optimal setting. It was found that the Tikhonov
filter were superior as compared to the Wiener and Fourier filters, in terms of the bal-
ance between low and high frequency components, image resolution, contrast to noise
ratio (CNR), and robustness to noise. The results were evaluated through imaging in vivo
subcutaneous mouse tumor model and a perfused and excised mouse brain as shown
in Figure 3A. Moradi et al. [85] proposed a deconvolution-based PA reconstruction with
sparsity regularization (DPARS) technique. The DPARS algorithm is a semi-analytical
reconstruction approach where the directivity effect of the transducer is taken into ac-
count. The distribution of absorbers is computed using a sparse representation of absorber
coefficients obtained from the discrete cosine transform.
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Figure 3. (A) Reconstructions of (i) mouse tumor and (ii) brain by deconvolution method: First column: Fourier filter.
Second column: Wiener filter. Third column: Tikhonov method. The image intensities of the reconstructions are normalized
(black: 0, white: 1), and the dimensions of the MIP images are 20 × 20 mm. Reproduced from [84], (B) (i) Photoacoustic wave
generated in the blood vessel phantom prior to wavelet denoising and (ii) The processed signal using the wavelet algorithm.
Reproduced from [86], (C) Constructed de-noising image results of PA image when simulation signal signal-to-noise ratio
(SNR) is 5 dB (i) Original simulation PA image, (ii) Noisy image SNR = 5 dB, (iii) empirical mode decomposition (EMD)
combined with mutual information de-noising method, (iv) Unbiased risk estimation wavelet threshold de-noising method,
(v) Band-pass filter de-noising method. Reproduced from [60] and (D) Laser-induced noise identification with singular value
decomposition (SVD) in photoacoustic images acquired from a human finger in vivo, (i) in the raw radiofrequency data,
vertical and horizontal noise bands were apparent [ prominent example indicated with a thick purple arrow]., (ii) When
averaging across 31 PA images was performed, signals from the blood vessels were apparent but laser-induced noise across
the image (prominent example indicated with a thick purple arrow) was present, (iii) When averaging across PA images
and SVD-denoising with 1 SVC were performed, the laser-induced noise was absent and signals from the blood vessels and
skin surface were clearly visible, and (iv) The signals from the skin surface and the blood vessels were smaller relative to the
background noise when 10 SVCs were used. Reproduced from [87].

2.3. Transformational Techniques

Wavelet transform based filtering techniques have become an effective denoising
method. This frequency-based transform decomposes the signals into a series of basis
functions with different coefficients. Usually the smaller coefficients corresponds to the
noisy signals, that can be removed using thresholding [88]. In discrete wavelet transform
denoising, firstly a suitable mother wavelet is selected and then decomposition, threshold-
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ing and reconstruction steps are performed. Mother wavelet selection is the most critical
step and depends on the wavelet characteristics or the similarity between the signal and
mother wavelet [89]. The decomposition step is carried out by selecting the appropriate
degree of decomposition [90]. In decomposition steps, low-pass and high-pass filters are
used based on the characteristics of the mother wavelet. The output of these filters, respec-
tively, are called approximation and detail coefficients. Depending on the decomposition
level, filters are applied to the detail coefficients at each step. Thresholding is a signal
estimation technique and a part of the denoising step where it uses the properties of the
wavelet transform [91]. Traditionally, there are soft and hard thresholding as proposed by
Donoho and Johnstone [92]. In hard thresholding, the wavelet coefficients smaller than the
threshold value is set to zero and higher values than the threshold stay unaltered. In the
soft thresholding method, if the absolute value of the wavelet coefficients is less than or
equal to the threshold value, then the coefficients are set to zero. There are different thresh-
old selection rules (i.e., Rigrsure, Sqtwolog, Heursure, Minimaxi) [93]. Guney et al. [94]
evaluated the performance of wavelet transform based signal-processing methods (bior3.5,
bior3.7 and sym7) in MATLAB by using the PA signals as input signals, acquired from
blood vessels using photoacoustic microscopy (PAM). The results were compared with
conventional FIR low and bandpass filters. Results of the LPF and BPF were very close to
each other, however, sym7/sqtwolog/soft thresh. combination provided superior perfor-
mance than the other two. Viator et al. [95] utilized spline wavelet transforms to enhance
the PA signal acquired for port-wine stain (PWS) depth measurements. Denoising was
performed in two steps: signal averaging during the experiment and post-experiment
using wavelet shrinkage techniques [86]. During the experiment, the signals were averaged
over 64 laser pulses to minimize random noise. Longer averages were not taken because of
dynamic processes that could change the photoacoustic signal, such as subject movement.
Further denoising was accomplished with wavelet transforms using Wavelet Explorer
(Wolfram Research, Inc., Urbana, IL, USA), an add-on of Mathematica. Wavelet shrinkage
for denoising was explained in Donoho and Johnstone [96]. Spline wavelets were cho-
sen after verifying that the expected pressure signal was suited to relatively low order
polynomial fits based on visual inspection of noisy signals. The denoising algorithm used
four-level spline wavelet transforms and obtained the threshold level by estimating the
noise level on each signal. The threshold was selected by taking a value between the
noise level and the smallest signal variation, with the threshold set closer to the noise level
(approximately 2–3 times the noise level). Holan et al. [86] proposed an automated wavelet
denoising method. This approach involves using the maximal overlap discrete wavelet
transform (MODWT). In contrast to the discrete wavelet transform (DWT), the MODWT
yields a nonorthogonal transform. Although the MODWT requires Nlog2N multiplications,
versus N using DWT, where N is the sample size. This aspect is crucial to the extent
that it eliminates one form of user intervention, such as padding with zeros or arbitrary
truncation, that often occurs when using wavelet smoothing. Additionally, in contrast to
the DWT, the MODWT forms a zero-phase filter making it convenient to line up features
with the original signal [97]. Here, the threshold is chosen based on the data and can
be cast into a fully automatic smoothing algorithm. The benefit of this threshold is that,
for large sample sizes, it guarantees that the noise will be removed with a probability of
one. It achieved 22% improvement in the blood vessel images they reconstructed using
recorded PA signals (Figure 3B). Ermilov et al. [98] implemented the wavelet transform
using a wavelet family resembling the N-shaped PA signal. The wavelet transform has been
established in signal processing as a superior tool for pattern recognition and temporal
localization of specified signal patterns [99]. This process helps to eliminate low-frequency
acoustic artifacts and simultaneously transform the bipolar pressure pulse to the monopole
pulse that is suitable for the tomographic reconstruction of the PA image. It was reported
in [98] that the third derivative of the Gaussian wavelet was the best candidate for filtering
the N-shaped signals. In the frequency domain, the chosen wavelet had a narrow bandpass
region and a steep slope in the low-frequency band, which allowed more precise recovery
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of the PA signals. Based on the full understanding of PA signals features, Zhou et al. [100]
proposed a new adaptive wavelet threshold de-noising (aWTD) algorithm, which pro-
vides adaptive selection of the threshold value. A simulated result showed approximately
2.5 times improvement in SNR. With wavelet denoising, signal energy is preserved as
much as possible, removing only those components of the transform that exist beneath
a certain threshold. This method effectively preserves signal structure, while selectively
decimating small fluctuations associated with noise. Choosing the threshold is of prime
importance, although an effective threshold can be chosen by simple inspection of the
noisy signal [101].

2.4. Decomposition Techniques

Improving the SNR of photoacoustic signal effectively is essential for improving the
quality of photoacoustic image. Empirical mode decomposition (EMD) takes advantage of
the time scale characteristics of data itself [102]. It is quite suitable for non-stationary and
non-linear physiological signals such as photoacoustic signals [103]. Therefore, EMD is
widely used in many signal-processing fields [104–106]. In the case of noisy PA signal,
EMD adaptively decomposes PA signal into several intrinsic mode functions (IMF), and re-
move those IMFs that are representing noise in the PA signal. Generally, if more IMFs are
generated, better segregation between noisy IMFs and clean PA IMFs can be performed.
An effective selection of IMFs is necessary for the successful and accurate denoising of the
PA signals. Zhou et al. [60] proposed an EMD method combined with conditional mutual
information denoising algorithm for PAI. Mutual information is the amount of information
shared between two or more random variables. The main goal of feature selection is to
use as few variables to carry as much information as possible to remove irrelevant and
redundant variables. In practice, the former IMFs are mainly high-frequency information
and carry more noise. Therefore, it was proposed to calculate the mutual information be-
tween each of the first half of the IMF and the sum of the second half of the IMFs. When an
IMF carries more unknown useful signals and less noise information, it is better to express
original useful signals. According to this principle, by minimizing the mutual information
between the selected IMF and the noisy PA signal, the selected mode has the most useful
information. A comparative result (Figure 3C) shows that EMD combined with mutual
information method improves at least 2 dB and 3 dB, respectively, more than the traditional
wavelet threshold method and band-pass filter. Sun et al. [107] proposed the consecutive
mean square error (CMSE) based EMD method to determine demarcation point between
high-frequency and low-frequency IMF. Guo et al. [108] proposed a method to improve
PA image quality through a signal-processing method directly working on raw signals,
which includes deconvolution and empirical mode decomposition (EMD). During the
deconvolution procedure, the raw PA signals are de-convolved with a system dependent
PSF which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA
signals with two constraints, positive polarity and spectrum consistence.

Another decomposition method is single value decomposition (SVD). During image
reconstruction, g = Hf is solved for f (a finite-dimensional approximation of the unknown
object(s) that produced the data in g) where g is a vector that represents the measured data
set, H is the imaging operator. Ideally, H would be invertible. However, it is generally
found that for a real imaging system H (M × N matrix) is singular. For singular matrices,
it can be decomposed by means of H = USVT, where U is an M × M matrix, V is an
N × N matrix, and both are non-singular. The M × N matrix S is a diagonal matrix
with non-zero diagonal entries representing the singular values of the imaging operator.
The decomposition of H into these component matrices is known as the singular value
decomposition Each singular value of S relates the sensitivity of the imaging operator to
the corresponding singular vectors in U and VT. Upon decomposing the imaging operator,
the vectors provided in VT are linearly independent. However, by examining the associated
magnitude of the singular values in matrix S, it is clear not all vectors contribute equally
to the overall system response. In fact, some do not effectively contribute at all to the
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reconstruction of an object [109]. It is the matrix rank (number of linearly independent
rows) of the imaging operator that indicates the singular vectors that contribute usefully
to image reconstruction. A number of techniques have been proposed to determine the
rank of a matrix in the context of a real imaging operator [110–112]. SVD was used to
identify and remove laser-induced noise in photoacoustic images acquired with a clinical
ultrasound scanner [87]. The use of only one singular value component was found to
be sufficient to achieve near-complete removal of laser-induced noise from reconstructed
images (Figure 3D). The signals from the skin surface and the blood vessels were smaller
relative to the background noise when 10 SVD components were used.

2.5. Other Methods

Mahmoodkalayeh et al. [73] demonstrated that the SNR improvement of the photoa-
coustic signal is mainly due to the reduction of Grüneisen parameter of the intermediate
medium which leads to a lower level of background noise. Yin et al. [113] propose a method
to optimize the speed of sound (SOS), based on a memory effect of PA signal. They revealed
that the PA signals received by two adjacent transducers have a high degree of similarity
in waveform, while a time delay exists between them. The time delay is related to the SOS.
Based on this physical phenomenon, an iterative operation is implemented to estimate the
SOS used for image reconstruction. Although PAT improved by the proposed method,
artifacts and distortions still exist due to the refraction and reflection in both simulations
and experiments.

3. Image Processing

Artifacts are one of the major problems in PAI. The presence of artifacts limits the
application of PAI and creates hurdles in the clinical translation of this imaging modal-
ity. Reflection artifact is one of the most commonly observed artifacts in photoacoustic
imaging [114–116]. These artifacts arise from strong PA ultrasound generated outside
the imaging plane where the tissue is irradiated and that may propagate to the probe
either directly or being scattered by acoustic inhomogeneities within the image plane [117].
These reflections are not considered by traditional beamformers which use a time-of-flight
measurement to create images. Therefore, reflections appear as signals that are mapped to
incorrect locations in the beamformed image. The acoustic environment can also addition-
ally introduce inconsistencies, like the speed of sound, density, or attenuation variations,
which makes the propagation of acoustic wave very difficult to model. The reflection arti-
facts can become very confusing for clinicians during diagnosis and treatment monitoring
using PA imaging.

Averaging of PA image sequences is a simple post-processing method. In Xavier-
selvan et al. [118], in vivo PA image frames of mice tumor were averaged at different
frame rates to evaluate and establish the relationship between frame rates and image SNR.
As shown in Figure 4A, the acquired PA images were further averaged to a final frame
rate of 0.31 Hz to enhance the SNR by 20 dB. Jaeger et al. [117] proposed a deformation
compensation (DC) method to reduce the artifacts by applying a moving temporal average
to the PA image sequence. Signals originating from optical absorbers located in the image
plane persist throughout the PA sequence, and are therefore not affected by averaging,
whereas decorrelated clutters were reduced to improve contrast-to-clutter ratio (CCR).
The potential impact of the method is dependent on roughly the square root of the number
of uncorrelated measurements, or the ratio of averaging-window length and decorrelation
time constant. The averaging length is limited by the maximum probe displacement and the
amount of out-of-plane motion [117]. This method was evaluated on neck images as shown
in Figure 4B. One major disadvantage was the maximum achievable tissue deformation
on one side limited by the tissue mechanical properties, and the minimum deformation
required for artifact decorrelation on the other side, determines the contrast improvement.
Another technique employs localized vibration tagging (LOVIT) of tissue (Figure 4C) using
acoustic radiation force (ARF) for reducing clutter in the focal region of a long-pulsed
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ultrasonic beam [119]. For successful echo clutter reduction, LOVIT prefers a small ARF step
size and necessitates extensive scanning for a large field-of-view [120]. Singh et al. [120,121]
proposed photoacoustic-guided ultrasound mimics the inward-travelling wavefield from
small blood vessel-like PA sources by applying US pulses focused towards these sources,
and thus provides a way to identify reflection artifacts.
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One of the standard techniques used for denoising images is wavelet thresholding.
Its application ranges from noise reduction, signal and image compression up to signal
recognition [122]. The advantage of this method is that the denoising approach is model-
free and can be applied as a post-processing step. Haq et al. [123] proposed a 3D PA image
enhancement filter based on Gabor wavelet integrated with traditional hessian filter to
clearly visualize the vessels inside mouse brain with scalp open. In the proposed method,
Gabor wavelet filter is used to enhance the vasculature (Figure 5A), then hessian-based
method is applied to classify vessel-like structures in the PAM generated image.

Deconvolution algorithms have proved instrumental in improving the quality of PA
images as well. Many studies showed the effectiveness of the deconvolution-based PA
image reconstruction [81,82,124–127]. Deconvolution algorithm has been used to remove
the artifacts caused by the pulse width of the laser and bandwidth of the transducer [128].
Deconvolution algorithms are also used for deblurring purposes [129]. The blurry artifacts
are very common in PA images and usually introduced by the inherent characteristics of
the optical setup. These artifacts are due to the spatial non-uniformity of the laser beam
size, poor or unoptimized optical alignment or low-quality lenses. To remove the blurring
artifacts, a very fine structure is imaged and point spread function (PSF) is computed.
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The acquired images from the system are deconvolved with PSF to remove deblurring
artifacts. However, PSF only provides blurring and aberration information based on the
optics of the system. Since PAI is a hybrid technique, blurring and aberration caused
by acoustic focus must also be considered. Seeger et al. [130] introduced high-quality
total impulse response (TIR) determination based on spatially-distributed optoacoustic
point sources (SOAPs). The SOAPs are produced by scanning an optical focus on an
axially-translatable 250 nm gold layer. This TIR method includes the optical impulse re-
sponse describing the characteristics of optical excitation, the spatial impulse response
(SIR) capturing the spatially-dependent signal modification by the ultrasound detection,
and the spatially-invariant electric impulse response (EIR) embodying the signal digitiza-
tion [131–133]. Using a spatially dependent TIR-correction improved the SNR by >10 dB
and the axial resolution by ~30%. A comparison between conventional reconstruction
and TIR correction was performed for an isolated RBC in vitro (Figure 5B), which was
imaged at the acoustic focus. Wang et al. [134] also showed that PAI spatial resolution
can be enhanced with impulse responses. However, in contrast to the SIR, finding the EIR
is challenging [135].
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Figure 5. (A) (i) Original image of living mouse brain vessels, (ii) Filtered MIP of photoacoustic image of vessels, and (iii) 3D
reconstruction of the vasculature. Reproduced with permission from [123]. (B) (i) Conventional reconstruction leads to an
axially elongated RBC; (ii) the total impulse response (TIR)-corrected RBC appears flatter and smoother. Reproduced with
permission from [130], (C) Reconstructed photoacoustic images of (i) the target using (ii) k-wave interpolated, (iii) LSQR
with heuristic choice of λ, (iv) LSQR with optimal choice of λ, (v) Basis pursuit deconvolution (BPD) with heuristic choice of
λ in LSQR framework, and (vi) BPD with optimal choice of λ in LSQR framework. Reproduced with permission from [129],
and (D) Top row: In vivo mice brain images and bottom row: in vivo mice ear images. (i,iv) Raw images, (ii,v) band pass
filtered images, and (iii,vi) NLMD images. Reproduced with permission from [136].

In [129], basis pursuit deconvolution (BPD) was utilized to deblur the solution ob-
tained using the Lanczos–Tikhonov regularization method. As regularization blurs the
solution, the effect of regularization can be overcome by the BPD method. BPD utilizes the
split augmented Lagrangian shrinkage algorithm (SALSA) [137] to minimize the objective
function, which uses `1-type regularization to promote sharp features. A numerical blood
vessel phantom as shown in Figure 5C with initial pressure rise as 1 kPa was also used to
demonstrate the performance of the algorithm. It was also shown that using the proposed
framework, the quantitative accuracy of the reconstructed photoacoustic image improved
by more than 50%. The Lucy–Richardson (LR) iterative deconvolution algorithm is another
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common method for removing PA blurring artifacts. Cai et al. [138] developed an iterative
algorithm based on the LR deconvolution with a known system PSF. The iterative equation
to seek the optimal estimation of original image was derived from the maximum-likelihood
estimate approach. The lateral and axial resolution was improved by 1.8 and 3.7 times and
the axial resolution by 1.7 and 2.7 times that was evaluated by imaging in vivo imaging of
the microvasculature of a chick embryo.

The other standard method for denoising images is non-local means (NLM) filter-
ing [136,139]. Like wavelet denoising methods, this also does not rely on any imaging
model and can be applied as a post-processing method that are corrupted with Gaussian
noise. The principle of NLM denoising is taking the average intensity of the nearby pixel
weighted by their similarity [139–141]. In [136], the objective was to remove noise from PA
images and estimating the effective proposed denoising input parameters. Authors have
shown that the noise was reduced and the contrasts between vessel and background were
higher when NLM process was utilized as compared to the band pass filtered images.
As shown in Figure 5D.

Awasthi et al. [142] proposed a guided filtering approach, which requires an input
and guiding image. This approach act as a post-processing step to improve commonly
used Tikhonov or total variational regularization method. The same guided filtering [143]
based approach has been used to improve the reconstruction results obtained from various
reconstruction schemes that are typically used in PA image reconstruction.

Signal pre and post processing has also proven to be very useful in accurately quanti-
fying various physiological parameters in in vivo animal studies. For instance, in oxygen
saturation quantification, researcher have used two or more wavelengths to exploit differ-
ences in optical absorption between the oxygenated and the de-oxygenated hemoglobin.
Since different wavelength light interacts different with the tissue, fluence compensation
becomes necessary for accurate quantifications. Han et al. [144] and Kim et al. [145] pro-
posed 3D modeling of the photon transportation for dual-modality PA/US system based
on the local 3D breast anatomical information by scanning US probe. Based on a serial of
US B-scan results, the reconstructed 3D anatomical structure, together with corresponding
spectral-dependent optical parameters, is used to calculate the optical fluence for the quan-
titative PA imaging, such as the SO2 mapping. The calculated optical fluence distribution
is than applied to signals acquired and the result showed an increase in the accuracy of the
oxygen saturation mapping (Figure 6A). In [145], the spectral analysis based on minimum
mean square error (MMSE) method was applied to identify presence and concentration of
major photoabsorbers in mouse tumor in vivo (Figure 6B). However more sophisticated
models, such as a 2-D or even a 3-D multi-layer model with incident beam specifications
(e.g., beam diameter and intensity profile, incident angle, etc.), can improve local fluence
estimation using a Monte Carlo simulation [146,147].
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distribution based on the 3D modeling, (iv) the mapping of ∆SO2. Reproduced with permission from [144]. (B) (i) Fluence
compensated photoacoustic image at 800 nm, (ii) spectral analysis based on LLS method can produce negative concentrations
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concentration by LLS method get removed from the NP image, and (iv) the developed MMSE method reliably reconstruct
spatial distribution and concentration of NP: white arrows indicate locations where NP concentrations were recovered
using MMSE method. NP: nanoparticle, LLS: linear least square, MMSE: minimum mean square error. Reproduced with
permission from [145].

A detailed summary of the reviewed pre/post-processing methods and their corre-
sponding advantages and disadvantages are provided in Table 1.

Table 1. Advantages and disadvantages of pre/post-processing methods for PA imaging.

Methods Advantages Disadvantages

Averaging [56]
• Extremely effective in removing

uncorrelated noise
• Easy to implement

• Time consuming
• Computationally exhaustive

Band pass filtering [61] Easy to implement
• Useful PA signal can be filtered out
• Not effective when wide band

transducers are used

Adaptive noise cancellation [61] Much faster than averaging Prior information about signal
characteristics needed.

Adaptive filtering [61] No prior signal information needed Computationally exhaustive

LPFSC [66] Clean PA signal can be fully preserved Works only with SNR > −15 dB

DPARS [88] Improves SNR of deep structures Depth discrimination is poor in C
scan images

DCT [93,95,96] Easy to implement • Difficult to choose optimal threshold
• Computationally exhaustive

MODWT [104] Superior in performance as compare
to DCT Difficult to segregate noise from PA signal

EMD [114] Better than DWT and Band-pass filtering
Makes wrong assumption that lower IMFs
contains major part of the signal and high
IMFs are highly dominated by noise
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Table 1. Cont.

Methods Advantages Disadvantages

SVD [91]
• Very useful in accurately removing

laser induced noise
• Comparable to averaging but faster

May not work well with low SNR signals

TIR-based deconvolution [137] Achieve high SNR and axial resolution Challenge to accurately compute TIR

Fourier deconvolution [87] Easy to implement Low performance compared of other
deconvolution methods

Weiner deconvolution [87] • Easy to implement
• Achieves high axial resolution Computationally expensive

Tikhonov deconvolution [87]
Achieve high axial resolution with much
superior noise suppression compared to
other methods

Less sharper images than Weiner

LR deconvolution [138] Improves both lateral and axial resolutions Needs accurately computed PSF

BPD [139] Accurately removes unwanted bias in
PA images Computationally exhaustive

NLM denoising [136] Better contrast than Bandpass filtering May not work with low SNR signals

4. Deep Learning for Image Processing

A deep-learning (DL) approach is also used for photoacoustic imaging from sparse
data. In DL, linear reconstruction algorithm is first applied to the sparsely sampled data
and the results are further applied to a convolutional neural network (CNN) with weights
adjusted based on the training data set. Evaluation of the neural networks is a non-iterative
process and it takes similar numerical effort to a traditional back projection algorithm for
photoacoustic imaging. This approach consists of two steps: in the first step, a linear image
reconstruction algorithm is applied to the photoacoustic images, this method provides
an approximate result of the original sample including under-sampling artifacts. In the
next step, a deep CNN is applied for mapping the intermediate reconstruction to form an
artifact-free image [67].

Hauptmann et al. [148] extensively reviewed different approaches of DL networks
and their future directions. According to the authors, DL approaches has been utilized
for pre-processing of the PA data before reconstruction in terms of artifacts removal and
bandwidth enhancement. Antholzer et al. [67] demonstrated that appropriately trained
CNNs can significantly reduce under sampling artefacts and increase reconstruction quality
(Figure 7A). Allman et al. [149–151] proposed to use an object detection and classification
signal and artifact approach based on region-based CNN (R-CNN) to separate artifacts
from the true signal. After a subsequent artifact removal step, the final PA image is re-
constructed using beamforming (Figure 7B). Awasthi et al. [152,153] trained a network to
produce high-quality data from the degraded input from a sparse data scenario with lim-
ited bandwidth detectors. For denoising and improving bandwidth, the proposed network
attempted to up-sample the data from 100 detectors to 200. The reconstructed rat brain PA
image using the proposed method and a comparison with other methods have been evalu-
ated in terms of peak signal to noise ratio (PSNR) is shown in Figure 7C. Zhang et al. [154]
implemented a pre-processing algorithm to enhance the quality and uniformity of input
breast cancer images and a transfer learning method to achieve better classification perfor-
mance. The traditional supervised learning method was initially applied to photoacoustic
images of breast cancer generated in K-wave simulation, extracted the scale-invariant
feature transform (SIFT) features, and then used K-means clustering to obtain the feature
dictionary. The histogram of the feature dictionary was used as the final features of the
image. Support vector machine (SVM) was used to classify the final features, achieving an
accuracy of 82.14%. In the deep learning methods, AlexNet and GoogLeNet are used to
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perform the transfer learning, achieving 89.23% and 91.18% accuracy, respectively. Finally,
the authors concluded that the combination of deep learning and photoacoustic imaging
can achieve higher diagnostic accuracy than traditional machine learning based on the com-
parison of the area under the curve (AUC), sensitivity, and specificity among SVM, VGG,
and GoogLeNet [155–158]. Chen et al. developed a deep-learning-based method to correct
motion artifacts in optical resolution photoacoustic microscopy (OR-PAM). The method
established an end-to-end map from input raw data with motion artifacts to output cor-
rected images. Vertical, horizontal, and complex pattern motion artifacts were introduced
on PAM images of a rat brain. The images with the motion artifacts were used for training
and original images were considered as ground truth. The trained neural network was
able to remove motion artifacts in all direction [159] as shown in Figure 7D.
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reconstruction; (ii) reconstruction using TV minimization; (iii) proposed convolutional neural network (CNN) using wrong
training data without noise added; (iv) proposed CNN using wrong training data with noise added; (v) proposed CNN
using appropriate training data without noise added; (vi) proposed CNN using appropriate training data with noise added.
Reprinted with permission from [67], (B) (i) Sample image of experimental channel data containing one source and multiple
reflection artifacts. (ii) Corresponding beam formed image (iii) corresponding image created with CNN-based artifact
removal method. Reproduced from [149–151]. (C) The reconstructed rat brain PA image using (i) original 100 detectors data
is shown to serve as ground truth that is achievable, (ii) reconstruction result using 50 detectors data, (iii) The reconstructed
result using 100 detectors sinogram data obtained using nearest neighbor interpolated, (iv) maximal overlap discrete
wavelet transform (MODWT) method, (v) the proposed CNN method result, and (vi) corresponding peak signal to noise
ratio (PSNR, in dB). Reproduced with permission from [152,153]. (D) Correcting motion artifacts in an arbitrary dislocation.
(i) Maximum amplitude projection (MAP) image that corresponds to the raw data of a rat brain. (ii) MAP image after
motion correction. Reproduced with permission from [159].

Use of directly reconstructed images on the neural networks to remove artifacts is a
valid approach in many applications, specifically if the goal is to achieve fast and real-time
reconstructions. This approach only needs an initial direct reconstruction and a trained
network. In the case of a full-view data, this is a promising approach, but it has been demon-
strated that even with limited-view images this technique performs very well to enhance
the image quality [160]. U-Net-based CNN networks generally performed better than other
architectures (i.e., simple CNN and VGG) [148]. Moreover, clear improvements over a
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backprojection-based algorithm has been demonstrated for in vivo measurements the data
were under sampled or detected over a partial aperture (limited-view problem) [68,70,161].

The densenet-CNN accepts a low-quality PA image as input and as output generates
high quality PA image [69]. One of the major advantages of using the dense convolutional
layer is that it utilizes all the generated features from previous layers as inputs through
skip connections. This enables the propagation of features more effectively through the
network which leads to the elimination of the vanishing gradient problem. To obtain the
output image, all the features from the dense blocks are concatenated, a single convolution
with one feature map is performed at the end. Sushanth et al. [162] used dictionary-based
learning (DL) methods to remove reverberation artifacts that obscure underlying microvas-
culature. Briefly, signals obtained at depths in PAM systems are often obscured by acoustic
reverberant artifacts from superficial cortical layers, therefore, cannot be used. The de-
veloped DL method demonstrated suppressing of reverberant artifacts by 21.0 ± 5.4 dB,
enabling depth-resolved PAM up to 500 µm from the brain surface of a live mouse.

Manwar et al. [74] trained a U-Net with a perceptually sensitive loss function to
learn how to enhance the low SNR structures in a PA image that are acquired with a
low energy laser where the high energy images used as label. After the enhancement,
outline of the deeper structures such as lateral ventricle, third ventricle became more
prominent in in vivo sheep brain imaging. LED-based excitation systems have become
popular due to low-cost, however thousands of PA image averagings are required to
improve the signal-to-noise ratio and these long-duration measurements are sensitive
to motion artifacts. Hariri et al. [163] proposed a denoising method using a multi-level
wavelet-convolutional neural network (MWCNN) to map low fluence illumination source
images to a corresponding high fluence excitation map. In this setting, the model was
inclined to distinguish noise from signal based on the shape features. The model was
trained in a supervised manner to transform low energy inputs into outputs as close as
possible to the ground truth frames. Substantial improvements up to 2.20, 2.25, and 4.3-fold
for PSNR, SSIM, and CNR.

Metrics were observed. In an in vivo application the proposed method enhanced
the contrast up to 1.76-times. Reconstructed images and corresponding CNR is shown in
Figure 8A. Rajanna et al. [164] proposed a combination of an adaptive greedy forward with
backward removal features selector along with a deep neural network (DNN) classification.
Anas et al. [69] proposed a convolutional long short term memory (LSTM) network using
a recurrent neural network (RNN) in order to compensate the motion artifacts through
exploiting the temporal dependencies in the noisy measurements. The reconstructed image
was compared with only CNN and simple averaging method (Figure 8B). Vu et al. [165]
evaluated the impact of a generative adversarial network (GAN) to clean the PA image
where the U-Net was interpreted as the generator. The improved quality of the PA images
were evaluated in comparison with time reversal and U-net architecture as shown in
Figure 8C.
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vivo data consists of proper digital arteries of three fingers of a volunteer. Reproduced with permission from [69]. (C) PA 
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liver (ii) and kidney/spleen (iii) regions of mice in vivo. The original reconstructed images obtained with model-based 
inversion are shown in the first column. The second column displays the smoothened images after Gaussian filtering. The 
segmented images using active contour (snakes) with the optimum parameters are showcased in the third column. Repro-
duced with permission from [166]. 
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mental factors. In pulse-echo US images, common artifacts are related to attenuation, 
speckle noise or shadowing, which may result in missing boundaries [167]. Efficient seg-
mentation of multi spectral optical tomography images is similarly hampered by the rel-
atively low intrinsic contrast of large anatomical structures and tissue boundaries [168]. 
Mandal et al. [166] and Lafci et al. [169] used an active contour edge detection algorithm 
received as input PA or US images as a square array of 256 × 256 pixels. The images were 
first downscaled to 150 × 150 pixels to reduce the computation time whereas the pixel 
intensities were converted to 8-bit range between 0 and 255. Edge detection was imple-
mented to overcome any dependency of the initial guess upon the user. A canny edge 
detector [36] was applied after smoothing the image using Gaussian filter with kernel size 
3 and sigma 0.5. The outliers and the non-connected components in the pixels erroneously 
detected as edges were removed by applying morphological operations of dilation and 
erosion with a disc-shaped structuring element of 3-pixel size. Specifically, the segmented 
boundary information was used to aid automated fitting of the SOS values in the imaged 

Figure 8. (A) (i) B-mode noisy (input) photoacoustic image using light-emitting diode (LED) at a fluence of 40 µJ/pulse.
Pencil leads were placed at 2.5, 7.5, 12.5, 17.5, and 22.5 mm in 2% intralipid. (ii) B-mode noisy (input) photoacoustic
images at a fluence of 80 µJ/pulse with similar experimental setup as described in (ii). (iii) and (iv) B-mode multi-level
wavelet-convolutional neural network (MWCNN) model (output) photoacoustic image for 40 and 80 µJ/pulse. (v) Contrast
to noise ratio (CNR) versus depth for 40 and 80 µJ/pulse in both noisy and MWCNN model. Dotted green and white
rectangles represent the ROI used to measure mean values and standard deviations of background. Reproduced with
permission from [163]. (B) A comparison of our method with the averaging and CNN-only techniques for an in vivo
example. The in vivo data consists of proper digital arteries of three fingers of a volunteer. Reproduced with permission
from [69]. (C) PA images mouse trunk using (i) time-reversal, (ii) U-Net, (iii) WGAN-GP. (iv) and (v) close-up images of the
region indicated by the white dashed boxes in (ii) and (iii), respectively, and (D) Tomographic optoacoustic reconstructions
of the brain (i), liver (ii) and kidney/spleen (iii) regions of mice in vivo. The original reconstructed images obtained with
model-based inversion are shown in the first column. The second column displays the smoothened images after Gaussian
filtering. The segmented images using active contour (snakes) with the optimum parameters are showcased in the third
column. Reproduced with permission from [166].

Image segmentation is often challenged by low contrast, noise, and other experimental
factors. In pulse-echo US images, common artifacts are related to attenuation, speckle noise
or shadowing, which may result in missing boundaries [167]. Efficient segmentation of
multi spectral optical tomography images is similarly hampered by the relatively low intrin-
sic contrast of large anatomical structures and tissue boundaries [168]. Mandal et al. [166]
and Lafci et al. [169] used an active contour edge detection algorithm received as input
PA or US images as a square array of 256 × 256 pixels. The images were first downscaled
to 150 × 150 pixels to reduce the computation time whereas the pixel intensities were
converted to 8-bit range between 0 and 255. Edge detection was implemented to over-
come any dependency of the initial guess upon the user. A canny edge detector [36] was
applied after smoothing the image using Gaussian filter with kernel size 3 and sigma
0.5. The outliers and the non-connected components in the pixels erroneously detected as
edges were removed by applying morphological operations of dilation and erosion with
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a disc-shaped structuring element of 3-pixel size. Specifically, the segmented boundary
information was used to aid automated fitting of the SOS values in the imaged sample and
the surrounding water. A reconstruction mask was further used for quantified mapping of
the optical absorption coefficient by means of light fluence normalization. The performance
of active contour segmentation for cross-sectional optoacoustic images and the associated
benefits in image reconstruction were demonstrated in phantom and small animal imaging
experiments (Figure 8D).

5. Conclusions

PA imaging is an emerging non-invasive hybrid modality with advantage of optical
contrast and acoustic spatial resolution. Despite the advantages, PA imaging needs more
refinements before its clinical translation. One of the primary issues with PA imaging is
that its efficiency is limited by the presence of background noise and that PA signals suffer
from low SNR which subsequently leads to degraded image quality. Therefore, utiliza-
tion of PA signal processing as well as image enhancement algorithms to improve the
quality of PA imaging are essential. Here, we discussed major signal-processing techniques
used in PA imaging, including conventional and adaptive averaging, signal deconvolu-
tion, wavelet transform, single value decomposition, and empirical mode decomposition.
The signal-processing techniques have been utilized to primarily denoise the PA signal
before feeding them into a reconstruction algorithm. Existing reconstruction algorithms
have their own merits and demerits. However, in most cases, due to inherent limited
view problems and partial considerations of an actual acoustic medium, the reconstruction
methods are unable to represent the features of the imaging target, accurately. There have
also been several studies investigating PA image post-processing such as enhancement,
segmentation, classification for the purposes of disease detection of staging of the disease.
Some of these algorithms are: wavelet thresholding, active contour segmentation, basis pur-
suit deconvolution, and non-local mean algorithms. In addition to conventional data or
image curation techniques, deep learning based signal and image processing have recently
gained much popularity, specifically for obtaining high-quality PA images. These tech-
niques were also discussed in detail. This study showed that PA signal processing has
certainly improved the SNR of the signal in larger depths similar to when a higher energy
laser is used. It also showed that image post-processing algorithms improve the diagnostic
capability of PA imaging.
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