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Abstract: The calibration of a multi-camera system for volumetric measurements is a basic 

requirement of reliable 3D measurements and object tracking. In order to refine the precision of the 

mapping functions, a new, tomographic reconstruction-based approach is presented. The method 

is suitable for Volumetric Particle Image Velocimetry (PIV), where small particles, drops or bubbles 

are illuminated and precise 3D position tracking or velocimetry is applied. The technique is based 

on the 2D cross-correlation of original images of particles with regions from a back projection of a 

tomographic reconstruction of the particles. The off-set of the peaks in the correlation maps 

represent disparities, which are used to correct the mapping functions for each sensor plane in an 

iterative procedure. For validation and practical applicability of the method, a sensitivity analysis 

has been performed using a synthetic data set followed by the application of the technique on Tomo-

PIV measurements of a jet-flow. The results show that initial large disparities could be corrected to 

an average of below 0.1 pixels during the refinement steps, which drastically improves 

reconstruction quality and improves measurement accuracy and reliability. 
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1. Introduction 

Volumetric measurement based on distributed multi-camera systems requires a proper 

calibration. Typical methods to calibrate the system include the estimation of the parameters of the 

lenses and image sensor positions in the form of a mapping matrix, which is based on the parametric 

description of the imaging in the form of a pinhole camera model where the parameters were gained 

from imaging a calibration target (objects with known size and position in space). With the presence 

of distortions or glass walls in the optical paths, the pinhole model may be superseded with 

polynomial mapping functions. Such a model is the third order polynomial camera model [1], which 

is used to describe the mapping function. The inverse of these equations can be used to compute the 

lines of sight (LOSs) originating from each pixel in each camera. Even though a precise calibration is 

done initially, an unintentional movement of one or more cameras later in the experiments can 

introduce biases [2,3]. This is especially important in voxel-based reconstructions of particle-filled 

volumes, as the reconstruction quality of the particles largely depends on the calibration accuracy. 

Such biases especially deteriorate the results of volumetric velocimetry measurements such as 3D 

Particle Tracking (3D-PTV) or Tomographic PIV (Tomo-PIV) [4]. A general review of Particle Image 

Velocimetry is given in [5]. These 3D methods have been become more and more popular in 

experimental fluid mechanics in the last decade, as the camera hardware, as well as the computing 
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power for image processing, have been rising continuously. The increasing engineering interest in 

3D measurements in fluid dynamics also manifests in the application of X-ray tomography [6], 3D 

PTV in granular packings [7], 3D PTV with digital holography [8] and 3D PTV for near-wall flows 

[9]. In addition, tracking algorithms have improved using different variants of matching strategies 

with the help of tomographic reconstruction [10]. To improve the calibration process, the method of 

self-calibration was introduced [11] which uses particle images to enhance an initial camera 

calibration. The procedure segments the observed volume into smaller sub-volumes in which the 

particle locations are triangulated. Disparities are then calculated based on their distance away from 

the theoretical crossing of the epipolar lines in the image plane and those are used to correct the initial 

calibrations. Arroyo and Hinsch [2] recommended for Tomo-PIV to reduce the remaining disparities 

in the calibration setup to a minimum of 0.4 pixels. This also depends on the spatial resolution, the 

number of cameras, the viewing angles and the pixel noise. Therefore, any calibration refinement 

procedure must aim to minimize disparities in the image planes of all cameras.  

The present work represents an alternative approach introduced in 2018 [12], which uses 

iterative voxel-field reconstructions and back-projections to calculate the disparity maps, reducing 

the remaining disparity below 0.1 px. It is based on the tomographic reconstruction of the particles 

themselves and the comparison of their back-projections with the original images using 2D cross-

correlation. Therefore, particles are reconstructed using MART or SMART algorithms (see e.g., 

[13,14]) and small sub-volumes of the full volume are then back-projected to the image planes and 

cross-correlated with the local image pattern in the original images. The offset of the peak from the 

center in the correlation map represents the local disparity. Multiple realizations of calibration 

records are used to eliminate the influence of ghost particles and noise on the final results. The whole 

process is called Volumetric Calibration Refinement (VCR). The present work provides detailed 

simulations of the influencing parameters and an experimental verification of the performance of the 

method.  

In the following, we consider without restriction of generality the simplified case of a typical 

three-camera arrangement, useful for volumetric velocity measurement, e.g., 3D particle tracking 

(3D-PTV) or tomographic PIV (Tomo-PIV) (see Figure 1). It is assumed that the three cameras are 

arranged in the same horizontal x-z-plane (cam #1,2,3: β = 0°) but with different viewing angles (α1 = 

−45°, α2 = 0°, α3 = +45°) (see also the data given in Table A1 in Appendix A). The projection of a particle 

from the world coordinate system into the image plane is described mathematically for each camera 

via its mapping functions—see the equations given in Appendix B. The coefficients of the mapping 

functions are typically computed from calibration images of known objects whose world coordinates 

are predetermined in the volume. Together with the inverse of the mapping functions, which is the 

calculation of the LOSs for each pixel in each camera, the computation of tomographic 

reconstructions using MART or SMART algorithms are carried out [14] (see Appendix B). The 

particles are reconstructed as contiguous clusters of voxels, ideally; the center of gravity is intersected 

by all the LOSs that originate from the particle image centers in the image planes. Since the particle 

images are finite in size, the reconstruction is always a spheroidal composite of cohesive voxels 

representing the particle. However, if larger deviations of the mapping functions from the actual 

optical conditions occur, the voxel cluster is deformed and the position of maximum intensity is 

dislocated from the error-free situation. The proposed method aims to correct the disparities in the 

image planes (and therefore the mapping functions) such that the LOSs intersect again and the 

spherical character of the particles is fully restored.  
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Figure 1. Camera configuration for volumetric reconstruction of particles; (a) typical camera 

arrangement in the horizontal X-Z-plane with different angular views, (b) top view of the horizontal 

plane with illustration of perfect calibration and with mismatch due to an in-plane shift of the left 

camera. Gray solid lines show the LOSs for perfect initial calibration, which cross in the true particle 

world coordinate in the center of gravity. Black rectangles show the particle image projection in the 

image planes. An error introduced on the left cam #1 by an in-plane shift (red arrow) leads to a new 

center in the reconstruction (red circle) dislocated away from the original position. Corrections for 

perfect crossing of the LOS affects all cameras seen by the disparity shift of the dashed lines. Hence, 

the mismatch correction can either be done by correcting only the left camera or all cameras 

simultaneously. 

2. Methodology of Calibration Refinement 

The working principle is exemplarily illustrated for the simplified case of the three-camera setup 

shown in Figure 1. We further assume that the imaging system should be such that all LOSs are 

rectilinear and perpendicular to the sensor plane (telecentric approximation). The gray solid lines in 

Figure 1b show the LOSs’ origination from the particle image centers for perfect calibration, 

intersecting at the center of gravity in the true particle world coordinate. A virtual misalignment of 

the leftmost camera is introduced in the form of a shift in the sensor plane (along its horizontal axis 

in the sensor plane). This results in a shift to a new 3D center position of the voxel cluster (red circle) 

offset from the original position. The diameter dP of the particle image in the image plane is the reason 

that a compact intensity cluster can still be generated in the voxel space. Possible corrections for this 

situation are the adaptation of the mapping function in various ways: on the one hand, the mapping 

functions for cam #1 can be corrected so that this camera is virtually moved back to its original 

position; for the present case, the accumulated disparity vector would be the inverse of the red arrow 

shown in Figure 1b to correct for the initial misalignment of cam #1. On the other hand, the mapping 

functions could be corrected for all cameras simultaneously, resulting in a situation represented by 

the black dashed lines. Note that both corrections lead to a perfect reconstruction of the particle. In 
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the latter case, however, the world coordinate system defined with the particle location is shifted 

relative to the cameras.  

2.1. The Shape of a Particle Reconstruction with Camera Mismatch 

The characteristic feature used in our method herein is the fact that—even in case of a 

mismatch—the Gaussian intensity profile of the disk-like original particle images preserves a 

spheroidal structure in the tomographic reconstruction and, furthermore, the back-projections of 

those reconstructions generate particle images with near-Gaussian intensity profiles again (along the 

major axes of the contour). This holds as long as the disparities are smaller than about half the particle 

diameter dP. A simulation of a synthetic Gaussian blob of an 𝑒−2 diameter of D = 30 vx in a voxel 

volume represents the situation of a 10-times super-resolved image of a typical tracer particle in the 

image plane. The intensity at the voxel position vx (i,j,k) = (Xvx,Yvx,Zvx) with a distance 𝑟 ≤ 𝐷/2 to the 

center of the blob at (X0,Y0,Z0) is calculated according to the following equation:  

𝐼(𝑣𝑥𝑖.𝑗.𝑘) =  𝐼𝑚𝑎𝑥 ∙  𝑒
(−2

𝑟2

𝐷2 4⁄
)
 (1) 

where 

𝑟2 = (𝑋𝑣𝑥 − 𝑋0)2 + (𝑌𝑣𝑥 − 𝑌0)2 + (𝑍𝑣𝑥 − 𝑍0)2 (2) 

The intensity distribution of the blob is mapped onto the cameras planes (magnification M = 1, 

perfect linear mapping functions equivalent to rectilinear parallel LOSs), leading to a particle image 

with a diameter of dP = 30 px with good spatial resolution to recover the details of the Gaussian 

intensity distribution of the original blob. From those images, the blob is again reconstructed using 

MART. The LOS calculation and the MART reconstruction follows the method of Kühne (2011) (see 

Appendix B). In all reconstructions, we use 10 iterations with a relaxation factor μ = 1. This represents 

the error-free reference situation. Then we shift the image in the left cam #1 stepwise to introduce a 

calibration error and reconstruct the voxel volume again. The result given in Figure 2 is shown in the 

horizontal median plane of the reconstruction. To emphasize the shape of the intensity distribution 

and the location of the intensity maximum, the images are represented as contours of constant 

intensity with constant incremental value. 

In the case of a perfect calibration (zero mismatch), the reconstructed blob has a spherical 

structure (circular in plan view) with a Gaussian intensity distribution, the maximum located at the 

geometric intersection of the LOSs, originating from the intensity centers of the particle images. When 

the left camera cam #1 is shifted to the right by an increasing number of pixels, this reconstruction 

increasingly deforms into an elliptical shape, shifting the intensity maximum further from the 

original center (see Figure 2b). Meanwhile, the location of maximum intensity always remains in the 

inner part of the triangle defined by the particles center LOSs. The limit of a successful reconstruction 

is a maximum displacement of the cam #1 on the order of ¾ of dP, at which a compact spheroidal 

contour can still be seen. The character of the Gaussian intensity distribution in the back-projections 

along the major axes of the particles is preserved to this extent of dislocation. This allows us to use 

sub-pixel analysis in the 2D cross-correlation procedure during the correction step documented in 

the next paragraph.  
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Figure 2. (a): Topview on the MART reconstruction of a simulated spherical Gaussian blob with a 

diameter of 30 vx, visualized via iso-lines of grey levels, using the camera configuration shown in 

Figure 1b at zero mismatch. (b): Topview after applying a shift mismatch ∆px1 = ¾ dP to cam #1. The 

triangles indicate the LOSs starting at the particle image centers for different pixel shifts ∆px of cam#1 

(blue: 1 dP, brown: ¾ dP, yellow: ½ dP, red: ¼ dP). The colored dots indicate the locations of maximum 

intensity for the different disparities. 

2.2. Cross-Correlation of Original Images with Back-Projected Images  

The correction is based on the comparison of the original image and the back-projection using 

the method of 2D cross-correlation. The peak in the correlation map provides the local shift-vector 

(disparity) between the center of the back-projected particle image relative to the representation of 

the particle in the original image. As the disparity might vary over the field of view, the procedure is 

done stepwise in small interrogation volumes (IVs), distributed in a 3D grid over the whole volume 

of interest, see Figure 3. Each IV is projected back into the image plane of all cameras. In the original 

images, interrogation windows (IWs) are built of a size and location that correspond to the back-

projection of the IV centers and box corners into the image plane. The IWs are then 2D cross-

correlated with the projections of the IVs and the resulting correlation maps are stored. The offset of 

the peak location relative to the center is then searched in the map to determine the disparity. Due to 

the contribution of images of particles behind or in front of the IV, the correlation map is affected by 
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random noise, which increases with increasing volume depth and particle number density. This 

random contribution is reduced by ensemble averaging the maps of different snapshots (or different 

IV in case the disparity is constant, e.g., if the cameras undergo only translational vibrations).  

 

 

Figure 3. Subdividing the voxel volume into a grid of smaller cuboids named interrogation volumes 

IV (a). Particles behind or in front of the interrogation volumes as shown in (b) influence the cross-

correlation in the image plane after local IV back-projection. 

2.3. Ensemble Averaging of Correlation Maps from Snapshots  

The typical procedure is to repeat several realizations of the calibration experiments (snapshots 

of statistically independent locations of the particles in the different realizations) and add the 

corresponding correlation maps at each IV (Figure 4). Alternatively, in case the disparity is constant, 

e.g., if the mismatch is due to translational vibrations of the cameras, the correlation maps of each IV 

can be added to each other, which requires only a single snapshot. By using this method, the random 

noise decreases and the peak is elevated against the background, which is known in another context 

as Ensemble Correlation [15]. As the image content is based on distributed Gaussian disks (the 

particle images), the peak location in the summed-up 2D correlation maps can be calculated with 

subpixel accuracy using a 2-D Gaussian fit of the peak. The importance of the ensemble averaging of 

the correlation maps is highlighted in the plot of the peak location for the example shown in Figure 
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1. The initial correlation map of a single IV (i = 1) in the series shows a dislocation of approximately 

−3 px in the x-direction and −3 px in the y-direction (see Figure 4b left), which is not physical at the 

given imposed mismatch for cam #1. After averaging of three maps, the peak is at −1.1 in the x-

direction and remains within a radius of 0.3 px for all further iterations. From the 10th iteration 

onwards, the position fluctuates around a position of −0.8 in the x-direction and 0.0 px in the y-

direction with a deviation of less than 0.05 px (see the red circle in Figure 4b (right)). This is an 

example of a fully converged solution and represents the local disparity which might be used for the 

initial correction. As shown later, the magnitude of this correction step depends on the particle 

density.  

 

 

Figure 4. Ensemble averaging of the correlation maps for the same IV and camera, obtained from 

different sets of particle calibration images. Adding the individual correlation maps to improve the 

peak elevation against the noise (a). The resulting peak location in (b) after each addition step i shows 

the convergence to the true correction value (total number of calibration experiments is 18, particle 

density 0.005 ppp, final correction −0.8 px in the x-direction, 0 px in the y-direction). 

2.4. Correction Steps  

Step 1: The initial voxel reconstruction is subdivided into a 3D grid of overlapping cubic voxel 

clusters of finite size (called interrogation volumes (IVs)). Alternatively, the volume reconstruction 

can be done in a piecewise fashion for all the IVs individually, which, however, is not very efficient. 

This subsampling addresses the fact that the correction might not be uniform across the entire 

volume. As the corrections affect the coefficients of the mapping functions and those are polynomials 

of second order in the direction of the depth, the recommended number of IV in the depth-direction 

along the Z-axis should be at least three. Correspondingly, the number along the X- and Y-axis should 

be minimum four for the third order polynomials in the image plane. Therefore, the number of IV in 

the voxel volume should be at least a 4 × 4 × 3 grid of IV. This ensures that the spatial resolution and 
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size of the interrogation volume (IV) are adapted to possible gradients in the disparity field. 

Ultimately, the disparity field is assumed to be a smoothly varying function in all three directions.  

Step 2: Perform the cross-correlation with the original image and the back-projected images 

(with masking of all intensity information outside of the IV).  

Step 3: Repeat the Steps 1–2 for an ensemble of calibration images, taken from different 

snapshots (only one single snapshot is necessary in case the disparity is constant in the field, e.g., for 

simple translational mismatch). Store the correlation maps for each center location of the pack-

projected IV in the image planes for all cameras and add all correlation maps of the ensemble. A 

sufficiently large number of snapshots needs to be taken to ensure that a sufficient number of 

ensembles with particles inside the IV contribute to the summation process (again, only a single 

snapshot is required if the disparity is constant in the field, the summation is then done with the maps 

of the different IVs). If you choose a denser grid and smaller size of IV as the one recommended in 

Step 1, more calibration images are required but this is no general shortcoming of the method 

proposed.  

Step 4: Finally, locate the peak position in the ensemble-averaged maps with sub-pixel accuracy 

and store these disparities for each position in the image plane that corresponds to the back-projected 

center of the IVs. This is done for all camera views. The disparities are not to be understood as the 

total deviation between initial calibration and fully error-free calibration. Rather, they indicate in 

which direction and by what amount a first step for the correction of the mapping functions should 

be taken. Therefore, we name these shift-vectors in the following correction steps for the given 

iteration.  

Step 5: Use a least-squares method to find the new parameter of the mapping functions from the 

additional disparities in the image plane for each center of IV (see Appendix B). Calculate the new 

LOSs and compute a new tomographic reconstruction with the updated mapping functions. As we 

use polynomial mapping functions, the refinement takes into account gradients in the correction field 

that may be caused by camera rotation or more complex mismatch.  

Repeat Step 1–5 until the residual (average of all cameras, or max. of all cameras) between two 

successive correction steps is below a pre-defined level, in the following we chose 0.1 px.  

2.5. Typical Iterative Correction Performance  

To illustrate the correction performance, we consider the example of an error in the mapping 

function, which is due to a change of the camera position (between initial calibration and 

measurement situation) and needs a refinement of the mapping functions to get back to an “ideal” 

error-free situation. Therefore, particle images in the original images (later called “zero-shifted 

images” in the simulation) do not match with the back-projections, as those are affected by using the 

wrong mapping functions in the MART reconstruction (in the simulation, this is done by introducing 

a “shift” mismatch on one camera in the MART, equivalent to changing a linear parameter in the 

mapping function of this camera). In a real laboratory environment, the “zero-shifted images” are the 

original images taken for the calibration refinement. The back-projections are affected by inaccuracies 

in the mapping functions and therefore the particle images in the back-projection and the original 

images do not exactly overlap. This is what we correct in the refinement method by changing the 

mapping functions until both overlap ideally. Synthetic particle fields are generated to test the 

convergence of the iterative procedure, applied to the simplified situation at Figure 1b. A thick voxel 

sheet (depth 160 vx, width 225 vx, height 11 vx) is generated and filled randomly with Gaussian blobs 

of diameter D = 3 vx to generate particle images with a density of 0.001 ppp. The acronym “ppp“ 

stands for particles per pixel area, which is typically used to describe the source density on the sensor 

plane depending on the number density of the particles in the 3D volume. The 2D area consumption 

of the projection of the particles is the dominant parameter determining the source density in the 

image plane. If this is too high because of a too large number of particles, the particle images tend to 

overlap. All centers of the particles lie in the horizontal mid plane at a height of 6 vx. The initial 

mapping functions are linear in the X,Y, and Z-directions, which assumes straight parallel LOS 

normal to the image planes (telecentric conditions) at a magnification of M = 1 without any optical 
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distortion. First, the equations for the LOSs are determined and the corresponding images of the 

camera setup are generated by back-projection (see Appendix B). The ground truth is then the MART 

reconstruction from these images. In a second step, a shift is introduced on cam #1, as indicated in 

Figure 1b, and a new voxel volume is computed based on this mismatch. Finally, the correction 

procedure is started by back-projection of the masked IVs and cross-correlation is done with the IWs 

in the original (zero-shifted) images. The same procedure can be repeated with different random 

arrangements of particles in the voxel sheet such that 10 correlation maps exist for each IV, which 

then are used for the ensemble average.  

Figure 5 shows the iterative correction procedure if only cam #1 with the largest disparity is 

corrected after each correction step (a) compared to the situation with all cameras corrected (b) 

simultaneous. Convergence for the first case is reached after five correction steps while the 

simultaneous correction already leads to an error-free situation after three iterations. As a side effect 

of the latter method, a shift of the Z-location of the measurement domain can happen, which has been 

discussed in another context by Cornic et al. [16]. The performance of the refinement process can be 

seen by comparing a top-view image of the MART reconstruction in the 11 vx thick sheet before 

correction and after correction (only cam 1) (see Figure 6). The number of ghosts is largely reduced 

and the shape of the particles gets more homogeneous and circular. The benefit of lower ghost level 

intensities for Tomo-PIV has been discussed, for instance, by Novara et al. in 2010 [17] and de Silva 

et al. [18]. In general, those ghost particles are typically generated in tomographic reconstructions of 

particle fields as a consequence of multiple crossings of LOSs. Therefore clusters of voxels are not 

only reconstructed at the true particle position but sometimes also in a smaller cluster nearby the 

original particle. A discussion of the influence of ghost particles was given in [19].  
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Figure 5. Disparity shifts in all three cameras after inducing an initial +3 px shift in cam #1 in positive 

direction along the Y-axis of the camera (see Figure 1b) (particle density 0.001 ppp). (a) correction 

done only for cam #1, (b): correction done simultaneously for all cameras in each step. 

 

Figure 6. Top view (X-Z plane) of MART reconstruction of particle field in the three-camera 

arrangement. (a) reconstruction with initial error in calibration (+3 px error-shift in cam #1), (b) 

reconstruction after final iteration step (correction only done for cam 1, Z-axis inverted, particle 

density in x-y-image plane 0.001 ppp). 

Further performance tests are done with the same three-camera configuration (error-shift on cam 

1 of +3 px in the x-direction and correction of this camera only) to investigate the influencing 

parameter and their importance for stable convergence. As performance criteria, we give the initial 

correction shift and the number of iterations until we reach a residual of less than 0.1 px relative to 

the error-free situation, remaining under this level for any further iteration. To better represent an 

experimental environment, one of the parameters is random noise, added to the images. After the 

particles are placed on the simulated image, the entire image is added with white noise; this is 

comparable to the real situation since it affects also the images of the particles. Typical conditions are 

zero-average white noise with a gaussian variance σ = 0.01, and a mean = 2 σ for images in the gray-

level range [0, 255]. As the typical procedure for self-calibration is image pre-processing to reduce 

those noise levels, we do the same herein and use a local average salt and pepper filter and a final 

Gaussian smoothing with a 3 × 3 kernel. Thereafter, a tomographic MART procedure (10 iterations 

and a dampening factor of 1) re-computes the voxel volume from these images. These volumes are 

then the ground truth, including possible ghosts and noise  

The results given in Table 1 show that the correction procedure still works with larger levels of 

noise at a variance σ = 0.02 and for particle densities as high as 0.008 ppp. Beyond that, the final 

residual starts to oscillate with amplitudes larger than 0.1 px around the error-free situation and 

therefore convergence is not achieved. This does not mean that the refinement is not successful, as 

the error after 10 iterations remains below an offset < 0.2 px. Another important factor is the angular 

displacement of the cameras. As expected, a larger angular displacement improves the performance, 

as the tomographic reconstruction of the particles is generated from a wider field of angular views 

and therefore the particles are represented more as spherical voxel clusters. Decreasing the angles 

leads to a stiffer behavior (more iterations are necessary) of the correction process because of the 

increasing tendency towards elongated shapes of the reconstructed clusters. Recalling that with 

smaller angular displacement the reconstructions get elongated in viewing direction, therefore the 

voxel space is filled with more voxels, which increases the tendency of ghosts. Regarding particle 

densities and noise levels for the lower angular displacement of 22°, the general trend remains the 

same; the results deteriorate with higher particle densities and higher noise levels. Therefore, we do 

not add additional data for this case in Table 1. 
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Table 1. Parameter study of performance sensitivity to particle density, angular displacement and 

noise level for a three-camera arrangement in the same plane as defined in Table A1 and Appendix 

A. 

Particle 

Density 

ppp 

Angular 

Displacement of 

Cam #1 and Cam #3 

Noise 

Level 

Variance  

Initial Correction 

Step of Cam 1 

(from +3 px Error-

Shift) 

Minimum Number of 

Ensemble Additions to 

Achieve Peak Position 

within 0.1 px Radius 

Iterations to 

Correct Cam #1 

Down to 0.1 px 

Offset 

0.001 ±45° 0 −1.1 4 5 

0.003 ±45° 0 −1.0 6 7 

0.005 ±45° 0 −0.8 10 9 

0.008 ±45° 0 −0.4 20 13 

0.010 ±45° 0 −0.3 22 - 

0.001 ±22° 0 −0.6 4 10 

0.001 ±45° 0.00 −1.1 3 5 

0.001 ±45° 0.01 −0.6 6 7 

0.001 ±45° 0.02 −0.5 10 10 

0.001 ±45° 0.03 −0.6 20 - 

2.6. Treating Larger Mismatch with Image Pre-Processing Using Gaussian Blur  

We assume a very large mismatch of cam #1, which is larger than the particle image diameter 

dP of a single particle. Without further processing of the original images, no tomographic 

reconstruction of the particle would be possible. In order to deal with this situation, the images can 

be pre-processed with a Gaussian blur so that the particle diameter dP is artificially enlarged. The 

larger the diameter of the kernel, or the more often the kernel is applied to the image successively, 

the higher the probability to successfully reconstruct a first, rough representation of the particle in 

the voxel space. However, as this enlargement of the particle diameter also introduces a higher 

probability of ghosts, it should only be applied to the first correction step and selecting only the 

brightest particles in all camera views. The processing is done in a hierarchical manner, starting with 

artificially enlarging the particle images in all camera views via image pre-processing (e.g., blurring 

with a Gaussian 5 × 5 px kernel). The first correction typically leads to a 50% reduction in the average 

disparity, which then offers to reduce the blur kernel size stepwise and using more particle images, 

until ending with using the original images in the further iterations. This will provide maximum 

accuracy without affecting the quality of the reconstructed particles in the final result. 

3. Numerical Assessment  

A synthetic four-camera cross type configuration is considered as a more general case of camera 

arrangement (and possible dislocation in different planes) (see Appendix A, Table A2). The 

performance of the VCR is tested for different seeding densities, particle image diameters dP and IV 

sizes to assess the capabilities of this method. In addition, synthetic data for a Hill-type velocity field 

are applied to move the particles in the voxel volume and investigate the performance of the VCR on 

the final velocity results of 3D PIV velocity fields. The cameras are in cross-type arrangement with 

±45° angular displacement in the horizontal and vertical plane and have a distance of 610 mm from 

the volume center (X,Y,Z) = (0,0,0). They observe a simulated volume of 75 × 45 × 27 mm3 with a 

simulated camera resolution of 800 × 500 pixels on a 2/3 inch sensor at a magnification of 1:5. The 

length of one voxel equals 0.1 mm in physical space. The synthetic volume is filled randomly with 

Gaussian blobs of a given diameter D (𝑒−2 diameter) and number density to achieve a specified 

particle image diameter dP and ppp density. The initial mapping functions are linear functions in the 

X,Y, and Z-directions, simulating the situation of an ideal pinhole imaging system with no distortion 

(generated with the Soloff polynomials and the LOSs are calculated therefrom). The particle image 

diameter dP is directly proportional to D and is varied in this study by choosing different blob 

diameters. Initial images are generated from these voxel volumes by back-projection. Again, white 

noise is added to the images and thereafter image pre-processing is done (local salt and pepper filter 

and Gaussian smoothing with a 3 × 3 kernel). A tomographic MART procedure (10 iterations and a 

dampening factor of 1) re-computes the voxel volume from these images. These volumes are then the 
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ground truth. All cameras are corrected simultaneously and the norm of all disparity vectors of all 

IV and all cameras is taken as an indicator of the overall performance of the system.  

3.1. Influence of Particle Image Diameter and Seeding Density 

The standard settings for the VCR in this case are image sets of five snapshots for each camera 

with a particle diameter of dP = 2 px at a seeding density of 0.0025 ppp, all generated with the above-

described procedure. The total volume is subsampled in a mesh of cubic IVs with equidistant spacing 

in each direction such that the complete volume is covered. For a standard IV size of 80 × 80 × 80 vx, 

a set of 9 × 5 × 3 positions are generated. To introduce a possible calibration mismatch, cam #2 is 

moved for 0.4 mm in the y-direction (corresponding to a linear shift of 4 pixel). The calculated 

correction shift in cam #2 to reduce the initial mismatch in each iterative step is plotted in Figure 7 

for the different parameters of particle image diameter (a), particle density (b), number of images for 

ensemble averaging (c) and interrogation volume size (d).  

Figure 7a shows a re-configuration back towards a near error-free situation after four iterations 

for a particle diameter dP between 1.5 and 3 px. All final correction shifts show a residual in the range 

between 0.023 and 0.052 px. In comparison, for very small dP = 1.2 px, the refinement fails because of 

peak locking effects influencing the correction steps. At low seeding densities in the order of 0.001–

0.0025 ppp, the correction is nearly complete with only a single image, once there are at least 1–2 

particles in each of the IVs. The general rule is the more images that are used, the smaller the residual 

becomes (not shown here). Generally speaking, using three to five images for the ensemble averaging 

is a good compromise between computational costs and accuracy under these conditions. Also, the 

size of the interrogation volume has an influence on the process. Figure 7d shows that an IV size of 

30 × 30 × 30 vx seems to be sufficient for the given seeding density of 0.0025 ppp; however, there is a 

risk of drop-out of particles in some of the IVs. The correction improves for larger IV sizes, though it 

reduces the spatial resolution. A typical size of 50 × 50 × 50 vx with five snapshots is a good 

compromise to also capture stronger gradients in the correction field.  
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Figure 7. Variations of different parameters to assess performance and ideal parameters to run the 

calibration refinement (a) particle diameter (b) particle density (c) number of images (d) interrogation 

volume size. If not varied, particle diameter dP = 2 px, particle density = 0.001 ppp, number of 

snapshots = 5, IVSize = 50 × 50 × 50 vx. The disparity shown here is the norm of all disparities for all IV 

and all cameras. 

3.2. Influence of Errors on All Cameras  

In a typical experimental environment, more than one camera may change its position. 

Therefore, in the second test, case errors are introduced in all four cameras. Relative to the error-free 

situation, the top and right cameras are moved up by 0.5 mm (five pixels). Similarly, the bottom and 

the left cameras are shifted 0.5 mm to the right (five pixels). This leads to a maximum potential 

calibration error of more than nine pixels. To tackle this possibly large disparity, all images are pre-

processed initially with a Gaussian blur (5 × 5 kernel) as described in §2.6 and hierarchical processing 

with stepwise reduction of the kernel size in each iteration step is done (3 × 3 kernel in the second 

step; from the third step on the original images are used). A number of five snapshots are taken and 

the IVs have a size of 80 × 80 × 80 vx with a mesh resolution of 9 × 5 × 3 positions. For the refinement, 

all cameras are corrected simultaneously in each iteration step. The results (not shown here) 

demonstrate that, within four iterations, the average disparity drops from 1.5 pixel to well below 0.1 

pixel. This performance is not much different from the previous one where the error mismatch was 

only introduced to one camera. In addition, it proves that the Gaussian blur offers to correct for larger 

disparities without loss in convergence.  

3.3. Performance Tests with Synthetic Velocity Data  

Testing the full performance of this refinement method for 3D Velocimetry applications, voxel 

fields are generated with particles shifted over several time-steps. Gaussian blobs of D = 3 vx are 

displaced in the cartesian world coordinate system (X,Y,Z) according to a given steady flow field 

(Hill-type vortex of Radius R = 120 vx, see Appendix C and [20]). The simulation conditions are the 

same as in §3.1, §3.2 (see Appendix A, Table A2). The characteristic velocity U0 of the vortex ring is 

adjusted such that the particle shift between successive timesteps corresponds to a displacement of 5 

vx. The simulated flow is transferred into the observed-fixed reference system where the vortex is 

traveling from bottom to top with a velocity of U0 and the outer velocity at infinity is zero. The 

synthetic voxel fields are filled with a higher seeding density, leading to typical particle image 

densities of about 0.045 ppp in the images. The initial and the refined calibrations described in §3.2 

are used to reconstruct the voxel spaces back from the generated images. In a final step, pairs of voxel 

spaces are analyzed by 3D least squares matching (3D LSM, see Westfeld et al. [21], Maas et al. [22]) 

to generate the velocity vector maps of the Hill-type vortex (LSM conditions: cuboids of 30 × 30 × 30 

voxel elements with a 50% overlap in all directions) (see Figure 8). The final result is a vector field of 

51 × 31 × 19 vectors in the volume, transformed back into the right-handed Cartesian coordinate 
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system (X,Y,Z) with the components (U,W,W). For VCR, the iso-surfaces of constant Q-criteria, a 

vortex detection method (see Hunt et al. [23]), shows a clear reconstruction of the vortex torus, which 

largely improved the results with the initial calibration (with the artificial camera mismatch). Figure 

8b highlights the differences between the initial and refined calibration. The mismatch mainly affects 

the regions of higher velocity, which could not be reconstructed in the inner of the sphere.  

 

Figure 8. Comparison of the 3D LSM results for error-free calibration (rendered), initial calibration 

with artificial camera mismatch and after VCR of the initial calibration. (a) isosurfaces of Q-Criteria 

showing the torus of the vortex ring, with color-coded velocity magnitude in the center-plane at Z = 

0. (b) velocity vector field in the X-Y plane crossing the center of the vortex ring (Z = 0). 

The histograms of vector differences relative to the rendered case are plotted in Figure 9. The 

distributions are approximately symmetric to zero and similar to a Gaussian profile with the peak in 

the center. For the VCR results, less than 0.1% of all vectors show a deviation larger than 0.1 vx and 

the distribution has a smaller variance with a sharp peak. In comparison, one order of magnitude 

higher percentage of vectors (1%) show a deviation of more than 0.1 vx difference for the initial 

calibration. In addition, the statistical values also improve; for instance, the standard deviation 

changes from 0.04 vx in the case of the initial calibration down to 0.01 vx in the refined calibration.  
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Figure 9. Histogram of the differences in U, V and W components to the analysis of the rendered 

volume (error-free calibration). Results are shown as voxel shift from one to the next time-step (for 

the characteristic velocity U0 of the vortex ring, the shift is 5 vx). 

4. Performance Tests with Experimental Data 

To verify that the method proposed in this paper is also suitable for real-world experiments, a 

3D jet flow experiment was studied with Tomo-PIV. The flow was investigated in a small water tank 

with a polygonal cross-section (see Figure 10). The jet emits in vertical direction downwards from a 

nozzle (orifice diameter of 12.36 mm) submerged in the upper water level with. The jet velocity at the 

orifice was approximately U0 = 0.23 m/s, resulting in a jet Reynolds-number of approximately 2830. 

Under these conditions, the jet was in the transitional regime, where large-scale vortical structures 

still dominate the flow field in 3–4 jet diameters down of the orifice. The flow was measured by a set 

of four Speed-Sense M 310 (1280 × 800 px) cameras in an in-line configuration (see Table A3 in 

Appendix A). A DualPower 30–1000 Laser was used to illuminate a 10 mm thick light volume located 

along the middle of the tank in the vertical direction of the jet. This camera configuration yielded a 

resolution of approximately 15 px/mm. As tracer particles, hollow glass spheres (S-HGS-10 particles, 

Ø = 10 µm, Dantec Dynamics) were added to the water. In the following, we illustrate the 

improvement against the “standard” calibration often used in stereo PIV and Tomo-PIV is the so-

called Soloff calibration method [1], where targets with known coordinates in 3D space are recorded. 

Herein the initial calibration was done with a dotted calibration target moving along the Z-axis and 

taking images at different positions. For the refinement step, it is possible to use either (a) extra 

particle recordings at lower particle density or (b) the original recordings for 3D PTV or Tomo-PIV 

with high particle density after filtering the images such that only the brightest particle images in all 

camera views remain. Herein, for refinement a set of five snapshots was taken with low particle 

density of 0.001 ppp. Then, the particle image density was increased to about 0.045 ppp and up to 

4000 individual images were recorded with a repetition rate of 1 kHz for the Tomo-PIV processing. 

The raw images were processed by subtracting the background, performing a sliding minimum 

thresholding, and smoothing with a 3 × 3 Gaussian kernel.  
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Figure 10. (a) Front view picture of the 4-camera setup recording the vertical jet in the water tank, (b) 

top view of the tank with polygonal cross-section to ensure that the surfaces are parallel to the image 

planes to avoid further optical distortion. The jet axis is at the center in vertical direction into the paper 

plane, which corresponds to the long axes of the cameras. 

A volume of 27 × 65 × 27 mm3 was reconstructed with the initial calibration and after applying 

the VCR method described herein (five snapshots, IVs have a size of 50 × 50 ×50 vx with a mesh 

resolution of 3 × 6 × 3 positions). Velocity field processing was done using the 3D least square 

matching method with cuboids of 30 × 30 × 30 vx voxel elements with a 75% overlap in all directions. 

The result is a vector field of 30 × 100 × 30 vectors in the volume. Figure 11 shows an instantaneous 

snapshot of the velocity field. The vectors in the center slice show a nearly complete removal of 

outliers after VCR and a smooth field. In addition, the reconstructions of the surfaces of constant Q-

value show less spotty appearance of smaller isosurfaces and stronger coherence of the structures, 

which agrees with the observations made for the simulated Hill-type vortex. 

 

Figure 11. Comparison of the 3D LSM results for initial “standard” calibration and after VCR. (a) 

velocity vector field in the X-Y plane crossing the center of the jet (Z = 0). (b) isosurfaces of constant 

Q-value (Q = 1000) showing a row of two successive vortex rings in the jet. 
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5. Conclusions  

This study presents a new approach to enhance or refine an initial multi-camera calibration 

based on particle images. It is based on a statistical approach using the tomographically reconstructed 

particles and their back-projected images in the image planes. The initial total volume, represented 

as a voxel-based grid, is generated from the parameters of an initial classical calibration procedure. 

This volume is subdivided into smaller cuboids (Interrogation Volumes IV) for each of which a back-

projection into the camera planes is calculated. Intensity information outside of the IV are blanked 

out and the resulting back-projections are 2D cross-correlated with the original images around the 

center of the IV. The offset of peak location (relative to the center) in the correlation map represents 

the local average disparity assigned to the IV. The mapping functions between image and world 

coordinates are then corrected in an iterative procedure improving the correspondence. Based on the 

numerical assessment with synthetic images, a typical refinement process converges after five 

iteration steps down to residual disparities less than 0.1 px for all cameras. The experimentally tested 

configuration is an arrangement of four cameras observing the scene from one side, which is a typical 

set-up for 3D PIV applications.  

All MART reconstructions herein use the splatting method with a spherical interpolation filter 

(linear radial filter) with the radius of one voxel size [14]. For a simulated reconstruction of a spherical 

blob (reconstructed from particle images with circular Gaussian intensity distribution), it was shown 

that the character of the reconstruction remains of spheroidal shape, even if larger disparities of order 

of 3/4th of the particle diameter are introduced in the mapping functions. As the intensity distribution 

in the back-projections preserves the Gaussian character, the 2D cross-correlation maps can be 

analyzed with sub-pixel accuracy using the classical 3-point Gaussian fit along the X- and Y-axis to 

determine the subpixel shift, as it is standard in PIV. The ensemble averaging of the correlation maps 

further reduces the effect of noise, and the sub-pixel peak analysis can reach an accuracy of better 

than 0.05 px disparity shift in the image plane. Therefore, it is a powerful tool to largely refine a given 

initial camera calibration, which typically can have mismatches in the order of 2–3 px. 

The proposed method can also cope with de-calibrations well above 10 pixels (especially for low 

seeding densities). The processing is done in a hierarchical manner, starting with only the brightest 

particles and artificially enlarging the particle images in all camera views via image pre-processing 

(e.g., blurring with a symmetric Gaussian kernel). The first correction typically leads to more than 

50% reduction in the average disparity, which then offers to reduce the blur kernel size stepwise until 

the original images are used in the remaining iteration steps. This will provide maximum accuracy 

without affecting the quality of the reconstructed particles for the final results. 

The parametric study was conducted on parameters affecting the refinement procedure such as 

the particle image density, the camera viewing angles, the particle image diameter, and the IV size. 

For successful convergence, sufficiently large particle diameters of order dP = 3 px (minimum > 1.5 

px) and particle image densities of order of 0.005 ppp are preferable. Larger noise levels affect the 

convergence of the process, which can be overcome either by image pre-processing or increasing the 

number of snapshots. A higher angular displacement of the cameras improves the performance, as 

the tomographic reconstruction of the particles is generated from a wider field of angular views and 

therefore the particles’ representation in the voxel cluster gets closer to spherical blobs. When 

decreasing the angles, the correction process gets stiffer (needs more iteration steps) because of the 

increasing tendency to deform towards elongated spheroidal shapes. 

The procedure can tackle spatially varying disparities as we use polynomials for the mapping 

functions (second order polynomials in the depth-direction and third order in the frontal plane). The 

grid of local IV should have at least three rows in the depth-direction to provide enough information 

of varying disparity with depth. For a standard IV size of 50 × 50 × 50 vx, a set of 4 × 4 × 3 positions 

provide enough data points to determine the coefficients of the polynomials, also addressing lens 

distortion and other non-linear effects. The least-squares method to find those coefficients assumes 

that those changes are smooth in all three coordinate directions and over the complete field of view. 

If the calibration mismatch can be assumed only because of camera vibrations (linear translations), a 
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single snapshot is sufficient because the correlation maps of several IW in the field can be used for 

the ensemble average (instead of several snapshots).  

The study of the entire process from calibration over the volumetric reconstruction to the final 

vector analysis using 3D LSM routines shows the performance of the new refinement method. In the 

synthetic case, a disparity of more than nine pixels in length was corrected to an average disparity 

error in the range of 0.05 pixel, despite the added noise of the simulated particle images. After VCR, 

a clear reduction in erroneous vectors is seen, where only 0.1% of vectors having a difference of larger 

than 0.1 vx in the displacement from one time-step to the other. The present method was validated 

through a Tomo-PIV experiment on a jet flow with a four-camera configuration. While the unknown 

mismatch in the original data set shows a relatively large number of erroneous vectors, the refined 

calibration can bring the number of erroneous vectors down to <1% and shows a much more 

homogeneous flow field. This experiment confirms the performance of the refinement in reducing 

noise in terms of erroneous vectors and measurement errors. Currently, the refinement took in total 

10 min on an Intel quad-core i7-3770K for the given four-camera setup. With the continuously 

growing computing power of GPU-hardware and specially designed algorithms for parallel 

computing of the iterative tomographic reconstruction, the presented method can further largely 

improve in processing run-time. We clearly showed an alternative way to calibrate a camera system 

with very high precision. This is a novel method not described before and has the potential for 

automatization, as it is not based on the triangulation of individual particles. This is a very important 

feature for future autonomous imaging systems.  

Author Contributions:  CB, DH and BW developed the concept. CB developed and wrote the code, CB and DH 

run parametric tests. DH did the experiments. First draft was written by CB, DH and BW. Final improvements 

and corrections were done by CB and DH. All authors have read and agreed to the published version of the 

manuscript. 

Funding:  This research received no external funding. 

Acknowledgments: The Authors thank Nicolai Fog Gade-Nielsen for implementing the basic routines into 

DynamicStudio. The position of Professor Christoph Bruecker as the BAE System Sir Richard Olver Chair and 

the Royal Academy of Engineering Research Chair (RCSRF1617\4\11) is sponsored by both agencies jointly, 

which is gratefully acknowledged herein.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Camera settings for methodological simulations. 

 Cam #1 Cam #2 Cam #3 Cam #4 

Camera size full width × 

height (px)  
250 × 250 250 × 250 250 × 250  

Camera alpha α α1 = −45° α2 = 0° α3 = +45°  

Camera beta β β1 = 0° β2 = 0° β3 = 0°  

Camera pixel size (µm) 10 10 10  

Magnification (mm/vx) 1/10 1/10 1/10  

pixel to voxel ratio 1 1 1  

Lens configuration  Ideal telecentric Ideal telecentric Ideal telecentric  

Initial mapping function Ideal rectilinear Ideal rectilinear Ideal rectilinear  

Initial camera error 

translational  
Δpx = +3 - -  

Initial camera error 

rotational  
Δγ1 = 0° - -  

Refined mapping and 

LOS equation 

3rd order X,Y 2nd 

order Z 

3rd order X,Y 2nd 

order Z 

3rd order X,Y 

2nd order Z 
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Table A2. Camera settings for parametric simulations. 

 Cam #1 Cam #2 Cam #3 Cam #4 

Camera size full 

width × height (px)  
800 × 500 800 × 500 800 × 500 800 × 500 

Camera alpha α α1 = 0° α2 = +45° α3 = 0° α4 = -45° 

Camera beta β β1 = −45° β2 = 0° β3 = +45° Β4 = 0° 

Camera pixel size 

(µm) 
10 10 10  

Magnification 

(mm/vx) 
1/10 1/10 1/10 1/10 

pixel to voxel ratio 1 1 1 1 

Lens configuration  Ideal pinhole Ideal pinhole Ideal pinhole Ideal pinhole 

Initial mapping 

function 
Ideal rectilinear Ideal rectilinear Ideal rectilinear Ideal rectilinear 

Initial camera error 

translational (px) 
Δpy = +5 Δpy = +5 Δpx = −3 Δpx = −3 

Initial camera error 

rotational  
Δγ1 = 0° - - - 

Refined mapping and 

LOS equation 

3rd order X,Y 

2nd order Z 

3rd order X,Y 

2nd order Z 

3rd order X,Y 

2nd order Z 

3rd order X,Y 

2nd order Z 

Table A3. Camera settings for experiments. 

 Cam #1 Cam #2 Cam #3 Cam #4 

Camera size full 

width × height (px)  
1280 × 800 1280 × 800 1280 × 800 1280 × 800 

Camera alpha α α1 = -33.75° α2 = -11.25° α3 = 11.25° α4 = 33.75° 

Camera beta β β1 = 0° β2 = 0° β3 = 0° β4 = 0° 

Camera pixel size 

(µm) 
20 20 20 20 

Magnification 

(mm/vx) 
1/10 1/10 1/10 1/10 

pixel to voxel ratio 1:1.1 1:1.1 1:1.1 1:1.1 

Lens configuration  Zeiss 100 mm Zeiss 100 mm Zeiss 100 mm Zeiss 100mm 

Initial mapping 

function 
Soloff Soloff Soloff Soloff 

Initial camera error 

translational  
unknown unknown unknown unknown 

Initial camera error 

rotational  
unknown unknown unknown unknown 

Refined mapping and 

LOS equation 

3rd order X,Y 

2nd order Z 

3rd order X,Y 

2nd order Z  

3rd order X,Y 

2nd order Z  

3rd order X,Y 

2nd order Z  

Appendix B 

The polynomial describing the mapping function is third order in the X- and Y-direction, while 

it is second order in the Z-direction. The 3D polynomial then reads �⃗� = �⃗�(�⃗�) = [ 𝐹𝑥(�⃗�), 𝐹𝑦(�⃗�)] with 

𝐹𝑥(�⃗�) = 𝑎𝑥0 + 𝑎𝑥1𝑋 + 𝑎𝑥2𝑌 + 𝑎𝑥3𝑍 +  𝑎𝑥4𝑋2 + 𝑎𝑥5𝑋𝑌 + 𝑎𝑥6𝑌2 + 𝑎𝑥7𝑋𝑍 + 𝑎𝑥8𝑌𝑍

+ 𝑎𝑥9𝑍2 + 𝑎𝑥10𝑋3 + 𝑎𝑥11𝑋2𝑌 + 𝑎𝑥12𝑋𝑌2 + 𝑎𝑥13𝑌3 +  𝑎𝑥14𝑋2𝑍

+ 𝑎𝑥15𝑋𝑌𝑍 + 𝑎𝑥16𝑌2𝑍 + 𝑎𝑥17𝑋𝑍2 + 𝑎𝑥18𝑌𝑍2 

(B1) 

And 
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𝐹𝑦(�⃗�) = 𝑎𝑦0 + 𝑎𝑦1𝑋 + 𝑎𝑦2𝑌 + 𝑎𝑦3𝑍 + 𝑎𝑦4𝑋2 + 𝑎𝑦5𝑋𝑌 + 𝑎𝑦6𝑌2 + 𝑎𝑦7𝑋𝑍

+ 𝑎𝑦8𝑌𝑍 + 𝑎𝑦9 𝑍
2 + 𝑎𝑦10𝑋3 + 𝑎𝑦11𝑋2𝑌 + 𝑎𝑦12𝑋𝑌2 + 𝑎𝑦13𝑌3

+  𝑎𝑦14𝑋2𝑍 + 𝑎𝑦15𝑋𝑌𝑍 + 𝑎𝑦16𝑌2𝑍 + 𝑎𝑦17𝑋𝑍2 + 𝑎𝑦18𝑌𝑍2 

(B2) 

The unknown coefficients are determined from a least-squares procedure with the 

corresponding calibration target positions in the world and camera coordinates. This is the typical 

procedure for the initial calibration. The successive correction steps use the calculated disparities ∆x⃗⃗ 

in the image plane at the back-projected centers of the IV to up-date the coefficients. Therefore, the 

procedure can tackle spatially varying disparity, as illustrated in Figure A1 below. However, the 

least-squares procedure to determine the mapping coefficients assumes that those changes are 

smooth in all three coordinate directions and over the complete field of view. Thus, it could handle 

the case of looking through a 3D-curved surface, while a localized irritation of the surface cannot be 

corrected. The inverses of the mapping functions describe the LOSs, which are calculated for each 

pixel in the image plane and are polynomial functions of second order in the Z-direction. The 

procedure is performed by walking through different depth-layers Z = const and searching for the 

coordinate pairs (X,Z) and (Y,Z) where the mapping function points to (Fxi,Fyi) in the image plane. 

The corresponding coordinates for the different Z-layers are then used to calculate the polynomials  

𝑋𝐿𝑂𝑆(𝑍, 𝑥) = 𝑏𝑥0 + 𝑏𝑥1𝑍 + 𝑏𝑥2𝑍2 (B3) 

And 

𝑌𝐿𝑂𝑆(𝑍, 𝑦) = 𝑏𝑦0 + 𝑏𝑦1𝑍 + 𝑏𝑦2𝑍2 (B4) 

For each pixel and each camera by least-squares fitting.  

 

Figure A1. Illustration of mapping functions with non-linear contribution due to spatially 

varying disparity, illustrated by the inverse of mapping, which is the LOS progressing 

through the volume in a curved path. 

The calculation of the MART reconstruction follows the method described in Mueller (1998) [24] 

via the so called raycasting or splatting procedure. As shown in his work, the splatting procedure is 

more accurate and is therefore used herein. The LOSs are required to run the ray-driven splatting 

algorithm which is used to determine the weighting factors in the forward and backward projection 

integrals of the MART with the forward projection calculated as  

𝐴𝑖 =  ∑ 𝑤𝑖,𝑗  ∙ 𝐸(�⃗�𝑗)
𝑘

𝑗𝜖𝑁𝑖

 (B) 

The backward projection is calculated with 
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𝐸(�⃗�𝑗)
𝑘+1

 = 𝐸(�⃗�𝑗)
𝑘

[
𝐼(�⃗�𝑖)

𝐴𝑖
]

𝜇∙𝑤𝑖,𝑗

 (B6) 

N is the number of voxels, which contribute to the integral of the pixel i, and wi,j are the 

weighting factors.  

It is important to note that the calculation of the weighting factors requires the definition of a 

spherical filter kernel (radial basis function), the radius of which is the size of a voxel and centered 

with the position of the voxel. The maximum is at the center and it drops linearly to zero at the edge 

of the sphere. The integration of the intensity along the line of the LOS through the spherical kernel 

then provides the value of the weighting factor. Further details are given in Kühn (2011) [14]. 

Appendix C  

The Hill-type vortex ring is an exact solution of the Navier–Stokes equations with a spherical 

vorticity distribution, see Batchelor (1967) [20]. In the simulations herein, the center of the vortex ring 

of Radius R is in the center of the volume at (X,Y,Z) = (0,0,0) and its travel axis is aligned in the vertical 

Y-direction. A cylindrical coordinate system is defined with 𝑢𝑟 the radial component (in the X-Z-

plane) and 𝑢𝑌 the axial velocity component (in the Y-direction) as well as r = √𝑋2 + 𝑍²  and h = Y 

and 𝜃 = 𝑡𝑎𝑛−1(𝑍 𝑋⁄ ). For the inner part of the ring vortex at 𝑟2 + ℎ² ≤ 𝑅² the velocity components 

calculate to:  

𝑢𝑟 =
3

2
𝑈0  

𝑟 ℎ

𝑅2
 (C1) 

𝑢𝑌 =
3

2
𝑈0 (1 −

2𝑟2 + ℎ2

𝑅2
) (C2) 

In the outer part with 𝑟2 + ℎ² > 𝑅²  the velocity components are defined as: 

𝑢𝑟 =
3

2
𝑈0

𝑟 ℎ

𝑅²
(

𝑅²

𝑟2 + ℎ²
)

5/2

 (C3) 

𝑢𝑌 = 𝑈0 (
2ℎ2 − 𝑟²

2𝑅2
− 1) (

𝑅²

𝑟2 + ℎ²
)

5/2

 (C4) 

The simulated flow is transferred into the observer-fixed reference system where the vortex is 

travelling from bottom to top with a velocity of U0 and the outer velocity at infinity is zero 

(subtracting −U0 from the Equations (C2) and (C4)).  
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