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Abstract: Based on elasticity theory, this paper discusses the static analysis of a cracked double-beam
system in the presence of a Winkler-type medium. It is further assumed that the double-beam
system is constrained at both ends by elastically flexible springs with transverse and rotational
stiffness. Using a variational formulation, the governing static equations are derived and solved
using analytical and numerical approaches. In the first approach, closed-form solutions for the
displacement functions are obtained based on the Euler–Bernoulli beam theory. In the second
approach, the Cell Discretisation Method (CDM) is performed, whereby the two beams are reduced
to a set of rigid bars connected by elastic constraints, in which the flexural stiffness of the bars is
concentrated. The resulting stiffness matrix is easily deduced, and the governing equations of the
static problem can be immediately solved. A comparative analysis is performed to verify the accuracy
and validity of the proposed method. The study focuses on the effect of various parameters, including
crack depth and position, boundary conditions, elastic medium and slenderness. The validity of
the proposed analysis is confirmed by comparing the current results with those obtained from other
approaches. In particular, the results obtained by closed-form solution and CDM are compared with
the Finite Element Method (FEM). The accuracy of the results was assessed by making comparisons
with results found in the literature and reported in the bibliography. It was shown that the proposed
algorithm provides a simple and powerful tool for dealing with the static analysis of a double-beam
system. Finally, some concluding remarks are made.
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1. Introduction

The literature on the mechanical behaviour of beams is very rich. In most early works,
the solutions presented in the literature can be divided into theoretical and numerical.
In this context, there are numerous studies on the evaluation of bending, buckling, post-
buckling and vibration behaviours of beams using the Euler–Bernoulli and Timoshenko
models [1–10].

It is known that the structural behaviour of beams is sensitive to the presence of
cracks. In a beam, their presence introduces a localised increase in bending flexibility,
which can lead to excessive deflections and unexpected failures. Given their practical
relevance, many studies have been conducted to explore the static response to deflection
and vibration of beams with different boundary conditions and resting on various elastic
foundations [11–17]. Some of the works are cited herein. In [11], Biondi and Caddemi stud-
ied the problem of integrating the governing static equations for uniform Euler–Bernoulli
beams with two kinds of discontinuity and presented closed-form solutions of the gov-
erning differential equations. Cicirello and Palmeri [12] dealt with the static analysis of
pre-damaged Euler–Bernoulli beams with any number of unilateral cracks and subjected to
tensile or compressive forces combined with arbitrary transverse loads. Khaji et al. in [13]
developed an analytical approach for the crack identification procedure in uniform Tim-
oshenko beams with an open-edge crack, based on bending vibration measurements.
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Ghannadiasl and Khodapanah in [14] presented an analytical solution of the dynamic anal-
ysis of a cracked Euler–Bernoulli beam on an elastic foundation subjected to a concentrated
load. Furthermore, the effects of crack depth and position on the natural frequency and
deflection of the cracked beam on an elastic foundation were evaluated. In his doctoral
thesis [15], Batihan addressed the transverse vibration of a cracked beam on an elastic
foundation and presented the effect of crack and foundation parameters on the natural
frequencies of transverse vibration. Yang et al. studied the bending deformation of Timo-
shenko beams with switching cracks and evaluated the influence of beam slenderness ratio,
crack depth and external load on the cracking state and bending performance of the cracked
beam [16]. Finally, Alijani et al. studied the static behaviour of cracked Euler–Bernoulli
beams resting on an elastic foundation by applying analytical, approximate and numerical
approaches [17].

Although single beam models under various types of loads and boundary conditions
are the most studied structural solutions, they cannot be used in many engineering ap-
plications, such as sandwich or composite beams, nanostructures, bonded joints, floating
rails and continuous dynamic vibration absorbers. Based on these assumptions, double-
beam systems have attracted much attention from researchers and engineers and play an
important role in many fields of structural and foundation engineering.

Double-Beam System (BS) models are structural models consisting of two parallel
beam structures interconnected by a uniformly distributed elastic layer, generally regarded
as an elastic Winkler medium. It is assumed that the beams are governed by beam theory
and that the elastic layers are represented by elastic foundation models. Due to their
remarkable structural properties, such as better vibration absorption than a single beam,
lower weight and greater strength and stiffness, they have led to an explosion of interest
within the scientific community. As a result, recent years have seen progressive research
activities on BS, which has been widely used in many fields of engineering. For example,
special configurations of multiple-pipe systems and underground auxiliary structures
(e.g., passage and drainage systems) can be represented by models of double beam (BS)
systems. In the field of civil engineering, this system helps to reduce earthquake energy,
and many vibration absorbers have been developed on the basis of this special feature.
Although the static and vibration analysis of beams resting on elastic foundations is a
widely studied topic, little work can be found in the literature on the static analysis of
elastically connected systems. In this sense, by applying theoretical and numerical methods,
some significant results have been obtained in the study of beams and nanotubes [18–23].

This paper deals with the static analysis of a double-beam system with uniform
cracking in the presence of a Winkler medium. It is further assumed that the structure is
constrained at both ends by elastically flexible springs with transverse and rotational stiff-
ness. The energy principle is formulated for the static analysis of the double-beam system,
and the governing equations are solved analytically and numerically. The Cell Discretisa-
tion Method (CDM) is used to discretise and solve the governing equations and boundary
conditions. This numerical method has already been used by the authors of [23–26], Raithel
and Franciosi [27] and Franciosi and Franciosi [28] for various structural problems. The
analysis is performed by reducing the two beams to a set of rigid bars connected by elastic
sections (elastic cells), in which the beam stiffness is appropriately concentrated. In this
way, the structure is reduced to a system with a finite number of degrees of freedom, and
the global stiffness matrix can be easily calculated.

Numerical examples are then provided to demonstrate the reliability and effectiveness
of the current model. Furthermore, in order to highlight the efficiency of the proposed
computational model, the authors considered the derivation of a finite beam element and
presented the derivation of the stiffness matrix for the cracked double-beam system. The
results obtained from the closed-form solution were compared with the CDM and the Finite
Element Method (FEM). The accuracy of the results was assessed by making comparisons
with results found in the literature. In addition, the effects of different parameters such as
crack depth and position, boundary conditions, elastic medium stiffness and slenderness on
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the static behaviour of the structure were studied. It is shown that the proposed algorithm
provides a simple and powerful tool for dealing with the static analysis of a double-beam
system. Finally, some concluding remarks are made.

2. Problem Formulation

Consider the system composed of two parallel beams with the same length L and
translational and rotational elastic constraints at their ends, as shown in Figure 1. Assuming
that the material and geometrical properties of the two beams are the same, let E and I be
the Young’s modulus and moment of inertia, respectively. It is assumed that the two beams
are joined by a Winkler-type medium with modulus km. The upper beam is subjected to a
uniformly distributed load, q.

Based on the Euler–Bernoulli theory and applying the variational formulation, the
total potential energy of the system under consideration takes the following form:

E1 + P = 1
2 ∑2

i=1
∫ L

0

[
EIj

(
∂2vj(z)

∂z2

)2
]

dz + 1
2 kjRLv

′2
j (z = 0) + 1

2 kjTLv2
j (z = 0)+

1
2 kjRRv

′2
j (z = L) + 1

2 kjTRv2
j (z = L)−

∫ L
0 qv1(z)dz + 1

2 kjds

(
∆v
′
j
(

Ljc
))2

(1)

E2 =
1
2

∫ L

0
[km(v2(z)− v1(z))

2]dz (2)

where E1 is the strain energy of two beams, P is the potential energy of the applied load
and E2 the elastic energy including the contribution of the elastic medium. Let v(z) be
the transverse displacement, z be the spatial coordinate, kjRL and kjTL be rotational and
translational stiffness at z = 0 and kjRR e kjTR be rotational and translational stiffnesses at
z = L, with j = 1, 2. The index j = 1, 2 refers to the order of the beams: the upper beam
is denoted by j = 1 and the lower beam by j = 2. Finally, kjds is the equivalent rotational
stiffness of the two corresponding sections of two beams, and Ljc is their abscissa.

Applying the principle of stationary potential energy, we obtain the following dimen-
sionless form of the static equations of the Euler–Bernoulli beam model:

v1
′′′′(ζ) + kmL4

EI (v1(ζ)− v2(ζ)) =
qL4

EI

v2
′′′′(ζ) + kmL4

EI (v2(ζ)− v1(ζ)) = 0

(3)

in which ζ = z
L . In this way, we shift the domain (0, L) to the domain (0, 1).

q

V1(z)

V2(z)

k1RL k1RR

k2RL k2RR

k2TR

k1TR

k2TL

k1TL km

Figure 1. Double-beam system constrained at the ends by elastically flexible springs and in the
presence of a Winkler-type elastic medium.

As is well known, the presence of a crack or concentrated force introduces a disconti-
nuity, and therefore the displacement function of two beams is not a smooth function of z.
Consequently, to calculate the displacement function of the two beams, it is necessary to
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write a separate system of differential equations for each beam segment between disconti-
nuities. Let n be the number of discontinuities of the upper section and s be those of the
lower section, then n + s + 1 = m systems of differential equations are written. Therefore,
the number of systems of equations is the sum of the discontinuities between the upper
and lower sections of the two beams.

For the double-beam system under consideration, one obtains:

v1
′′′′(ζ) + kmL4

EI (v1(ζ)− vm+1(ζ)) =
qL4

EI 0 < ζ < γ1

vm+1
′′′′(ζ) + kmL4

EI (vm+1(ζ)− v1(ζ)) = 0 0 < ζ < γ1

(4)

vi
′′′′(ζ) + kmL4

EI (vi(ζ)− vm+i(ζ)) =
qL4

EI γi−1 < ζ < γi i = 2, . . . , m− 1

vm+i
′′′′(ζ) + kmL4

EI (vm+i(ζ)− vi(ζ)) = 0 γi−1 < ζ < γi i = 2, . . . , m− 1

(5)

vm
′′′′(ζ) + kmL4

EI (vm(ζ)− v2m(ζ)) =
qL4

EI γm−1 < ζ < 1

v2m
′′′′(ζ) + kmL4

EI (v2m(ζ)− vm(ζ)) = 0 γm−1 < ζ < 1

(6)

From the first Equations (4)–(6) we obtain, respectively, the displacements vm+i(ζ) and
v2m(ζ), which, substituted in the second Equations (4)–(6), lead to:

vm+1(ζ) =
v1
′′′′(ζ)

α4 + v1(ζ)−
p

α4 (7)

vm+i(ζ) =
vi
′′′′(ζ)

α4 + vi(ζ)−
p

α4 i = 2, . . . , m− 1 (8)

v2m(ζ) =
vm
′′′′(ζ)

α4 + vm(ζ)−
p

α4 (9)

and the following system of equations yields:

v1
′′′′′′′′(ζ) + 2α4v

′′′′
1 (z) = pα4 0 < ζ < γ1 (10)

vi
′′′′′′′′(ζ) + 2α4v

′′′′
i (z) = pα4 γi−1 < ζ < γi i = 2, . . . , m− 1 (11)

vm
′′′′′′′′(ζ) + 2α4v

′′′′
m (z) = pα4 γm−1 < ζ < 1 (12)

setting

α =
4

√
kmL4

EI
; p =

qL4

EI
(13)

The general solutions are:

vi(ζ) = a1+(i−1)8 + a2+(i−1)8ζ + a3+(i−1)8ζ2 + a4+(i−1)8ζ3+

a5+(i−1)8Cosh
[

α
4√2

ζ
]
Sin
[

α
4√2

ζ
]
+ a6+(i−1)8Cosh

[
α

4√2
ζ
]
Cos

[
α

4√2
ζ
]
+

a7+(i−1)8Sinh
[

α
4√2

ζ
]
Sin
[

α
4√2

ζ
]
+ a8+(i−1)8Sinh

[
α

4√2
ζ
]
Cos

[
α

4√2
ζ
]
+

pζ4

48 i = 1, m

(14)
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where aj are eight constants that are determined, for each segment, by imposing the
boundary conditions. At the n discontinuity point for the upper beam with translational
and rotational constraints, the boundary conditions are defined as:

v
′′
1(ζ = 0)− K1RLv

′
1(ζ = 0) = 0

v
′′′
1 (ζ = 0) + K1TLv1(ζ = 0) = 0

(15)

vi(ζ = γi)− vi+1(ζ = γi) = 0 i = 2, m− 1

v
′
1(ζ = γi)− v

′
i+1(ζ = γi) +

Ψ
L v
′′
1(ζ = γi) = 0

v
′′
i (ζ = γi)− v

′′
i+1(ζ = γi) = 0

v
′′′
i (ζ = γi)− v

′′′
i+1(ζ = γi) + Ft = 0

(16)

v
′′
m(ζ = 1) + K1RRv

′
m(ζ = 1) = 0

v
′′′
m(ζ = 1)− K1TRvm(ζ = 1) = 0

(17)

For the lower beam, having translational and rotational elastic constraints at the ends
and subjected to a concentrated force, the boundary conditions are:

v
′′
m+1(ζ = 0)− K2RLv

′
m+1(ζ = 0) = 0

v
′′′
m+1(ζ = 0) + K2TLvm+1(ζ = 0) = 0

(18)

vm−1+i(ζ = γi)− vm+i(ζ = γi) = 0 i = 2, m

v
′
m−1+i(ζ = γi)− v

′
m+i(ζ = γi) +

Ψ
L v
′′
m−1+i(ζ = γi) = 0

v
′′
m−1+i(ζ = γi)− v

′′
m+i(ζ = γi) = 0

v
′′′
m−1+i(ζ = γi)− v

′′′
m+i(ζ = γi) + Ft = 0

(19)

v
′′
2m(ζ = 1) + K2RRv

′
2m(ζ = 1) = 0

v
′′′
2m(ζ = 1)− K2TRv2m(ζ = 1) = 0

(20)

where
Ft =

FL3

EI KjRL =
kjRLL

EI ; KjRR =
kjRRL

EI ;

KjTL =
kjTLL3

EI ; KjTR =
kjTRL3

EI ; j = 1, 2

(21)

denoting dimensionless parameters of rotational and translational stiffnesses at two ends,
for ζ = 0 and ζ = 1, respectively, and taking into account the presence of concentrated
non-dimensional force.

By substituting the following equations

vm+1(ζ = 0) =
v1
′′′′(ζ)

α4 + v1(ζ)−
p

α4 (22)

vm+i(ζ = γi) =
vi
′′′′(ζ)

α4 + vi(ζ)−
p

α4 (23)
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v2m(ζ) =
vn
′′′′(ζ)

α4 + vm(ζ)−
p

α4 (24)

into Equations (18)–(20), we obtain the following system of equations:

v
′′′′′′
1 (ζ=0)

α4 + v
′′
1(ζ = 0)− K2RL

(
v
′′′′′
1 (ζ=0)

α4 + v
′
1(ζ = 0)

)
= 0

v
′′′′′′′
1 (ζ=0)

α4 + v
′′′
1 (ζ = 0) + K2TL

(
v
′′′′
1 (ζ=0)

α4 + v1(ζ = 0)− p
α4

)
= 0

(25)

v
′′′′
i ((ζ = γi)

α4 + vi(ζ = γi)−
v
′′′′
i+1(ζ = γi)

α4 − vi+1(ζ = γi) = 0 i = 2, m− 1

(26)

v
′′′′′
i (ζ = γi)

α4 + v
′
i(ζ = γi)−

v
′′′′′
2 (ζ = γi)

α4 +

− v
′
2(ζ = γi) +

Ψ
L

(
v
′′′′′′
1 (ζ = γi)

α4 + v
′′
1(ζ = γi)

)
= 0

(27)

v
′′′′′′
i (ζ = γi)

α4 + v
′′
i (ζ = γi)−

v
′′′′′′
2 (ζ = γi)

α4 − v
′′
2(ζ = γi) = 0

(28)

v
′′′′′′′
1 (ζ = γi)

α4 + v
′′′
i (ζ = γi)−

v
′′′′′′′
2 (ζ = γi)

α4 − v
′′′
2 (ζ = γi) + Ft = 0 (29)

v
′′′′′′
m (ζ=1)

α4 + v
′′
m(ζ = 1) + K2RR

(
v
′′′′′
m (ζ=1)

α4 + v
′
m(ζ = 1)

)
= 0

v
′′′′′′′
m (ζ=1)

α4 + v
′′′
m(ζ = 1)− K2TR

(
v
′′′′
m (ζ=1)

α4 + vm(ζ = 1)− p
α4

)
= 0

(30)

3. Cracks: Modelling and Method of Solution
3.1. Modelling of Cracks: An Overview of the Discrete Spring Model

The identification of the location and depth of a crack in beam-type structures is an
important topic in structural health monitoring and has been the subject of a significant
amount of research. The literature on crack modelling is very rich, and various models have
been proposed in the technical literature, such as local stiffness reduction, discrete spring
models and complex models in two or three dimensions. In this topic, the state of the art
can be found in a review works by Alijani et al. [17] and by Palmeri and Cicirello [29]. In
both papers, the authors provide a coherent but concise review of as many publications as
possible, and the main topics covered are modelling and simulation of the static behaviour
of cracked beams.

According to the classification by Friswell and Penny [30], the proposed approach falls
into the broad category of “discrete spring models”, being equivalent to an internal hinge
coupled with a linear elastic spring. This model is widely adopted when structural analysis
focuses on the overall performance of frames and trusses rather than on crack initiation
and propagation phenomena. Although very simple, the discrete spring model proves to
be very efficient for static problems. The idea of treating cracked beams with linear springs
equivalent in crack location is based on the division of each element into undamaged
pieces between two consecutive cracks. One of the main advantages of this model is the
effective representation of the crack in terms of position and gravity. Several attempts to
provide values for the rotational stiffness of the spring using cracking parameters such as
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depth or geometry can be found in the literature. Among these, Palmeri and Cicirello [29]
studied the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams using
this relationship. Subsequently, Okamura et al. [31] showed the buckling behaviour of
rectangular-section cracked columns. Furthermore, Ricci and Viola [32] extended the
method of Kienzler and Herrmann [33] to evaluate the stress intensity factors of cracked
beams and bars and derived two relationships between the stress intensity factor and the
rotational stiffness of the spring. In the following analysis, two relationships between
the stress intensity factor and the rotational stiffness of the spring were considered, as
introduced by Alijani et al. in [17].

Figure 2 shows a beam with a crack in the non-dimensional position γi and depth a. In
addition, it is assumed that the shear effect as well as axial and torsional loads are neglected.
According to this assumption, the stress intensity factors may be evaluated through the
following equations:

KI =
6M
bh2

√
πaFm(ξ) 0 ≤ ξ ≤ 0.6, ξ =

a
h

(31)

KI =
3.99M

bh
√

h
√
(1− ξ2)

3
0.6 ≤ ξ ≤ 1.0, ξ =

a
h

(32)

where Fm(ξ) is given from the following geometric function

FM(ξ) =

√(
2

πξ

)
tan

πξ

2

0.923 + 0.199
(

1− sin
(

πξ
2

))4

cos
(

πξ
2

) (33)

Finally, the following relationship is defined:

1
kds

=
2b
(
1−∨2)

E

∫ a

0

(
KI
M

)2
da (34)

which is used to determine a rotational spring stiffness factor equivalently in terms of the
geometrical and material parameters of the crack and where Ψ in Equation (27) is equal to
EI
kds

and kds is the stiffness of the i-th equivalent spring.

b

h

zi

L

a

Figure 2. Geometry of beam with crack.

In the present paper, the rotational spring stiffness factor is assumed to be different
for each beam. In particular, Ψ1 and Ψ2 denote the rotational spring stiffness factor for the
upper and lower beams, respectively.

3.2. Method of Solution: Cell Discretisation Method (CDM)

The Cell Discretisation Method (CDM) is an efficient numerical method for solving
linear partial differential equations. It has become an important tool in the field of structural
engineering due to its approximation capabilities and ease of implementation. The advent
of sophisticated and fully generalised discretisation tools, such as the finite element method
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and the Boundary Element Method (BEM), has made it possible to simulate the behaviour
of structures by taking into account more variables due to the elimination of simplified
assumptions, but, on the other hand, such procedures can lead to losing the physical sense
of the real behaviour of structures that should always be the basis of engineering studies.
In this sense, the CDM can be considered a technique capable of tackling such problems.
Since the beginning of the 20th century, this method has found various applications, for
example, the dynamics and stability of arches, masonry arches, the static and dynamic
analysis of Euler–Bernoulli beams under different load and boundary conditions, the static
and dynamic analysis of Timoshenko and Rayleigh beams and the static analysis of plates
under different load and boundary conditions [23–28]. More recently, some of the present
authors have applied the method to the dynamic analysis of single- and double-walled
carbon nanotubes, taking into account non-local effects [23,26], and have obtained results
showing that the method is able to describe the behaviour of the nanostructure satisfactorily
with little computational effort. In several articles, the procedure proves to be very versatile
and able to work on a finite number of Lagrangian parameters in each case, bringing the
solution within the scope of the usual numerical analysis methods.

In the present paper, the two beams are reduced to a set of t rigid bars with the same
length l, connected by n = t + 1 elastic cells (see Figure 3). The moment of inertia Ij, with
j = 1, 2, will be evaluated on the abscissa of the cells, resulting in the concentrated stiffness
k1i =

EI1i
l and k2i =

EI2i
l for the upper and lower beam, respectively. Both quantities can

be organised into the so-called unassembled stiffness diagonal matrix kkkj with dimension
(n × n), j = 1, 2 for each of the two beams.

If the cross-section is not uniform, the average inertia across the elastic cell can be
considered for each rigid section of length l.

1 i-2 i-1 i i+1 i+2 n

V2,i-2

V2,i-1

V2,i

V2,i+1

V2,i+2

V2,n

V2,1

1 i-2 i-1 i i+1 i+2 n

V1,i-2

V1,i-1

V1,i

V1,i+1

V1,i+2

V1,n

V1,1

Figure 3. Structural system discretisation CD method.
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In this way, the structure is reduced to a classical holonomic system, with 2n degrees
of freedom; in particular, n vertical displacements v1i for the upper beam and n vertical
displacements v2i for the lower beam. The abscissa of the cells will be conveniently taken
as Lagrangian coordinates and will be organised in the 2n-dimensional vector v. Moreover,
for the upper and lower beams, the n−1 rotations of the rigid bars can be calculated as a
function of the Lagrangian coordinates as follows:

φ1,i =
v1,i+1−v1,i

l

φ2,i =
v2,i+1−v2,i

l

(35)

or, in matrix form, φ1φ1φ1 =VVVvvv1 and φ2φ2φ2 =VVVvvv2, where VVV is a rectangular transfer matrix with
n − 1 rows and n columns.

The relative rotations between the two faces of the elastic cells are given by:

ψj,1 = φj,1, ψj,i = φj,i − φj,i−1, ψj,n = −φj,n−1 (36)

or, in matrix form, ψ1ψ1ψ1 = ∆= ∆= ∆ φ1φ1φ1 for upper rigid bar and ψ2ψ2ψ2 = ∆= ∆= ∆ φ2φ2φ2 for lower rigid bar, where
∆∆∆ is another rectangular transfer matrix with n rows and n−1 columns.

The strain energies Lje, with j = 1, 2, (the first two terms of Equation (1)) are given by:

L1e =
1
2 ∑n

i=1 k1,iiψ
2
1,i

L2e =
1
2 ∑n

i=1 k2,iiψ
2
2,i

(37)

and they are concentrated at the cells of the upper and lower beams, respectively.
The strain energies should be expressed as functions of the Lagrangian coordinates

as follows:
L1e =

1
2ψψψT

1 kkk1ψψψ1 = 1
2φφφT

1 ∆∆∆Tkkk1∆∆∆φφφ1 = 1
2v1v1v1

T(((VVVT∆∆∆Tkkk1∆∆∆VVV)))v1v1v1

L2e =
1
2ψψψT

2 kkk2ψψψ2 = 1
2φφφT

2 ∆∆∆Tkkk2∆∆∆φφφ2 = 1
2v2v2v2

T(((VVVT∆∆∆Tkkk2∆∆∆VVV)))v2v2v2

(38)

so that the total strain energy can be expressed as:

Le =
1
2

vvvT
(

K1 0
0 K2

)(
K1 0
0 K2

)(
K1 0
0 K2

)
vvv (39)

where K1K1K1 = (((VVVT∆∆∆Tkkk1∆∆∆VVV))) and K2K2K2 = (((VVVT∆∆∆Tkkk2∆∆∆VVV))). The global assembled stiffness matrix KKK,
with 2n rows and 2n columns, assumes the following form:

KKK =

(
K1 0
0 K2

)(
K1 0
0 K2

)(
K1 0
0 K2

)
(40)

The potential energy, as a function of the Lagrangian coordinates, is given by:

P1 =
n

∑
i=1

qiv1,i (41)

Being the double-beam system subjected to a uniformly distributed load q

qqq = (q1, . . . , qi, . . . , qn) (42)

with
q1 = ql/2; qn = ql/2;

qi = ql i = 2, . . . , n− 1
(43)
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the global assembled load matrix QQQ with 2n rows and 2n columns assumes the follow-
ing form:

QQQ =

(
q 0
0 0

)(
q 0
0 0

)(
q 0
0 0

)
(44)

The strain energy due to the elastic medium, Equation (2), can be expressed as:

E2 =
1
2

vvvTCCCvvv1 +
1
2

vvvT
2 CCCvvv2 −vvvT

1 CCCvvv2 (45)

The terms of matrix CCC are given by:

Ci,i = 2 l
3 km, i = 3, n− 3

Ci+1,i = Cii,+1 = l
3 km, i = 2, n− 2

C1,1 = l
6 km, C2,2 = l

3 km, C1,2 = C2,1 = l
12 km

(46)

Matrix CCC, with n rows and n columns and half-band widths equal to 2, takes the
following form:

CCCt =

(
CCC − CCC
− CCC CCC

)(
CCC − CCC
− CCC CCC

)(
CCC − CCC
− CCC CCC

)
(47)

Finally, the governing static equation can be written as:

KKKtvvv = QQQ (48)

where KKKt is the global assembled stiffness matrix:

KKKt = KKK +CCCt (49)

Boundary Conditions in Presence of a Crack

Finally, from the strain energy terms of the flexible constraints at the ends in Equiation (1),
the assembled stiffness matrix KKK must be modified as follows:

K[1, 1] = K[1, 1] + k1TL;

K[n, n] = K[n, n] + k1TR;

K[n + 1, n + 1] = K[n + 1, n + 1] + k2TL;

K[2n, 2n] = K[2n, 2n] + k2TR.

(50)

The rotational stiffnesses of the constraints of each beam can be taken into account by
adding the corresponding flexibilities of the rigid bars and obtaining:

k1[1, 1] = k1[1,1]k1RL
k1RL+k1[1,1]

k1[n, n] = k[n,n]k1RR
k1RR+k1[n,n]

k2[1, 1] = k2[1,1]k2RL
k2RL+k2[1,1]

k2[n, n] = k2[n,n]k2RR
k2RR+k2[n,n]

(51)
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These terms will be organised in two matrices, kkk1 and kkk2, given in (40). In presence of
a crack on the abscissa of cell jma, the local stiffness of the upper beam is given by:

k1[j + 1, j + 1] =
k1[j + 1, j + 1]k1ds

k1ds + k1[j + 1, j + 1]
(52)

whereas at the sma cell abscissa relative to the lower beam, the local stiffness is:

k2[s + 1, s + 1] =
k2[s + 1, s + 1]k2ds

k2ds + k2[s + 1, s + 1]
(53)

if the height of the crack is different in the two beams. The values k1ds and k2ds are derived
from Equation (34).

3.3. Method of Solution: Finite Element Method (FEM)

In order to highlight the efficiency of the proposed computational model (CDM),
the authors considered the derivation of a finite beam element for the static analysis of
a cracked double-beam system. Specifically, a finite element of a cracked double-beam
system was developed based on a variational approach, and shape functions for rotational
and translational displacements were used to develop the stiffness matrix in the presence
and absence of cracks.

For the structure under consideration (see Figure 4), the total potential energy is
given by:

Et =
1
2

∫ L
0 EI1

(
∂2v1(z)

∂z2

)2
dz +

∫ L
0 EI2

(
∂v(z)
∂z2

)2
dz−

∫ L
0 qv1(z)dz+

1
2

∫ L
0 km(v2(z)− v1(z))

2dz
(54)

V1(z)

V2(z)

km

1

1

2

2

1 
(1)

2
(1)

V1
(1)

V1
(2)

V2
(2)

2
(2)

V2
(1)

1
(2)

Figure 4. Structural system discretisation FE method.

Using cubic polynomial functions for transverse displacements, the following shape
functions are derived:

NNNi =


1− 3z2

L2 + 2z3

L3

−z + 2z2

L −
z3

L2

3z2

L2 − 2z3

L3

z2

L −
z3

L2

; (55)

where i = 1, 2 refers to the upper and lower beams, respectively. The transverse displace-
ments are then given as:

vi(z) = NNNT
i dddi (56)

where dddi denotes the vector of nodal displacements and is given by:

dddi =
(

V(i)
1 , Θ(i)

1 , V(i)
2 , Θ(i)

2

)T
(57)
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By deriving the nodal displacements with respect to the spatial coordinate z, the
following expressions are obtained:

dvi(z)
dz

= NNN
′T
i dddi;

d2vi(z)
dz2 = NNN”T

i dddi (58)

which, substituted for Equation (54), leads to:

Et =
1
2dddT

1

(∫ L
0 NNN”

1EINNN”T
1 dz

)
ddd1 +

1
2dddT

2

(∫ L
0 NNN”

2EI NNN”T
2 dz

)
ddd2 −dddT

1
∫ L

0 qNNN1dz+

1
2dddT

1

(∫ L
0 NNN1kmNNNT

1 dz
)

ddd1 +
1
2dddT

2

(∫ L
0 NNN2kmNNNT

2 dz
)

ddd2+

−dddT
1

(∫ L
0 NNN1kmNNNT

2 dz
)

ddd2 −dddT
2

(∫ L
0 NNN2kmNNNT

1 dz
)

ddd1

(59)

By applying the principle of stationary potential energy, one obtains:(∫ L
0 NNN”

1EI NNN”T
1 dz

)
ddd1 +

(∫ L
0 NNN1kmNNNT

1 dz
)

ddd1 −
(∫ L

0 NNN1kmNNNT
2 dz

)
ddd2 =

∫ L
0 qNNN1dz

(∫ L
0 NNN”

2EI NNN”T
2 dz

)
ddd2 +

(∫ L
0 NNN2kmNNNT

2 dz
)

ddd2 −
(∫ L

0 NNN2kmNNNT
1 dz

)
ddd1 = 0

(60)

Then, rearranging the terms in d1 and d2, one obtains:(∫ L
0 NNN”

1EI NNN”T
1 dz +

∫ L
0 NNN1kmNNNT

1 dz
)

ddd1 −
(∫ L

0 NNN1kmNNNT
2 dz

)
ddd2 =

∫ L
0 qNNN1dz

∫ L
0 NNN”

2EI NNN”T
2 dz +

(∫ L
0 NNN2kmNNNT

2 dz
)

ddd2 −
(∫ L

0 NNN2kmNNNT
1 dz

)
ddd1 = 0

(61)

or (
KKK11 −KKK12
−KKK21 KKK22

)(
ddd1
ddd2

)
=

(
QQQ
0

)
(62)

being
KKK11 =

∫ L
0 NNN”

1EI NNN”T
1 dz +

∫ L
0 NNN1kmNNNT

1 dz;

KKK12 =
∫ L

0 NNN1kmNNNT
2 dz;

KKK21 =
∫ L

0 NNN2kmNNNT
1 dz;

KKK22 =
∫ L

0 NNN”
2EI NNN”T

2 dz +
∫ L

0 NNN2kmNNNT
2 dz;

QQQ =
∫ L

0 qNNN1dz.

(63)

Equation (62) can be rewritten as:

KKK11ddd1 −KKK12ddd2 = QQQ

−K−K−K21ddd1 +KKK22ddd2 = 0
(64)

From the second Equation (64), we obtain d1, which, substituted in the first equation,
leads to:

ddd2 = KKK−1
22 KKK21ddd1;(

KKK11 −KKK12KKK−1
22 KKK21

)
ddd1 = QQQ

(65)
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or
ddd1 =

(
KKK11 −KKK−1

22 KKK12KKK21

)−1
QQQ;

ddd2 = KKK−1
22 KKK12ddd1

(66)

In the presence of a crack, the stiffness matrix of finite element with a crack must
be modified. In the presence of a crack, the stiffness matrix of the cracked beam element
must be modified. Several investigators have derived the stiffness matrix for a cracked
beam element and studied the effect of the crack on the stiffness matrix (see, e.g., [34,35]).
In the present analysis, the structure under investigation was analysed using finite beam
elements that did not take into account the effect of shear forces. Therefore, the stiffness
matrix, which represents the relationship between the vector of nodal forces and the vector
of nodal displacements, can be expressed as:

KcKcKc =
EI
δ


12a11 −6a12 −12a13 −6a14
−6a21 a22 6a23 a24
−12a31 6a32 12a33 6a34
−6a41 a42 6a43 a44

 (67)

so as deduced in [35] (see Formula (22)), where kr =
EI
Ψ , δ is given by:

δ = L
(

krL3 + EI
(

12L2
1 − 12L L1 + L24

))
(68)

and where
a11 = a33 = (EI + krL);

a22 =
(

12EI L2
1 + krL34

)
;

a44 =
(

12EI(L− L1)
2 + 4krL3

)
;

a12 = a21 =
(

krL2 + 2EI L1

)
;

a13 = a31 = (EI + krL);

a14 = a41 =
(

krL2 + 2EI(L− L1)
)

;

a23 = a32 =
(

krL2 + 2EI L1

)
;

a24 = a42 =
(

12EI(L− L1)L1 + 2krL3
)

;

a34 = a43 =
(

krL2 + 2EI(L− L1)
)

.

(69)

This matrix will be translated into KKK22 at the appropriate abscissa.

4. Numerical Examples: Results and Discussion

To evaluate the effects of the crack, taper ratio, elastic medium parameter, boundary
conditions and rotational and translational stiffness on the deflection of the two beams, sev-
eral numerical examples are presented, using a general code developed in Mathematica [36].
The solutions in terms of the deflection function are derived using analytical and numerical
approaches. The results obtained using the Euler–Bernoulli beam model are also presented
to demonstrate the validity and reliability of the proposed approach (CDM).
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In all numerical examples, the structure under consideration consists of two parallel
beams with the same length L equal to 2.5 m and the following material properties: Young’s
modulus is 30 GPa and Poisson’s ratio ν = 0.3. The cross-section of the two beams is rectan-
gular with base and height dimensions of 0.10 m and 0.18 m, respectively. Let km = 1 MPa
be the average foundation modulus and q = 100 kN/m be a uniformly distributed load
applied to the upper beam.

4.1. Case 1: Simply Supported-Simply Supported Double-Beam System in the Presence of a Crack
on the Lower Beam and a Uniformly Distributed Load Applied to the Upper Beam

In the first numerical example, the static deflections of a simply supported double
girder-system (SS-SS) in the presence of a crack and a uniformly distributed load were stud-
ied using a large number of cells, i.e., n = 300. The crack is introduced on the dimensionless
abscissa z = 1.25 m from the left end of the lower beam. The non-dimensional height of the
crack is assumed to be ξ = 0.5. The upper beam is loaded with a uniformly distributed load
q = 100 kN/m.

Figure 5 shows the dimensionless transverse displacements of two beams. Specifically,
the dotted line refers to the vertical displacements of the upper beam, while the solid line
shows the displacements of the lower beam. As can be seen, the maximum value of the
transverse displacement v1 is 0.0291243 m at the dimensionless abscissa z = 1.25 m, while
the transverse displacement v2 at the position of the crack (z = 1.25 m) is 0.00890037 m.
In order to verify the correctness of the numerical calculations of the CDM, a numerical
comparison with the results provided by the closed-form solutions is proposed. Applying
the exact procedure, the values of the transverse displacements of the two beams are
v1(z = 1.25 m) = 0.0291244 m and v2 (z = 1.25 m) = 0.00890037 m. As can be seen, the
deflections of the two beams show very good agreement between the results obtained from
the theoretical and numerical procedures. Furthermore, Figure 4 shows the influence of the
crack position on the deflection of the two SS-SS beams. This figure emphasises that the
deflection will be maximum if the crack position approaches the beam centre line.

To demonstrate the robustness, accuracy and reliability of the proposed numerical
method, the structure under investigation was also analysed by implementing the finite
elements of the beam.

In the first case, the structure was analysed by implementing finite beam elements that
take into account the effect of a crack and a distributed load. The crack was introduced in
the middle of the span of the lower beam (L1 = 0.5L), and a uniformly distributed load is
applied only to the upper beam. For different values of the Winkler-type average stiffness
km, the maximum displacements of the beam system were calculated by means of the Finite
Element Method (FEM), the closed-form solution and the CD method, and the results
obtained are shown in Table 1. As can be easily seen from the table, using the analytical
approach and the proposed numerical methods, the estimated values of the maximum
displacements of the double-beam system are in excellent agreement with the numerical
calculations based on the FE method. Furthermore, the results obtained show that the
displacements decrease as km increases.

In the second case, the structure was analysed by implementing finite beam elements
that did not take the crack effect into account. In particular, a simply supported double-
beam system (SS-SS) subjected to a uniformly distributed load acting only on the upper
beam was considered. For different values of km, the maximum displacements of the beam
system were calculated, and the results obtained with the closed-form procedure and the
numerical methods based on CDM and FEM were compared and reported in Table 2.

As can be seen from the table, the estimated values of the maximum displacements of
the double-beam system are in excellent agreement with the numerical calculations based
on the FE method. Furthermore, the results obtained show that the displacements decrease
as km increases.
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Figure 5. Displacements and rotations diagrams of two beams at the crack position z = 1.25 m.

Table 1. Maximum deflections values of two beams varying km in the range
[
102, 103, 104, 105] and

with a crack acting on the lower beam, where C-FS = closed-form solution, C = CDM, F = FEM.

km v1 max (C-FS) v2 max(C-FS) v1 max (C) v2 max (C) v1 max (F) v2 max (F)

102 0.0348842 1.489 10−6 0.0348842 1.489 10−6 0.0348842 9.631 10−7

103 0.0348756 0.0000149 0.0348754 0.0000149 0.0348756 0.0000149

104 0.0347895 0.0001479 0.0347894 0.0001479 0.0347895 0.0001479

105 0.0339827 0.0013952 0.0339826 0.0013952 0.0340380 0.0013964

Table 2. Maximum deflections values of two beams varying km in the range
[
102, 103, 104, 105] and

in the absence of a crack, where C-FS = closed-form solution, C = CDM, F = FEM.

km v1 max (C-FS) v2 max(C-FS) v1 max (C) v2 max (C) v1 max (F) v2 max (F)

102 0.0348842 9.631 10−7 0.0348842 9.631 10−7 0.0348842 9.631 10−7

103 0.0348756 9.626 10−6 0.0348754 9.626 10−6 0.0348756 9.626 10−6

104 0.0347894 0.0000958 0.0347893 0.0000958 0.0347895 0.0000958

105 0.0339723 0.0000913 0.0339721 0.0000913 0.0339271 0.0000913
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4.2. Case 2: Simply Supported-Simply Supported Double-Beam System in the Presence of a
Uniformly Distributed Load on the Upper Beam and a Crack on the Upper and Lower Beams

In the second example, a simply supported double-girder system (SS-SS) with two
transverse cracks was considered. The transverse cracks are applied to the upper and lower
beams at non-dimensional distances of z = 0.5 m and z = 1.75 m, respectively. The top beam
is loaded with a uniformly distributed load q = 100 kN/m.

Figure 6 shows the deflections of two beams. In particular, the vertical displacements of
the upper beam are shown with a dotted line, while the solid line shows the displacements
of the lower beam. As can be seen, for the upper beam, the maximum value of the transverse
displacement v1 is 0.0321605 m at the dimensionless abscissa z = 1.18 m, while, for the
lower beam, the transverse displacement v2 at the position of the crack (z = 1.2375 m) is
0.00847839 m. The closed-form solution, on the other hand, provides the following results:
the maximum value of deflection v1(z = 1.18 m) = 0.0321452 m for the upper beam, and the
maximum value of deflection v2(z = 1.2375 m) = 0.0084943 m for lower beam. It can be seen
that the predicted results of CDM are in excellent agreement with the closed-form solutions.

0.5 1.0 1.5 2.0 2.5
z

0.030

0.025

0.020

0.015

0.010

0.005

v(z)

Figure 6. Displacements diagram of two beams at the crack position z = 0.5 m and z = 1.75 m.

4.3. Case 3: Effect of Elastic Constraints and Crack on the Static Behaviour of a
Double-Beam System

This example considers a double-beam system with the same geometrical and mate-
rial properties of the previous numerical examples. The beams are elastically restrained
against translation and rotation at either end, with fixed values of k1TL = k2TL = k1TR =
k2TR = 1010 and varying the non-dimensional rotational stiffness in the range [0–104]. The
transverse crack is located at the mid-span of the lower beam. A uniformly distributed load
q = 100 kN/m is applied to the upper beam. Table 3 presents the deflections’ first value
for a simply supported double-beam system for different values of the non-dimensional
stiffnesses. In Table 3, results involving respective maximum transverse displacements,
v1 max and v2 max, at the mid-span for the upper and lower beams are presented. As can
be noted, as the stiffness values increase, deflections decrease throughout the two beams,
especially near the crack. An analogy between increasing the stiffness and decreasing the
deflections is illustrated in Figure 7, which represents the clamped-clamped beam case.
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Table 3. Maximum deflections values of two beams varying the non-dimensional rotational stiffness
K1RL = k1RR = k2RL = k2RR = KR in the range

[
0, 1, 10, 102, 103, 104, 1010].

KR v1 max v2 max

0 0.0291244 0.00890045

1 0.0220762 0.00509119

10 0.0107519 0.00119981

102 0.00713561 0.000536748

103 0.00669172 0.000474023

104 0.00666452 0.000467836

1010 0.00664013 0.000467150
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Figure 7. Displacements diagram for a clamped-clamped double-beam system with a crack on the
lower beam and a uniformly distributed load applied to the upper beam.

4.4. Case 4: Effect of Taper Ratio Coefficient and Crack on the Static Behaviour of a
Double-Beam System

This numerical example considers the influence of taper ratio and crack on the static
behaviour of two non-uniform double-beam systems having the following law of moment
of inertia:

I(z) = I0

(
(β− 1)

z
L
+ 1
)4

(70)

where, if β < 1, the cross-section decreases with the abscissa; on the contrary, if β > 1, the
cross-section increases with the abscissa. A uniformly distributed load, q = 100 kN/m, is
applied to the upper beam, and a crack is introduced at the mid-span of the lower beam.
For varying β in the range [0.5–2], the effect of taper ratio is evaluated as obtained by
using CDM. In Figures 8 and 9, the displacements diagrams are depicted for β = 0.5, 1,
respectively. The upper beam is simply supported at the left end and clamped at the right
end, while the lower beam is simply supported at either end.
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Figure 8. Displacements diagram for a tapered double-beam system with different boundary condi-
tions and for β = 0.5.

Figure 9. Displacements diagram for a uniform double-beam system with different boundary
conditions and for β = 1.

For β = 1.5, 2, in Figures 10 and 11, the displacements diagrams are plotted. The upper
beam is simply supported at either end, while the lower beam is simply supported at the
left end and clamped at the right end.

For varying β = 0.5–2, in Table 4, the maximum deflections values for two beams are
quoted. It is interesting to note that the maximum deflections value decreases when the
taper ratio coefficient increases.
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Figure 10. Displacements diagram for a uniform double-beam system with different boundary
conditions and for β = 1.5.

Figure 11. Displacements diagram for a uniform double-beam system with different boundary
conditions and for β = 2.

Table 4. The maximum deflections value for different values of β.

β v1 max v2 max Figure

0.5 0.051597 0.026785 7

1 0.013401 0.003783 8

1.5 0.005433 0.0010456 9

2 0.002697 0.0004161 10
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4.5. Case 5: Effect of a Concentrated Force and Crack Located at the Mid-Span of the Upper and
Lower Beams, Respectively

In this numerical example, the effect of concentrated force is evaluated. Consider a
simply supported-simply supported (SS-SS) double-beam system in the presence of a crack.
The transverse crack is located at the mid-span of the lower beam, and a concentrated force
F is located at the mid-span of the upper beam. Table 5 shows the maximum deflections
values for different values of the concentrated force and in the absence of a distributed
load. As can be noted, as the value of the concentrated force F increases, the values of
displacements at the mid-span of the two beams increase.

Table 5. The maximum deflections value for different values of dimensional concentrated force F
and for height of crack “a” = 0.09 m.

F(N) v1 max v2 max

10 1.87065 10−6 5.59848 10−7

102 1.87065 10−5 5.59848 10−6

103 1.87065 10−4 5.59848 10−5

104 1.87065 10−3 5.59848 10−4

105 1.87065 10−2 5.59848 10−3

For the same numerical example, fixing the force value F = (104) N and varying the
non-dimensional height of crack ξ = a

h located at the mid-distance of the lower beam, the
maximum deflections are calculated and listed in Table 6. It is interesting to note that the
maximum deflections value increases as the non-dimensional height of the crack increases.

Table 6. The maximum deflections for different values of crack depth and for a non-dimensional
concentrated force Ft = (0.107167).

ξ v1 max v2 max

0.1 0.00184331 0.000397534

0.2 0.00184666 0.000417421

0.3 0.00185267 0.000453055

0.4 0.00186293 0.000513990

0.5 0.00187065 0.000559848

4.6. Case 6: Effect of the Slenderness λ on the Deflections for Both Upper and Lower Beams in the
Presence of a Crack

This numerical example, to study the effects of the slenderness λ = L
h on displace-

ments and rotations, considers a simply supported double-beam system having the same
geometrical and material properties of the previous numerical examples. The beam system
is submitted to a uniformly distributed load q = 100 kN/m acting on the upper beam only.
A crack is introduced in the mid-span of the lower beam.

Setting Γ = h
b = 1.8 and having λ = L

h , the expressions of the parameters of Equation (13)
become:

α = λ
4

√
12kmΓ

E
; p =

12q Γλ4

E
(71)

Equation (71) denotes the relationship between the deflection and slenderness.
For different values of slenderness λ of the two beams, the maximum displacements

and the rotations at the left and right ends (for ζ = 0 and ζ = 1) are calculated. The results
obtained from the closed-form solution and numerical method based on CDM are compared
and listed in Table 7. As can be easily seen from the table, the displacements values are in
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excellent agreement. In addition, the results obtained show that the displacements increase
as the slenderness λ = L

h of the two beams increases.

Table 7. Numerical comparison among the closed-form solutions (C-FS) and numerical results based
on the CDM for different values of length λ and (ζ = 0.5).

λ v1(C-FS) v2(C-FS) v1(CDM) v2(CDM)

2 0.00001500 8.5277 10−9 0.000014500 8.5276 10−9

3 0.00007589 1.6061 10−7 0.00007589 1.6061 10−7

5 0.00058326 6.7375 10−6 0.00058326 6.7374 10−6

7 0.00221279 0.00007947 0.00221279 0.00007947

9 0.00588599 0.00048809 0.00588599 0.00048808

13.8889 0.0291243 0.00890046 0.02912429 0.00890037

5. Concluding Remarks

In the present paper, the static behaviour of a double-beam system, in the presence
of Winkler medium, carrying a crack at generic position on the lower beam and subjected
to a distributed load on the upper beam has been studied. The double-beam system is
also supposed to be constrained at the ends by elastically flexible springs with transverse
stiffness and rotational stiffness. According to the Euler–Bernoulli beam theory, the static
governing equations are derived using a variational formulation and have been solved
through implementing analytical and numerical approaches. Among the numerical ap-
proaches, the CDM is employed to solve the governing equations, in which the beam is
reduced to a set of rigid bars linked together by means of elastic constraints. A comparative
analysis has been performed in order to verify the accuracy and validity of the proposed
numerical method. The effects of crack, taper ratio, elastic medium parameter, boundary
conditions and rotational and translational stiffness on the two beams’ deflections through
theoretical and numerical approaches have been presented. Through the obtained results,
it can be observed that the maximum deflections value decreases if the transverse stiffness
value increases, and if the taper ratio coefficient increases, it decreases. Moreover, the crack
plays a key role in the static behaviour of a double-beam system: the maximum deflections
value increases when the crack increases.

Finally, the numerical examples demonstrate that the results determined by CDM
perfectly match with the solutions from the governing equations of the double-beam model
and are in good agreement with the results obtained by FEM. It is shown that the CD
method has a good and rapid convergence regardless of the beam theory, crack and elastic
foundation parameters.
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