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Abstract: Flax fiber/shape memory epoxy hygromorph composites are a promising area of research
in the field of biocomposites. This paper focuses on the tensile modulus of these composites and
investigates how it is affected by factors such as fiber orientation (0◦ and 90◦), temperature (20 ◦C,
40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C), and humidity (50% and fully immersed) conditions. Machine
learning algorithms were utilized to predict the tensile modulus based on non-linearly dependent
initial variables. Both decision tree (DT) and random forest (RF) algorithms were employed to
analyze the data, and the results showed high coefficient of determination R2 values of 0.94 and 0.95,
respectively. These findings demonstrate the effectiveness of machine learning in analyzing large
datasets of mechanical properties in biocomposites. Moreover, the study revealed that the orientation
of the flax fibers had the greatest impact on the tensile modulus value (with feature importance
of 0.598 and 0.605 for the DT and RF models, respectively), indicating that it is a crucial factor to
consider when designing these materials.
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1. Introduction

Composite materials are becoming increasingly popular in various engineering fields
due to their exceptional properties [1–3], including high strength-to-weight ratio [4–6],
resistance to corrosion [4], and long-lasting durability [7]. These materials are being used
in a wide range of applications, from aircraft structures [8] to medical implants [9] and
wind turbine blades [10]. In recent years, there has been a growing interest in utilizing
natural fibers as replacements for synthetic fibers in polymer composites. This is because
natural fibers are a renewable resource, abundant, recyclable, biodegradable, lightweight,
and cost-effective, with good mechanical properties [11–16].

Flax fibers, which have been utilized for centuries in various applications such as
clothing, paper, and rope due to their natural origin, are an ideal reinforcement component
for composite materials. They are extracted from the stems of the flax plant and are known
for their robustness, rigidity, and longevity, making them an excellent option where weight
reduction and toughness are significant factors. Furthermore, flax fibers are a sustainable
and biodegradable option, making them a compelling substitute for synthetic fibers [17].

Shape memory epoxy resins are a type of polymer that can return to their original
shape after being exposed to specific triggers such as light or heat. This behavior is due
to the presence of shape memory polymers (SMPs) which can undergo reversible shape
changes upon the influence of an external stimulus. In the case of shape memory epoxy
hygromorph composites, the epoxy resin matrix contains SMPs, enabling the material to
display shape memory characteristics [18]. The exceptional responsiveness to stimuli and
adjustable stiffness of shape memory polymers (SMPs) have long been a subject of interest,
leading to notable advancements in fields such as aerospace, civil engineering, and others.
Epoxy resin (EP) is a promising material for such applications owing to its impressive
mechanical properties, resistance to fatigue, and radiation endurance [19]. Epoxy resins
were one of the initial materials to gain widespread use in industrial applications [20].
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The use of steel plates reinforced with epoxy resin adhesive to enhance the load-
bearing capacity of prestressed reinforced concrete bridges has become increasingly popu-
lar [21]. Kuo et al. have investigated the development of injection molding tools utilizing
epoxy resin [22,23].

Flax fiber/shape memory epoxy hygromorph composites are a type of composite
material that incorporates flax fiber composites with an epoxy shape memory polymer
(SMP) matrix [24]. Hygromorphic materials are a unique class of smart materials that utilize
the humidity of their surroundings to activate their properties and ability to morph [11].
Flax fiber/shape memory epoxy hygromorph composites are desirable for various applica-
tions due to the combination of flax fibers, shape memory epoxy resin, and hygroscopicity.
Hygroscopicity is another essential characteristic of flax fiber/shape memory epoxy hy-
gromorph composites [25]. It refers to the ability of a material to absorb moisture from
its environment, which can significantly affect the material’s mechanical and physical
properties. Moisture absorption can cause a material to expand, resulting in dimensional
changes and a loss of strength. However, in some cases, moisture absorption can lead to
improvements in specific characteristics, such as hardness and impact resistance.

Dyachkova et al. [26] discussed the development of carbon nanotubes (CNTs) and
graphene-based fillers to modify epoxy resin. They used different mass ratios of CNTs and
graphene materials and analyzed their effect on particle size and mechanical properties.
Optimal dispersions were achieved. The resulting composites remained stable up to 300 ◦C
and exhibited an increase in tensile strength and modulus by 84–88% and 40%, respectively,
for certain mass ratios.

Flax fiber/shape memory epoxy hygromorph composites have the potential to be used
in self-healing materials. Such materials are capable of repairing damage over time, thereby
prolonging their lifespan and reducing the need for maintenance. The shape memory
properties of flax fiber/shape memory epoxy hygromorph composites could be utilized to
initiate the self-healing process [27].

Nurazzi et al. analyzed research on improving the durability, rigidity, and resilience
of hybrid materials, as well as their long-term and short-term effectiveness. Natural
fiber–polymer composites are becoming increasingly competitive with synthetic polymer
composites in terms of stiffness and cost, and their tensile and impact strength values
are approaching those of synthetic materials. Hybrid materials based on natural fiber-
reinforced polymer composites are used in various structural and outdoor settings, such
as panels installed beneath the floor of vehicles, aircraft components, and constructions
intended for use in marine environments [28]. There is significant global interest in the
use of natural fibers as substitutes for conventional materials across various industrial
sectors, driven mainly by the goal of achieving sustainability and promoting a more
environmentally friendly approach. Flax and other natural fibers are combined with
polymeric resins to produce novel materials [29].

Machine learning is a powerful of tool that allows algorithms to learn from a dataset
and apply that knowledge to new data [30]. Typically, a training phase is required, where
a subset of the dataset is used. However, there are potential challenges in applying this
method, such as the need for accurate and reliable data input. After the training phase,
various algorithms can be utilized, including decision tree (DT) and random forest (RF),
which are commonly used in supervised machine learning. These algorithms involve
providing both input and corresponding output data to the machine learning model.
Decision trees are a machine learning algorithm used for classification and regression
analysis. They adopt a tree structure, where internal nodes represent attributes or features
of the analyzed data, branches signify decisions or rules, and leaves indicate the resulting
outcomes or predictions [31]. Random forest, also known as random choice forest, is an
ensemble learning approach employed in diverse problem domains such as classification
and regression. This method entails generating numerous decision trees during the training
phase [32]. Machine learning has been extensively used in predicting the mechanical
properties of composites due to its ability to handle large and complex datasets [33,34].
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Moreover, the use of machine learning models has enabled the prediction of these properties
with fewer experimental tests, resulting in significant cost and time savings [35].

Li et al. presented a prediction model for the compressive strength of basalt fiber-
reinforced concrete (BFRC) using the random forest (RF) algorithm. The model was
compared to neural network and support vector regression methods, using metrics such
as mean squared error (MSE), root mean squared error (RMSE), and R-squared (R2). The
experiments led to the conclusion that the RF model demonstrated higher accuracy and
better regression fit in predicting the compressive strength of BFRC compared to the other
models [36].

Lim et al. developed a predictive model for delamination using a combination of the
random forest (RF) algorithm and the vibration-based natural frequency shift technique.
They established a finite element procedure in the ANSYS Composite PrepPost engine,
incorporating delamination, and validated its accuracy by comparing with both numerical
and experimentally determined natural frequencies reported in the literature. The vali-
dated procedure was then used to determine the free vibration responses of pristine and
delaminated composite plates characterized by five delamination parameters. Four RF
models were developed and tested to determine the delamination parameters based on
natural frequency shifts. The study revealed that the presence of delamination led to a
reduction in natural frequencies, particularly noticeable in higher modes. Among the four
natural frequency predictors and using a larger dataset, the RF model produced the most
accurate predictive results when tested with unseen cases [37].

Liu et al. developed a predictive model using the XGBoost decision tree-based machine
learning technique to calculate the residual tensile strength and modulus of pultruded
fiber-reinforced polymer (FRP) composites exposed to water, high humidity, and alkaline
solutions. The methodology of the XGBoost decision tree was presented, and the predic-
tions were validated using a dataset. The model demonstrated excellent agreement with
experimental results, achieving R-squared (R2) values of 0.93 for predicted tensile strength
and 0.85 for modulus. The XGBoost decision tree model provided good interpretability,
quantitatively analyzing the importance of input data attributes, including exposure time,
exposure temperature, pH value of the environment, fiber volume fraction, plate thickness,
fiber type, and matrix type [38].

Gupta et al. introduced a supervised classification model for predicting the high stress
abrasive wear behavior of unidirectional epoxy composites reinforced with sisal fiber. The
model utilized 192 wear volume measurements across 3 fiber orientations, with 153 used
for training and 39 for testing. The study explored two alternatives for the classification
model: decision tree induction and sequential covering rule induction. The decision tree-
based classification model outperformed sequential covering rule induction in terms of
accuracy and stability. Once trained, this efficient model can be applied to sophisticated
tribological experiments for predicting, reducing overall complexity and effort compared
to strict analytical techniques. Furthermore, it can be applied to various computationally
costly models [39].

The mechanical properties of flax fiber/shape memory epoxy hygromorph compos-
ites are highly influenced by various experimental conditions, such as fiber orientation,
temperature, and humidity. Therefore, studying and predicting the impact of these factors
on the mechanical behavior of flax fiber-reinforced composites is essential.

This work focuses on predicting the tensile modulus of flax fiber/shape memory epoxy
hygromorph composites under different experimental conditions. The tensile modulus
is a crucial mechanical property that measures the stiffness of the material under tensile
loading. Accurate prediction of the tensile modulus can greatly assist in designing and
optimizing composite structures for various applications.

For the first time, machine learning algorithms were employed to predict the tensile
modulus of flax fiber/shape memory epoxy hygromorph composites, considering three
initial experimental variables: the orientation of the flax fibers, humidity, and temperature.
These variables are known to have a non-linear relationship.
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To accomplish this objective, two machine learning algorithms, namely decision tree
(DT) and random forest (RF), were utilized. The experimental data collected by Li et al. [24],
which pertains to the tensile modulus of the composites under various fiber orientations,
temperatures, and humidities, served as the basis for this study.

A comparison of the performance between DT and RF in predicting the tensile modu-
lus of the composites was conducted. The results demonstrate that both algorithms achieve
high accuracy in predicting the tensile modulus, with RF slightly outperforming DT in
terms of prediction accuracy. Furthermore, a feature importance analysis was conducted
using both DT and RF models to identify the most influential factors affecting the tensile
modulus. The analysis revealed that fiber orientation has the most significant influence on
the tensile modulus, followed by temperature and humidity.

2. Materials and Methods

The large dataset of mechanical properties of flax fiber/shape memory epoxy hy-
gromorph composites used in this work was obtained from the study conducted by Li
et al. [24]. The dataset can be accessed at the Mendeley Data repository located at [40]. In
their study, flax fiber/shape memory epoxy hygromorph composites were mechanically de-
formed with consideration of two fiber orientations (0◦ and 90◦) at five temperatures (20 ◦C,
40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C) and two humidity conditions (50% and fully immersed).
The details of the tensile tests can be found elsewhere [21,24]. The samples, which were
saturated, had dimensions of t0◦ = 0.56 mm and width w0◦ = 15 mm for flax fiber orien-
tations at 0◦ EL, and t90◦ = 0.56 mm and width w90◦ = 25 mm for flax fiber orientations
at 90◦. The mechanical properties of the unidirectional laminates were determined using
a Shimadzu universal testing machine with a crosshead speed of 1 mm/min, according
to ISO 527-4 standards. To prevent moisture loss during testing, samples under relative
humidity of 50% and immersed conditions were wrapped with polymer films. In addition,
a heating chamber was used to control the temperature prior to testing, and thermocouples
were used to measure the temperature near the samples [24]. In this work, the Scikit-
learn package was used to implement the algorithms in custom homemade programs.
TensorFlow [41] is a widely-used open-source, high-level neural network application pro-
gramming interface written in Python. It is another powerful open-source framework
for creating and deploying machine learning models. It is frequently used for a broad
range of tasks, including time series analysis, audio and image recognition, and natural
language processing. Deep neural network models can be built, trained, and deployed
using a variety of tools and frameworks provided by TensorFlow. It can handle enormous
datasets since it supports both CPU and GPU computation, making it scalable and efficient.
Data scientists choose TensorFlow because of its versatility and ease of use [42]. Scikit-learn
provides a wide range of supervised and unsupervised machine learning algorithms for
classification, regression, and clustering. These algorithms can be used to solve a variety
of real-world problems, such as image classification, sound signal analysis, and natural
language processing. Some of the popular algorithms provided by Scikit-learn include
decision trees, random forests, logistic regression, K-nearest neighbors, support vector
machines, and neural networks. The simplicity and ease of use of Scikit-learn are two of its
greatest benefits. The library’s user interface is clear and consistent. Scikit-learn offers a
variety of preprocessing algorithms, as well as tools for cross-validation, hyperparameter
adjustment, and data separation. These features assist users in data preparation and clean-
ing, model creation, and performance evaluation. Moreover, Scikit-learn provides a variety
of visualization tools, such as heatmaps, histograms, scatter plots, and line graphs, to aid
users in understanding their data and model output. These visualizations can be utilized
to examine the data, identify trends, and gain insights. Scikit-learn has a large and active
user and development community, making it easy to seek assistance and support. The
program is well-documented, and the official website offers comprehensive tutorials and
examples. Additionally, Scikit-learn has a GitHub repository where users can report bugs
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and contribute to the package’s development. The speed and effectiveness of Scikit-learn
are also major benefits [43].

For the implementation of the models, the data are rescaled to a range of [0–1] to
improve the training results. The algorithms and equations used in this study are outlined
elsewhere [43], with the maximum depth of a tree set to “None,” the minimum number of
samples in a leaf node set to 1, and the minimum number of samples required in a leaf node
also set to 1. A total of 100 values were considered in the machine learning algorithms, with
80% of them used for training (80 values) and the remaining 20% for testing (20 values).

The objective of this work is to employ machine learning algorithms to investigate and
predict how experimental variables, such as temperature, humidity, and the orientation
(direction) of flax fibers, affect the tensile modulus of flax fiber/shape memory epoxy
hygromorph composites.

3. Results and Discussion

To assess the correlation between the features in this study, a correlation matrix map
was generated in Figure 1 using Pearson correlation coefficients [44]. Pearson correlation
coefficients indicate the strength of the linear relationship between variables [45,46]. A
correlation matrix is a table that displays the correlation coefficients between different
variables in a dataset, specifically the mechanical characteristics of flax fiber/shape memory
epoxy hygromorph composites used in this work. The correlation coefficient between two
variables is shown in each cell of the table, with values ranging from −1 (indicating a perfect
negative correlation) to 1 (indicating a perfect positive correlation). A correlation coefficient
of 0 suggests no association between the variables. In the field of machine learning,
correlation matrices are frequently utilized to analyze the relationships between variables
and identify those that are most strongly linked to the target variable. By studying the
correlation matrix, users can select features and develop models based on the information
gained, enabling them to identify the factors that are likely to be accurate predictors of the
target variable. Additionally, correlation matrices can be used to identify multicollinearity,
which occurs when two or more variables are strongly correlated with each other. In certain
situations, removing one or more of the correlated variables may be necessary to prevent
overfitting and ensure that the model generalizes effectively to new data [32].
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The related Pearson correlation coefficient between two variables, X and Y, is defined
as follows:

ρ(X, Y) =
cov(X, Y)

σXσY
(1)

where σX and σY represent the standard deviations of X and Y, and cov(X, Y) represents
the corresponding covariance [47].

As depicted in Figure 1, the correlation matrix reveals that the relationship between
temperature, humidity, and flax fiber orientation (direction) is close to 0, indicating no clear
correlation between them. However, there is a negative correlation between temperature,
humidity, flax fiber orientation, and the tensile modulus.

Table 1 summarizes the range of input and output values of the models. The range
of tensile modulus values obtained in the work of Li et al. [24] was quite broad, with
a minimum value of 0.016 GPa and a maximum value of 16.302 GPa. The minimum
value was recorded when the composite was fully immersed, the wax fiber was oriented
transversely, and the tensile test was conducted at a high temperature of 80 ◦C. On the
other hand, the maximum value was obtained when the composite had a relative humidity
of 50%, the wax fiber was oriented longitudinally, and the tensile test was conducted at a
lower temperature of 20 ◦C.

Table 1. Range of input and output values of the models.

Attribute Range

Direction 0 (Longitude)/90 (Transverse)
Temperature (◦C) 20–100

Humidity 50 (Dry)/100 (Immersed)
Tensile Modulus (GPa) 0.016–16.302

Figure 2 depicts the strain–stress curves obtained in the longitudinal direction (Figure 2a)
and transverse direction (Figure 2b) at various temperatures and under different humidity
conditions (dry and wet, respectively). The complete experimental curves can be obtained
from another source [24].

Appl. Mech. 2023, 4, FOR PEER REVIEW 7 
 

 

Humidity 50 (Dry)/100 (Immersed) 

Tensile Modulus (GPa) 0.016–16.302 

Figure 2 depicts the strain–stress curves obtained in the longitudinal direction (Fig-

ure 2a) and transverse direction (Figure 2b) at various temperatures and under different 

humidity conditions (dry and wet, respectively). The complete experimental curves can 

be obtained from another source [24]. 

  
(a) (b) 

Figure 2. Strain–stress curves obtained: (a) in the longitudinal direction; (b) in the transverse direc-

tion. 

Figure 3 depicts the histogram illustrating the frequency distribution of the tensile 

modulus values. The data reveal that a significant portion, approximately 40%, of the ten-

sile modulus falls within the range of 0 to 2 GPa. However, it is not possible to classify the 

frequency distribution of the tensile modulus as a normal distribution (Gaussian distribu-

tion), uniform distribution, or lognormal distribution. Nevertheless, the data were fitted 

to an exponential function with an adjustment constant, and the parameters were fined-

tuned to achieve the optimal exponential curve that best aligns with the experimental 

data. An R-square (R2) of 0.94 was obtained. R2 serves as a metric to assess how well a 

model explains the variation in a dependent variable. Its range is from 0 to 1, with 0 indi-

cating that the model explains none of the variance and 1 indicating a full explanation. In 

this case, the exponential fit corresponds well to the distribution of the tensile modulus. 

Figure 2. Strain–stress curves obtained: (a) in the longitudinal direction; (b) in the transverse
direction.

Figure 3 depicts the histogram illustrating the frequency distribution of the tensile
modulus values. The data reveal that a significant portion, approximately 40%, of the
tensile modulus falls within the range of 0 to 2 GPa. However, it is not possible to classify
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the frequency distribution of the tensile modulus as a normal distribution (Gaussian
distribution), uniform distribution, or lognormal distribution. Nevertheless, the data were
fitted to an exponential function with an adjustment constant, and the parameters were
fined-tuned to achieve the optimal exponential curve that best aligns with the experimental
data. An R-square (R2) of 0.94 was obtained. R2 serves as a metric to assess how well
a model explains the variation in a dependent variable. Its range is from 0 to 1, with 0
indicating that the model explains none of the variance and 1 indicating a full explanation.
In this case, the exponential fit corresponds well to the distribution of the tensile modulus.
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These results emphasize the significant influence of wax fiber orientation and en-
vironmental conditions on the mechanical properties of hygromorph composites. Such
insights can help optimizing the design and fabrication of these composites for specific
applications. The utilization of ML models can further enhance our understanding of
the relationship between various parameters and the resulting mechanical properties of
hygromorph composites. Figure 4 depicts the comparison between the true and predicted
tensile modulus of the test data, considering the decision tree model (Figure 4a) and the
random forest model (Figure 4b). The plots demonstrate a strong agreement between the
predicted and actual values of the tensile modulus for flax fiber/shape memory epoxy
hygromorph composites, with the majority of the data points lying close to the 45-degree
line (the best line), indicating nearly perfect predictions. To compare the performance of the
two machine learning models, a statistical measure called the coefficient of determination,
R2, was employed. R2 is commonly used to evaluate the effectiveness of machine learning
models [48]. According to Chicco et al., R2 is often the most informative statistic in many
cases compared to other measures such as mean absolute error (MAE) and its percentage
variation (MAPE), symmetric mean absolute percentage error (SMAPE), mean square error
(MSE), and the square root of mean square error (RMSE) [33]. MAE calculates the average
absolute difference between the actual and expected values of a dataset. Therefore, R2 is
recommended as the standard measure for evaluating regression analyses across various
scientific disciplines [48].
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random forest model.

An R2 value of 0.94 was obtained for the decision tree model, while the random forest
model achieved a value of 0.95. These high R2 values indicate that both models effectively
capture a substantial portion of the data’s variation and can be considered strong predictors
of the tensile modulus outcome.

Composite materials, such as flax fiber/shape memory epoxy hygromorphs, exhibit
significant variations in their mechanical properties. This inherent variability can introduce
noise and make it challenging to further increase the R2.

Table 2 provides a classification of the feature importance in the models, indicating
the extent to which each input feature contributes to the overall predictive power of the
models. In both cases, the flax fiber orientation (direction) emerges as the parameter with
the most significant influence on the tensile modulus. It is followed by the humidity and
temperature levels that were considered during the tensile tests.

Table 2. Features importance of the models.

Feature Decision Tree Random Forest

Direction 0.598 0.605
Humidity 0.224 0.215

Temperature (◦C) 0.178 0.180

This study highlights the potential of machine learning algorithms in accurately
predicting the mechanical behavior of flax fiber-reinforced composites under various
experimental conditions. The predicted tensile modulus values offer valuable insights for
designing and optimizing composite structures for diverse applications. Future research
can expand upon this approach by investigating other mechanical properties, including
compression strength, impact resistance, and fatigue performance, and examining the
influence of additional experimental conditions, such as moisture content and loading rate
on the mechanical behavior of composites. Furthermore, there is potential to explore the
optimization of fiber orientation to attain desired mechanical properties, while considering
factors such as processing conditions and manufacturing constraints. In addition, exploring
alternative machine learning algorithms could be beneficial to determine whether they yield
more accurate predictions or provide deeper insights into the behavior of biocomposites. It
would also be worthwhile to explore the application of these techniques to other materials,
such as Ni–W with a composite-like microstructure [49–51], dissimilar welding joints [52],
or harmonic alloys [53,54].
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4. Conclusions

This work successfully demonstrates the effectiveness of machine learning (ML) mod-
els in studying the impact of various factors on the tensile modulus of flax fiber/shape
memory epoxy hygromorph composites. The study specifically investigates the influence
of fiber orientation, humidity, and temperature on the mechanical properties of these
composites. The results reveal that ML models provide accurate predictions of the tensile
modulus, as indicated by high R-squared values of 0.94 and 0.95 for the decision tree
(DT) and random forest (RF) algorithms, respectively. Among the variables studied, the
orientation of the flax fibers emerges as the most influential factor affecting the tensile
modulus, followed by humidity and temperature. These findings underscore the potential
of ML models in predicting and optimizing the properties of hygromorph composites
for specific applications. The practical implications of this research are significant for the
development of advanced materials with tailored properties. The findings suggest that op-
timizing the orientation of the flax fibers, as well as controlling humidity and temperature,
can substantially enhance the tensile modulus of these composites.
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