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Abstract: The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in 

mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunc-

tion expansion technique, based in part on the separation of the thickness variable and partly on a 

modified Frobenius-type series expansion technique in conjunction with Eshelby–Stroh formalism. 

Out of the three available, complete sets of elastic constants, only the experimental measurements 

using resonant ultrasound spectroscopy merit serious attention, despite reported values of c12 and, 

to a lesser extent, c66 being excessively high. The present investigation considers six through-thick-

ness crack systems weakening orthorhombic mono-crystalline Yttrium barium copper oxide 

(YBCO) plates. More importantly, the present investigation establishes sufficient conditions for 

crack path stability/instability, which entail a cleavage system being easy or difficult, i.e., whether a 

crack would propagate in its original plane/direction or deflect to a different one. This criterion of 

fracture mechanics is then employed for accurate determination of the full set of elastic constants of 

superconducting mono-crystalline YBCO. Finally, heretofore unavailable results pertaining to the 

through-thickness variations of stress intensity factors and energy release rates for a crack corre-

sponding to symmetric and skew-symmetric hyperbolic cosine loads, which also satisfy the bound-

ary conditions on the plate surfaces, bridge a longstanding gap. 

Keywords: three-dimensional stress singularity; fracture mechanics criterion; sufficient condition 

for fracture; easy cleavage system; orthorhombic single crystal; elastic constants of mono-crystalline 

YBCO 

 

1. Introduction 

The elastic constants of engineering materials are crucial for understanding the de-

formation and failure behaviors of structural components. From a microscopic perspec-

tive, their importance arises from their intimate relationships to such solid-state phenom-

ena as specific heat, Debye temperature (ΘD), and the Grünelsen parameter [1]. 

 Modern applications of mono-crystalline high-Tc (critical temperature) supercon-

ductors (HTS), discovered by Bednorz and Muller [2], include Josephson junctions, which 

can act as a switch for magnetic fields, or alternatively, perform the function of a magnetic 

device, such as superconducting quantum interference devices (SQUID) [3]. The ΘD of a 

superconductor such as mono-crystalline YBCO (YBa2Cu3O7−δ) can be determined from 

the knowledge of the elastic constants, cij, in a manner described by Equations (2) and (3) 

of Lei et al. [1], which, in combination with the electron–phonon coupling parameter, λ* 

can be used to compute the superconducting transition temperature, Tc [4,5]. 

The poor fracture toughness of these HTS restricts their practical utility to a cryogenic 

temperature range [6–14]. A review of the Literature reveals that studies of singular stress 

fields at the tips of cracks and notches are mostly limited to two-dimensionality [15–20], 
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and primarily employ the Lekhnitskii [15] (and also occasionally “Stroh” [16]) -based 

methodology; see Nejati et al. [21] for an extensive survey of the Literature. Three-dimen-

sional (3D) fracture toughness studies have been, until recently [22], marked by their near-

complete absence, because of being fraught with an extraordinary level of analytical dif-

ficulties. Furthermore, there is no three-dimensional analog of the complex variable the-

ory, the next one in line being the four-dimensional space-based quaternion theory [23]. 

This aspect of the development of mathematical theories calls for an innovative approach 

as investigated in what follows. 

Stenger et al. [24] have discussed the lack of accuracy of popular numerical methods, 

such as finite difference, finite elements, and boundary elements in the immediate vicinity 

of a crack or wedge front. Various categories of three-dimensional stress singularities in-

clude: (i) through-thickness crack/anti-crack [25,26], as well as their bi- and tri-material 

interface counterparts [27–29]; (ii) corresponding wedges/notches [30–34]; (iii) bi-material 

free/fixed straight edge-face [35–37]; (iv) tri-material junction [38]; (v) penny-shaped 

crack/anti-crack [39,40] and their bi-material interface counterparts [41,42]; (vi) 

through/part-through hole/rigid inclusion [43,44] and their bi-material counterparts 

[45,46], as well as elastic inclusion [47,48]; (vii) fiber-matrix interfacial debond [49–51]; 

(viii) fiber breaks and matrix cracking in composites [52]; (ix) interfacial bond line of a 

tapered jointed plate [53]; and (x) circumferential junction corner line of an island/sub-

strate [54]; among others. A review of the Literature regarding three-dimensional fracture 

mechanics reveals successful attempts at analyses of the penny-shaped crack/anti-crack 

[39] (and their bi-material counterparts [41]), and the hole [43], bi-material hole [45], and 

inclusion problems [47]. This success notwithstanding, the solution of the corresponding 

through-thickness crack problem was engulfed in controversies [25,55]. 

More recently, cracked/anti-cracked transversely isotropic (smeared-out composite) 

[56] as well as cubic/orthorhombic/diamond cubic mono-crystalline plates subjected to 

mode I/II far-field loadings [22,57,58] and cubic/orthorhombic/monoclinic/diamond cubic 

mono/tri-crystalline plates under mode III loading [22,58–61] have been solved by a novel 

three-dimensional eigenfunction expansion technique, based in part on the separation of 

the thickness variable and partly on a modified Frobenius type series expansion technique 

in conjunction with Eshelby [62]–Stroh [16] formalism. Three-dimensional asymptotic 

stress fields in the vicinity of the front of the kinked carbon fiber-matrix junction [63] have 

also been derived by employment of the same approach (see also Ref. [64] for its 2D coun-

terpart with isotropic glass fibers). 

The above-mentioned importance notwithstanding, relatively fewer attempts at ex-

perimental determination of elastic constants of mono-crystalline YBCO have been re-

ported in the Literature about solid-state physics [1,65–73]; these are summarized in Table 

1 of Lei et al. [1]. Golding et al. [66] and Saint-Paul and co-workers [70,71] have reported 

experimental results on c11 and c33, and c33, c44, c66, and c12, respectively, by employing the 

ultrasound technique, while Baumgart et al. [68,69] and Zouboulis et al. [72] have resorted 

to Brillouin spectroscopy/scattering to determine c11, c33 and c44, and c44, c55, and c66, respec-

tively. Only two experimental investigations [1,67] report complete sets of elastic con-

stants accessible to the present author. Worse still, those reported by Reichard et al. [67] 

assume tetragonal symmetry; see Table 1. Only the experimental measurements due to 

Lei et al. [1], marked * in Table 1, correctly assume orthorhombic symmetry, and were 

determined by resonant ultrasound spectroscopy, described in detail by Migliori et al. 

[74,75]. However, their measured magnitude of 
12c  was deemed to be unacceptably out 

of the range. The reasoning given by the authors [1] is that “No wave speed in the crystal 

depends only upon 
12c , it is no way to estimate it directly.” It was previously experi-

mentally determined by the present author and his co-workers [76–78] that 
12c  and 66c  

are always coupled in vibrations-based measurements [77,78], although these elastic 

https://www.sciencedirect.com/science/article/pii/S0307904X2030545X?casa_token=myxvTrdyUeIAAAAA:tUR1eOphk--Px4ML_H_O_0G2FO_7q-YuPKHzgSEdVIjZnliJTWUTwAapwpnGE1W579IUyjm3nG96#!
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stiffnesses can be measured independently by static tests. Finally, those reported by 

Ledbetter and Lei [79] are just estimates (marked ** in Table 1). 

Table 1. Elastic stiffness constants of YBCO single crystals. 

Material 

(Technique) 
11c  

(GPa) 

12c  

(GPa) 

13c  

(GPa) 

22c  

(GPa) 

23c  

(GPa) 

33c  

(GPa) 

44c  

(GPa) 

55c  

(GPa) 

66c  

(GPa) 

YBCO * [1] 

(Resonant 

Ultrasound) 

231.0 132.0 71.0 268.0 95.0 186.0 49.0 37.0 95.0 

YBCO ** [79] 

(Estimate) 
223.0 37.0 89.0 244.0 93.0 138.0 61.0 47.0 97.0 

YBCO *** 

(Inference) 
231.0 66.0 71.0 268.0 95.0 186.0 49.0 37.0 82.0 

YBCOT [67] 

(Neutron 

Scattering) 

230.0 100.0 100.0 230.0 100.0 150.0 50.0 50.0 85.0 

* All values measured by resonant ultrasound spectroscopy (except 
12c ) by Lei et al. [1]. ** Esti-

mated by Ledbetter and Lei [79]. *** Same as *, except 
12c  and 66c measured by ultrasound by 

Saint-Paul and Henry [71]. 

The above review of the literature reveals an absence of reliable and accurate experi-

mentally measured complete sets of the nine elastic constants needed for characterization 

of the deformation/fracture, as well as other solid-state (e.g., ΘD, Tc, etc.) behaviors of su-

perconducting (orthorhombic) YBCO single crystals. This calls for a reliable criterion for 

assessment of the measured data that would allow us to come up with a reasonably accu-

rate complete set of nine elastic constants. This is the primary objective of the present in-

vestigation. One effective way to address this important issue is to analytically examine 

the effects of elastic constants on crack path stability/instability in mono-crystalline YBCO 

and compare them with the experimental results for easy cleavage planes, reported by 

Cook et al. [6], Raynes [9], and Granozio and di Uccio [14], among others. In what follows, 

the above-mentioned modified eigenfunction expansion technique, based in part on the 

separation of the thickness variable and partly on the Eshelby–Stroh type affine transfor-

mation, is developed to derive a three-dimensional asymptotic stress field in the vicinity 

of the front of a semi-infinite through-thickness crack weakening an infinite orthorhombic 

mono-crystalline plate of finite thickness and subjected to far-field mode I/II loadings. 

Crack-face boundary conditions and those that are prescribed on the top and bottom (free 

or fixed) surfaces of the plate are exactly satisfied. The present investigation considers six 

through-crack systems—(010)[001] with the [100] length direction, (0 1 0)[100] with the 

[001] length direction, ( 1 00)[001] with the [010] length direction, (100)[010] with the [001] 

length direction, (001)[0 1 0] with the [100] length direction, and (001)[100] with the [010] 

length direction—weakening orthorhombic mono-crystalline plates. Explicit expressions 

for the singular stresses in the vicinity of the front of a through-thickness crack weakening 

an orthorhombic mono-crystalline plate, subjected to far-field mode I/II loadings, are pre-

sented. In addition, through-thickness distribution of the stress intensity factors, and en-

ergy release rates are also presented. 

Next, the important issue of easy or difficult cleavage plane and the related question 

of crack deflection criterion is discussed. The latter is based on the relative fracture energy 

(or the energy release rate) available for possible “fracture paths” [18]. This said, it is note-

worthy that the Griffith energy balance-based criterion cannot be regarded as a sufficient 

condition [80]. This is because Griffith’s criterion is “Not really a fracture criterion but 

only a necessary condition for fracture” [80]. This calls for establishment of a sufficient 
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condition for determination of an easy or difficult cleavage plane, and the related question 

of the crack path stability/instability criterion. This is the second and somewhat more im-

portant objective of the present study. 

One Holy Grail issue in fracture mechanics of anisotropic solids is to find a dimen-

sionless parameter akin to Reynold’s number in fluid flow problems, crossing a critical 

value which signifies transition from one regime to another, such as the critical value of 

Reynold’s number, above which the flow is turbulent and below which it is laminar. It is 

an attendant issue relating to crack deflection that remains heretofore unaddressed, which 

is the third objective of the present investigation. In a similar vein, just as the introduction 

of Reynold’s number facilitated the design and setting up of experiments in addition to 

experimental verification of analytical and computational solutions in fluid dynamics, a 

similar expectation-cum-need exists in the important field of fracture mechanics of aniso-

tropic solids, which is the final objective of the present study. Here, the accuracy and effi-

cacy of the available experimental results on the elastic constants of YBCO single crystals, 

measured by modern experimental techniques with resolutions at the atomic scale (or 

nearly so), such as X-Ray diffraction [65], the ultrasound technique [66,70,71], neutron dif-

fraction [73] /scattering [67], Brillouin spectroscopy [68,69] /scattering [72], resonant ultra-

sound spectroscopy [1,74,75], and the like, is assessed with a powerful theoretical analysis 

on crack path stability/instability, in part based on a dimensionless parameter, such as the 

planar anisotropic ratio. 

The present study, although to a smaller extent a review of earlier work on this topic, 

is largely based on original research on this subject. The topic, which covers mathematics 

(e.g., branch point/branch cut, asymptotic, solution to 3D mixed boundary-value problem, 

and necessary and sufficient condition for fracture), solid-state physics/chemistry (e.g., 

stoichiometry, superconductivity, crystal structures, and single crystal cleavage) and en-

gineering (e.g., 3D fracture mechanics), has, so far, remained largely unexplored in the 

Literature. 

2. Formulation of the Problem 

One of the most important cleavage systems for mono-crystalline orthorhombic 

YBCO is (001) [100] × [010] ({crack plane}<crack front>x<initial propagation direction>). In 

what follows, the deformation behavior in the vicinity of the front of a semi-infinite 

through-thickness crack, weakening an infinite orthorhombic YBCO plate of thickness, 2h 

(Figures 1 and 2) is analyzed in detail. Here, the z -axis is placed along the straight crack 

front, [100], while the coordinates x   [010], y  are used to define the directions 

along the length of the crack (propagation direction) and the direction transverse to it, 

respectively, in the middle plane of the single crystal plate. u , v  and w  represent the 

components of the displacements in x   [010], y  and z  [100] directions, respec-

tively. The corresponding stress-strain relations are given as follows: 
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(1) 

where cij, i, j = 1,...,6, denotes the elastic stiffness constants of an orthorhombic mono-crys-

talline plate. x , y , z  represent the normal stresses, and 
xy , xz , 

yz  denote the 
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shear stresses, while x  , 
y  , z   denote normal strains, and 

xy   xz  , 
yz   represent 

the shear strains. For the special case of a tetragonal single crystal, 

11 22 ,c c=  13 23,c c= 44 55.c c=  (2) 

The three equilibrium equations can now be expressed in terms of the displacement 

components, u , v , and w , as follows: 

,0~~

~
)(~~

~
)(~

~

~

~

~

~ 2

6612

2

44232

2

662

2

442

2

22 =++++++
zx

w
cc

yx

v
cc

z

u
c

y

u
c

x

u
c




















 (3) 

,0~~

~
)(~

~

~

~

~

~

~~

~
)(

2

55132

2

552

2

332

2

44

2

4423 =++++++
zy

w
cc

z

v
c

y

v
c

x

v
c

yx

u
cc




















 (4) 

,0~

~

~

~

~

~

~~

~
)(~~

~
)(

2

2

112

2

552

2

66

2

5513

2

6612 =++++++
z

w
c

y

w
c

x

w
c

zy

v
cc

zx

u
cc




















 (5) 

The boundary conditions include those at the plate faces and crack-side surfaces. The 

boundary conditions on the plate faces, z  = +h, are given by [22,25] 

0,z xz yz  = = =  (6) 

while those at the crack-side surfaces are more conveniently expressed in local cylindrical 

polar coordinates (Figure 1), which are given as follows: 

0,
r z  

  = = =   (7) 

 =   (8) 

where 
r  , 

  , 
r   represent the normal stresses, and 

r
  , 

rz  , 
z

   are the shear 

stresses, while r , 


 , z  denote the normal strains, and 
r

 , rz , 
z

  are the shear 

strains in the cylindrical polar coordinate system ( r ,  , z ). ru and u


 represent the 

components of the displacement in r  and   directions, respectively. 
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Figure 1. Schematic of a through-thickness semi-infinite crack in an infinite orthorhombic mono-

crystalline plate. 

 

Figure 2. Schematic of the top half of an orthorhombic mono-crystalline plate weakened by a (001) 

[100] through-thickness crack initially propagating in [010] direction. 

3. Singular Stress Fields in the Vicinity of a Crack Front Weakening an  

Orthotropic/Orthorhombic Lamina/Single Crystal under General Loading 

The assumed displacement functions for the three-dimensional crack problem under 

consideration are selected on the basis of the separation of z variables. These are as given 

below [22,56–58,64]: 

( , , ) ( , ),ikzu x y z e U x y=  (9) 
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( , , ) ( , ),ikzv x y z e V x y=  (10) 

( , , ) ( , ).ikzw x y z e W x y=  (11) 

It may be noted that since the z -dependent term and its first partial derivative can 

either be bounded and integrable at most admitting ordinary discontinuities, or the first 

partial derivative at worst be square integrable (in the sense of Lebesgue integration) in 

its interval z  [–h, h], i.e., admitting singularities weaker than square root (i.e., z
(−1/2+ε), ε), it can be best represented by a Fourier series [22,25,58]. The latter case is justi-

fied by Parseval’s theorem [81], and its physical implication is that of satisfying the crite-

rion of finiteness of local strain energy and path independence [82]. Substitution of Equa-

tions (9)–(11) into Equations (2)–(5) yields the following system of coupled partial differ-

ential equations (PDE’s): 

2 2 2

22 44 66 23 44 12 662 2

1 1 1 1 1

( ) ( ) 0,
U U V W

c c c U c c c c
x y x y x

   

    
+ + + + + + =  (12) 

2 2 2

23 44 44 33 55 13 552 2

1 1 1 1 1

( ) ( ) 0,
U V V W

c c c c c V c c
x y x y y

   

    
+ + + + + + =  (13) 

2 2

12 66 13 55 66 55 112 2

1 1 1 1

( ) ( ) 0,
U V W W

c c c c c c c W
x y x y

   

   
+ + + + + + =  (14) 

where 

1 ,x ikx=  (15) 

1 .y iky=  (16) 

The solution to the system of coupled partial differential Equations (12)–(14) sub-

jected to the most general loading can now be sought in the form of the following modified 

Frobenius type series in terms of the variable 1 1x py+  as follows: 

2 1 2

1 1 1 1 1 1

0 0

( , ) ( ) ( ) ,s n s n

s n s n

n n

U x y a x py a x py
 

+ + +

+ +

= =

= + + +   (17) 

2 1 2

1 1 1 1 1 1

0 0

( , ) ( ) ( ) ,s n s n

s n s n

n n

V x y b x py b x py
 

+ + +

+ +

= =

= + + +   (18) 

2 2 1

1 1 1 1 1 1

0 0

( , ) ( ) ( ) .s n s n

s n s n

n n

W x y c x py c x py
 

+ + +

+ +

= =

= + + +   (19) 

Out of the various combinations, such as (a’, b’, c’), (a, b, c), (a’, b, c), (a, b’, c), (a, b, 

c’), (a’, b’, c), (a’, b, c’), and (a, b’, c’), only the first two groupings can produce meaningful 

solutions, for the mode I/II and mode III loading cases, respectively. This step permits the 

separation of mode III from modes I/II. The first grouping is described below, while the 

second one has already been employed for the anti-plane shear case [59–61]. 
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4. Singular Stress Fields in the Vicinity of a (001)[100] Through-Crack Front  

Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting) 

in [010] Direction 

While the separability of the 1x  and 1y  variables is the hallmark of the deriva-

tion of the singular stress fields weakening an isotropic plate [25–49,55] subjected to the 

far-field mode I/II loading, the same cannot be true for its orthorhombic counterpart, 

wherein the solution to the system of coupled partial differential Equation (5) must be 

sought in the form of a modified Frobenius type series in terms of a combined variable 

1 1x py+ , which is a mathematical representation of an affine transformation employed 

earlier by Eshelby et al. [62], Stroh [16], and Shih et al. [17], as shown below [22,53,54,60]. 

It may be remarked here that the solution methodology offered by these authors, espe-

cially Refs. [17,62], are entirely different from what follows. 

2

1 1 1 1

0

( , ) ( ) ,s n

s n

n

U x y a x py


+

+

=

= +  (20) 

2

1 1 1 1

0

( , ) ( ) ,s n

s n

n

V x y b x py


+

+

=

= +  (21) 

2 1

1 1 1 1

0

( , ) ( ) .s n

s n

n

W x y c x py


+ +

+

=

= +  (22) 

On substitution of Equations (20)–(22) into Equations (12)–(14), and equating the co-

efficients of 
2 2

1 1( )s nx py + −+ , a set of recurrent relationships can be derived, which, for 

n = 0, results in the following: 

( )

( )

2

22 44 23 44

2

23 44 33 44

0
,

0

s

s

ac c p c c p

c c p c p c b

   + +   
=    

+ +      
 valid for s  ≠ 0, 1, (23) 

which, in turn, yields, for the non-trivial case, the characteristic equation for the coupled 

partial differential Equations (3)–(5) or (12)–(14) as given below: 

4 2 22

33

2 0,
c

p p
c

+ + =  (24) 

where the normalized elastic parameter, 1/ = , is given by 

 
( )

( )

( )
23 13 3133 44

2
3 23 32 12 1322 33 23 23 44

2 121
,

22

Gc c

E Gc c c c c

 


   

−
= = =

 − +− −  
 (25) 

in which E3 is z-direction Young’s modulus, G23 is the shear modulus in the y-z plane, 

while ν12 is the major Poisson’s ratio in the x-y plane. ν32 denotes the minor Poisson’s ratio 

in the y-z plane, while ν13 and ν31 represent the major and minor Poisson’s ratios, respec-

tively, in the x-z plane. It also is sometimes convenient to relate 1/ = , as will be seen 

later, to 1/A =  , with A   being the planar anisotropic ratio (in the x  [010]- y  [001] 

plane), as shown below. 
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( )
33

22 33 23

1
,

1

Ac

c c c A



= =

+ −
 (26) 

in which 

44

22 33 23

2
.

c
A

c c c
=

−
 (27) 

It can easily be seen from Equation (27) that A  is higher when the shear stiffness 

(modulus) and major Poisson’s ratio in the x  [010], y [001] plane assume larger mag-

nitudes. This simple fact assumes great importance as this investigation aims to solve one 

Holy Grail issue in the fracture mechanics of anisotropic media, of coming up with a di-

mensionless parameter akin to Reynold’s number in fluid flow problems, crossing a criti-

cal value which signifies transition from one regime to another, such as the critical value 

of Reynold’s number above which the flow is turbulent and below which it is laminar. It 

is an attendant issue relating to crack deflection in mono-crystalline orthorhombic YBCO. 

Equation (24) has either (a) four complex or (b) four imaginary roots, depending on 

whether 

(a) A  > 1 or, equivalently,
( )

( )
3 12 2133

22 2 13 31

1
,

1

Ec

c E

 


 

−
 =

−
  (28) 

(b) A  < 1 or, equivalently,
( )

( )
3 12 2133

22 2 13 31

1
.

1

Ec

c E

 


 

−
 =

−
 (29) 

Chaudhuri and Xie [25], and Chaudhuri [55] have earlier solved the degenerate iso-

tropic material case, for which A  = 1 and   = 1. 

4.1. Case (a): Complex Roots 

1,2 ,p i =   (30) 

3,4 ,p i = −   (31) 

where 

1/2
1/2

22

33

1
,

2

c

c
 

  
 = − 
   

 (32) 

1/2
1/2

22

33

1
,

2

c

c
 

  
 = + 
   

 (33) 

valid for A  > 1 or, equivalently, 33 22/c c  . 

It may be noted here that a crack front and the corresponding semi-infinite crack rep-

resent a branch point and a branch cut, respectively. Therefore, the general asymptotic 
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form for the displacement and stress fields in the vicinity of the crack front can most con-

veniently be obtained by employing a set of two polar coordinate systems, (  ,  ) and (

 ,  ), derived from the aforementioned affine transformation and expressed in terms 

of the cylindrical polar coordinate system ( r ,  , z ), as follows: 

( ) ( )cos( ) cos( ) sin( ) , sin( ) sin( ) ,r r        = + =  (34) 

( ) ( )cos( ) cos( ) sin( ) , sin( ) sin( ) ,r r           = − = −  (35) 

where 

( ) 
1/2

2
2 2cos( ) sin( ) sin ( ) ,r     = + +  (36) 

( ) 
1/2

2
2 2cos( ) sin( ) sin ( ) ,r      = − +  (37) 

and 

( )
( ) 

1/2
2

2 2

cos( ) sin( )
cos ( ) ,

cos( ) sin( ) sin ( )

  
 

    

+
=

+ +

 
(38) 

( )
( ) 

1/2
2

2 2

sin( )
sin ( ) ,

cos( ) sin( ) sin ( )

 
 

    

=

+ +

 (39) 

( )
( ) 

1/2
2

2 2

cos( ) sin( )
cos ( ) ,

cos( ) sin( ) sin ( )

  
 

    

−
 =

− +

 
(40) 

( )
( ) 

1/2
2

2 2

sin( )
sin ( ) ,

cos( ) sin( ) sin ( )

 
 

    

−
 =

− +

 
(41) 

The components of the displacement vector and the stress tensor in the immediate 

neighborhood of the crack from can now be written as shown below: 

( )( ) ( )  ( ) ( ) 
/2

2
2 2

1 2( , , ) cos( ) sin( ) sin ( ) cos sin
ss

s

bu r z r D z ik A s A s       


= + + +


( )  ( ) ( )  ( )
/2

2
2 2 2

3 4cos( ) sin( ) sin ( ) cos sin ,
s

sA s A s O r       + + − + + +


 

(42) 
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( ) ( ) ( )  (
/2

2
2 2

1 1( , , ) cos( ) sin( ) sin ( )
ss

s

bv r z r D z ik H A     


= + +


) ( ) ( ) ( ) ( )
2

2 2 1 2 2 1cos sin cos( ) sin( )H A s H A H A s    + + − + −

 ( ) ( ) ( ) ( ) 
/2

2 2

1 3 2 4 1 4 2 3sin ( ) cos sin
s

H A H A s H A H A s    + − + − −  

( )2 ,sO r ++  

(43) 

( )1( , , ) ,sw r z O r +=  (44) 

and 

( ) ( ) ( ) ( )  ( 
( 1)/2

2
1 2 2

1 22, , cos( ) sin( ) sin ( )
ss

s

x br z r D z ik s A c      
−

− = + + +
  

( )  ( ) ) ( )( ) ( ( ) 1 2 23 2 1 2 23 1 1 2 23cos 1H H c A H H c s A H H c      + − + + − + − +

 ( ) ) ( )( ) ( )
2

2 22 1 2 23 sin 1 cos( ) sin( )A c H H c s     + + − − + −


 (  ( )  ( ) ) ( )( )
( 1)/2

2 2

3 22 1 2 23 4 1 2 23sin ( ) cos 1
s

A c H H c A H H c s      
−

 + + − + + −


( ( )   ( ) ) ( )( )3 1 2 23 4 22 1 2 23 sin 1A H H c A c H H c s     + − + + + − −
 ( )1 ,sO r ++  

(45) 

( ) ( ) ( ) ( )  ( 
( 1)/2

2
1 2 2

1 23, , cos( ) sin( ) sin ( )
ss

s

y br z r D z ik s A c      
−

− = + +


 

( )  ( ) ) ( )( ) ( ( ) 1 2 33 2 1 2 33 1 1 2 33cos 1H H c A H H c s A H H c      + − + + − + − +

 ( ) ) ( )( ) ( )
2

2 23 1 2 33 sin 1 cos( ) sin( )A c H H c s     + + − − + −


 (  ( )  ( ) ) ( )( )
( 1)/2

2 2

3 23 1 2 33 4 1 2 33sin ( ) cos 1
s

A c H H c A H H c s      
−

 + + − + + −


( ( )   ( ) ) ( )( )3 1 2 33 4 23 1 2 33 sin 1A H H c A c H H c s     + − + + + − −


( )1 ,sO r ++  

(46) 
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( ) ( )( ) ( )  ( )
( 1)/2

2
1 2 2

44 1 1, , cos( ) sin( ) sin ( )
ss

s

xy br z r D z ik s c A H       
−

− = + + +


 

( ) ( )( ) ( ) ( )  ( )( )2 2 1 2 2 1cos 1 sin 1A H s A H A H s     + + − + − + + + − 

 ( )  ( ) ( ) ( )( )
( 1)/2

2
2 2

3 1 4 2cos( ) sin( ) sin ( ) cos 1
s

A H A H s       
−

 + − + − + − + −


( ) ( )  ( )( ) ( )1

3 2 4 1 sin 1 ,sA H A H s O r   ++ + − + − +  

(47) 

( ) ( ) ( ) ( )  ( 
( 1)/2

2
1 2 2

1 12, , cos( ) sin( ) sin ( )
ss

s

z br z r D z ik s A c      
−

− = + +
   

( )  ( ) ) ( )( ) ( ( ) 1 2 13 2 1 2 13 1 1 2 13cos 1H H c A H H c s A H H c      + − + + − + − +  

 ( ) ) ( )( ) ( )
2

2 12 1 2 13 sin 1 cos( ) sin( )A c H H c s     + + − − + −


 

 (  ( )  ( ) ) ( )( )
( 1)/2

2 2

3 12 1 2 13 4 1 2 13sin ( ) cos 1
s

A c H H c A H H c s      
−

 + + − + + −


 

( ( )   ( ) ) ( )( )3 1 2 13 4 12 1 2 13 sin 1A H H c A c H H c s     + − + + + − −
 ( )1 ,sO r ++  

(48) 

( ) ( ), , ,s

xz r z O r  =  (49) 

( ) ( ), , ,s

yz r z O r  =  (50) 

where 

( )
( )

22 33 44

1

23 44

,
c c c

H
c c

 +
= −

+
 (51) 

( )
( )

22 33 44

2

23 44

.
c c c

H
c c

 −
=

+
 (52) 

and 

( ) ( ) ( )1 2sin cos .bD z D kz D kz= +  (53) 

It may be noted that since s   or Re s   (when s   is complex) is positive, all the 

higher order terms in Equations (45)–(48) vanish as r  → 0. The non-vanishing compo-

nents of asymptotic displacement vector and stress tensor in the cylindrical polar coordi-

nate system ( r ,  , z ) can now be obtained by using the standard vector and the second-

rank tensor transformation rule: 
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cos sin
,

sin cos

xr

y

uu

uu


 

 

    
=    

−    
 (54) 

( )

( ) ( ) ( )

2 2

2 2

cos sin sin 2

sin cos sin 2 .

1 1
sin 2 sin 2 cos 2

2 2

r x

y

xyr





   

    

 
  

 
    
    

= −    
    
   − 

 

 
(55) 

The stress component, z , is as given in Equation (48). 

The substitution of Equation (55), in conjunction with Equations (45)–(48), into the 

stress-free condition on the crack-side surfaces, given by Equation (7), gives rise to four 

homogeneous equations, which finally yields: 

Either 

( )cos 1 0,s − =  (56) 

or  

( )sin 1 0.s − =  (57) 

Equation (56) yields the lowest nonvanishing eigenvalue, s   = 1/2, 0 < s   < 1, thus 

meeting the criterion of locally finite energy. Equation (57) gives rise to s  = 0, 1, which 

can take care of rigid body translation and rotation, respectively. Interestingly, s  = 1 also 

accounts for the T-stress; see e.g., Nejati et al. [21]. 

4.1.1. Symmetric (Mode I) Loading (Extension/Bending) 

For the case of far-field symmetric (Mode I) loading, the following boundary condi-

tions can be applied: 

 0: = 0,
r z 

 = =  (58) 

 : = 0.
r z  

  = = =  (59) 

when s  = 1/2, substitution of Equation (55) in conjunction with Equations (45)–(47) into 

Equations (58) and (59), yields the following: 

1A  = 3A , (60) 

2A  = 4A .  (61) 

( )
( )

22 33 23
2

1 22 33 23

.
c c cA

A c c c





+
= −

−
 

(62) 

https://www.sciencedirect.com/science/article/pii/S0307904X2030545X?casa_token=myxvTrdyUeIAAAAA:tUR1eOphk--Px4ML_H_O_0G2FO_7q-YuPKHzgSEdVIjZnliJTWUTwAapwpnGE1W579IUyjm3nG96#!
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Finally, on substitution of Equations (60)–(62) into Equations (42), (43) and (45)–(48), 

the relevant components of the displacement vector and the stress tensor in the immediate 

neighborhood of a semi-infinite crack front, under Mode I loading, can be written as given 

below: 

( )
( )  ( ) ( )

1/4
2

2

22 33 232

22 33 23

( )
( , , ) cos sin sin cos / 2

2

IK z r
u r z c c c

c c c
      



= + + −
−

 ( ) ( ) ( )  ( ) ( )
1/4

2
2

22 33 23 22 33 23sin / 2 cos sin sin cos / 2c c c c c c


      



− + + − + −



( ) ( )22 33 23 sin / 2 ,c c c






+ + 


 

(63) 

( )
( )  ( )

( )
21/4

2 22 33 232

2
4422 33 23

( )
( , , ) cos sin sin cos / 2

2 2

I
c c cK z r

v r z
cc c c

      
 

 −= + + −− 

 

( ) ( )  ( )
( )

21/4
2 22 33 232

22 33

44

2 sin / 2 cos sin sin cos / 2
2

c c c
c c

c
       



 −
+ + − + 



 

( )22 332 sin / 2 ,c c   +


 

(64) 

( )  ( ) ( )
1/4

2
2( )

( , , ) cos sin sin cos / 2 sin / 2
2 2

I
x

K z
r z

r


        



 = + + −   
 

( )  ( ) ( )
1/4

2
2cos sin sin cos / 2 sin / 2 ,


      



 
 + − + + 

 
 

(65) 

( )  ( ) ( )
1/4

2
2( )

( , , ) cos sin sin cos / 2 sin / 2
2 2

I
y

K z
r z

r


        



 = + + +   

( )  ( ) ( )
1/4

2
2cos sin sin cos / 2 sin / 2 ,


      



 
 + − + − 

 
 

(66) 

( )  ( )
1/4

2
2( )

( , , ) cos sin sin cos / 2
2 2

I
xy

K z
r z

r
       

 

= − + +


 

( )  ( )
1/4

2
2cos sin sin cos / 2 ,      − − +   

(67) 

where the mode I stress intensity factor, ( )IK z , is defined as follows: 
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( )1/2

22 33 23 1( ) 2 ( ) ( ) .I bK z D z ik c c c A= +  (68) 

( ) ( )

( )
12 33 13 23 13 22 12 23

2

22 33 23

( , , ) ( , , )
( , , ) .

x y

z

c c c c r z c c c c r z
r z

c c c

   
 

− + −
=

−
 (69)       

4.1.2. Skew-symmetric (Mode II) Loading (Sliding Shear/Twisting) 

For the case of far-field skew-symmetric (Mode II) loading, the following boundary 

conditions can be applied: 

0 = : 0,
z 

 = =  (70) 

 = : 0.
r z  

  = = =  (71) 

When s  = 1/2, substitution of Equation (55) in conjunction with Equations (45)–(47) into 

Equations (70) and (71) yields the following: 

1A  = − 3A ,  (72) 

2A  = − 4A .  (73) 

( )
22 33 442

2
1 22 33 23

4
.

c c cA

A c c c


=

−
 (74) 

Finally, on substitution of Equations (72)–(74) into Equations (42), (43) and (45)–(48), 

the relevant components of the displacement vector and the stress tensor in the immediate 

neighborhood of a semi-infinite crack front, under Mode II loading, can be written as 

given below: 

( )
( )  ( )

( )
21/4

2 22 33 232

2
4422 33 23

( )
( , , ) cos sin sin cos / 2

2 2

II
c c cK z r

u r z
cc c c

      
 

 −= + + − 

( ) ( )  ( )
( )

21/4
2 22 33 232

22 33

44

2 sin / 2 cos sin sin cos / 2
2

c c c
c c

c
       



 −
+ + − + −



( )22 332 sin / 2 ,c c   +
  

(75) 
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( )
( )  ( ) ( )

1/4
2

2

22 33 232

22 33 23

( )
( , , ) cos sin sin cos / 2

2

IIK z r
v r z c c c

c c c
      



= − + + −
−

( ) ( ) ( )  ( ) ( )
1/4

2
2

22 33 23 22 33 23sin / 2 cos sin sin cos / 2c c c c c c


      



+ + + − + −



( ) ( )22 33 23 sin / 2 ,c c c






− + 


 

(76) 

( )  ( )
( ) ( )

2 21/4
2

2( )
( , , ) cos sin sin cos / 2 2 sin / 2

2 2

II
x

K z
r z

r

 
         



 − = + + −    

( )  ( )
( ) ( )

2 2
1/4

2
2cos sin sin cos / 2 2 sin / 2 ,

 
       



 −  − − + + 
  

 

(77) 

( )  ( )
1/4

2
2( )

( , , ) cos sin sin cos / 2
2 2

II
y

K z
r z

r
       

 

= + +


 

( )  ( )
1/4

2
2cos sin sin cos / 2 ,      − − +   

(78) 

( )  ( ) ( )
1/4

2
2( )

( , , ) cos sin sin cos / 2 sin / 2
2 2

II
xy

K z
r z

r


        



 = − + + +   

( )  ( ) ( )
1/4

2
2cos sin sin cos / 2 sin / 2 ,


      



 
 + − + − 

 
  

(79) 

in which the mode II stress intensity factor, ( )IIK z , is defined as follows: 

1/2

44 1( ) 2 2 ( ) ( ) .II bK z D z ik c A =  (80) 

 ( , , )z r z  is given by Equation (69). A critical examination of Equations (66) and 

(79) reveals the following interesting relationship: 

( , , ) | ( , , )
, .

( ) ( )

y Mode I xy Mode II

I II

r z r z
valid for all

K z K z

   
= −  (81) 

Since ( )IK z   and ( )IIK z  are directly proportional to far-field loadings, ( )y z 
 

and ( )xy z 
, respectively, this interesting result implies that both these loadings produce 

identical (except the negative sign for xy )  -dependence of these two near-field driving 

stresses, ( , , ) |y Mode Ir z  / ( , , )xy Mode IIr z  : 
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( , , ) |( )( )
, | | .

( ) ( ) ( , , )

y Mode IyI

II xy xy Mode II

r zzK z
valid for all

K z z r z

 
 

  




= = −   (82) 

This is unlike what happens in the case of an isotropic material, where no such  -

invariance (i.e., identical   -dependence) exists, as the following relationship would 

clearly demonstrate [25,55]: 

( ) ( )  ( ) ( ) 
( , , ) | ( , , )

.
( ) 1 sin / 2 sin 3 / 2 ( ) 1 sin / 2 sin 3 / 2

y Mode I xy Mode II

I II

r z r z

K z K z

   

   
= −

+ −
 (83) 

( ) ( ) 
( ) ( ) 

( , , ) | 1 sin / 2 sin 3 / 2( )
.

( ) ( , , ) 1 sin / 2 sin 3 / 2

y Mode IyI

II xy xy Mode II

r zK z

K z r z

   

    





−
= = −

+
 (84) 

Comparison of Equations (81)–(84) shows that while the ratio of mode I to mode II 

stress intensity factors or its far-field loading counterpart is equal to negative times the 

ratio of the corresponding driving stresses, ( , , ) |y Mode Ir z  / ( , , )xy Mode IIr z  , for the 

case of an orthorhombic crystal with complex roots (valid for A   > 1 or, equivalently, 

33 22/c c  ), and this relationship is invariant with respect to coordinate trans-

formation (here specifically with respect to   variation), the same cannot be said about 

the corresponding relationship for an isotropic material. The coupling between 

( )cos / 2   and ( )sin / 2  , and similar coupling between ( )cos / 2    and 

( )sin / 2    in the two driving stresses, ( , , ) |y Mode Ir z    and ( , , )xy Mode IIr z   , 

which has also been reported in earlier studies [22,56], is instrumental in causing the above 

remarkable relationship given by Equations (81) and (82), which signifies mode mixity. It 
is also somewhat counter-intuitive that an invariant (more specifically, with respect to 

) relationship, such as Equations (81) and (82), resulting from complex roots (valid for A  

> 1 or, equivalently, 33 22/c c  ), guarantees the fact of the cleavage system 

under consideration being difficult (i.e., not easy), thus further concomitant in ensuring 

crack deflection or turning from this difficult cleavage system onto a nearby available easy 

one, violating the self-similarity of crack growth or propagation in the process. In contrast, 

again counter-intuitively, a non-invariant (more specifically, with respect to  ) relation-

ship, such as Equations (83) and (84) resulting from the degenerate case ( A  = 1 or, equiv-

alently,   = 1), guarantees the cleavage system under consideration of being super-easy, 

thus ensuring the self-similarity (i.e.,  -invariance) of crack growth or propagation in 

the process. 

The dimensionless parameters, such as the anisotropic ratio, A , or, equivalently, the 

normalized elastic parameter,  , can serve as the Holy Grail quantity for an a priori de-

termination of the status of a cleavage system to be easy or difficult, very much akin to 

Reynold’s number for fluid flow problems, crossing a critical value of which signifies tran-

sition from one regime to another. Here, the anisotropic ratio, A , or, equivalently, nor-

malized elastic parameter,  , for a (001) [100] × [010] cleavage system, crossing the criti-

cal value of 1 or 
33 22/c c , respectively, signifies transitioning from self-similar crack 

growth or propagation to crack deflection or turning from a difficult cleavage system onto 

a nearby easy one. 
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As has been suggested by Sedov [83], similarity analysis is an effective tool to solve 

complex problems in mechanics. This can be employed to establish a sorely needed suffi-

cient condition for the problem at hand and is further elaborated in Section 7.2 below. 

4.2. Case (b): Imaginary Roots 

Equation (24) can also have four imaginary roots given by 

( )1,2 ,p i   =  +  (85) 

( )3,4 ,p i   =  −  (86) 

where 

1/2
1/2

22

33

1
,

2

c

c
 

  
  = + 

   

 (87) 

1/2
1/2

22

33

1
,

2

c

c
 

  
  = − + 

   
 (88) 

is valid for 

A  < 1 or, equivalently, 33 22/c c  ), (89) 

which corresponds to a candidate plane of minimum surface energy. 

As has been explained earlier, the general asymptotic form for the displacement and 

stress fields in the vicinity of the crack front (a branch point in 2D form) can most conven-

iently be obtained by employing a set of two polar coordinate systems, (  ,  ) and (  , 

 ), derived from the affine transformation discussed earlier, and expressed in terms of 

the cylindrical polar coordinate system ( r ,  , z ), as follows: 

1 1 1 1cos( ( )) cos( ), sin( ( )) ( )sin( ),r r          = = +  (90) 

1 1 1 1cos( ( )) cos( ), sin( ( )) ( )sin( ),r r              = = −  (91) 

in which 

 
1/2

2 2 2

1 cos ( ) ( ) sin ( ) ,r     = + +  (92) 

 
1/2

2 2 2

1 cos ( ) ( ) sin ( ) ,r      = + −  (93) 

and 

( )
 

1 1/2
2 2 2

cos( )
cos ( ) ,

cos ( ) ( ) sin ( )


 

   
=

 + +
 (94) 
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( )
 

1 1/2
2 2 2

( )sin( )
sin ( ) ,

cos ( ) ( ) sin ( )

  
 

   

 +
=

 + +
 (95) 

( )
 

1 1/2
2 2 2

cos( )
cos ( ) ,

cos ( ) ( ) sin ( )


 

   
 =

 + −
 (96) 

( )
 

1 1/2
2 2 2

( )sin( )
sin ( ) ,

cos ( ) ( ) sin ( )

  
 

   

 −
 =

 + −
 (97) 

The components of the displacement vector and the stress tensor in the immediate 

neighborhood of the crack front can now be written as shown below: 

( )( ) ( )  ( ) ( ) 
/2

2
2 2

1 1 2 1( , , ) cos ( ) sin ( ) cos sin
ss

s

bu r z r D z ik A s A s      


 = + + +


( )  ( ) ( )  ( )
/2

2
2 2 2

3 1 4 1cos ( ) sin ( ) cos sin ,
s

sA s A s O r      +   + + − + +
  

(98) 

( )( ) ( )  ( ) ( ) 
/2

2
2 2

1 2 1 1 1 1( , , ) cos ( ) sin ( ) cos sin
ss

s

bv r z r D z ik H A s H A s      


   = + + − +


 

( )  ( ) ( )  ( )
/2

2
2 2 2

2 4 1 2 3 1cos ( ) sin ( ) cos sin ,
s

sH A s H A s O r      +     + + − − + +


 

(99) 

( )1( , , ) ,sw r z O r +=  (100) 

and 

( ) ( ) ( ) ( )  
( 1)/2

2
1 2 2

22, , cos ( ) sin ( )
ss

s

x br z r D z ik s c     
−

−  = + + +  

( )  ( )( ) ( )( )   2

1 23 1 1 2 1cos 1 sin 1 cos ( )H c A s A s      + − + − + +  

( )   ( )  ( )( ) ( )( ) 
2 ( 1)/22

22 2 23 3 1 4 1sin ( ) cos 1 sin 1
s

c H c A s A s      
−

      − + − − + −  

( )1 ,sO r ++  

(101) 
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( ) ( ) ( ) ( )  
( 1)/2

21 2 2

12, , cos ( ) sin ( )
s

ss

y br z r D z ik s c     
−

−  = + + +  

( )  ( )( ) ( )( )   2

1 22 1 1 2 1cos 1 sin 1 cos ( )H c A s A s      + − + − + +  

( )   ( )  ( )( ) ( )( ) 2 ( 1)/22

12 2 22 3 1 4 1sin ( ) cos 1 sin 1
s

c H c A s A s      
−

      − + − − + −  

( )1 ,sO r ++  

(102) 

( ) ( )( ) ( )  
( 1)/2

2
1 2 2

44 1, , cos ( ) sin ( )
ss

s

xy br z r D z ik s c H     
−

−   = + +  

( ) ( ) ( )   2

2 1 1 1cos ( 1) sin ( 1) cos ( )A s A s     − + − − + − + +  

( )   ( ) ( ) ( ) 
( 1)/2

2
2

2 4 1 3 1sin ( ) cos ( 1) sin ( 1)
s

H A s A s      
−

    − − − − − + −  

( )1 ,sO r ++  

(103) 

( ) ( ) ( ) ( )  
( 1)/2

2
1 2 2

12, , cos ( ) sin ( )
ss

s

z br z r D z ik s c     
−

−  = + + +  

( )  ( )( ) ( )( )   2

1 13 1 1 2 1cos 1 sin 1 cos ( )H c A s A s      + − + − + +  

( )   ( )  ( )( ) ( )( ) 
2 ( 1)/22

12 2 13 3 1 4 1sin ( ) cos 1 sin 1
s

c H c A s A s      
−

      − + − − + −  

( )1 ,sO r ++  

(104) 

( ) ( ), , ,s

xz r z O r  =  (105) 

( ) ( ), , .s

yz r z O r  =  (106) 

where 

( ) 
( ) ( )

2

22 33 44

1

23 44

,

c c c

H
c c

 

 

 − +
 = −

 + +
 (107) 

( ) 
( ) ( )

2

22 33 44

2

23 44

.

c c c

H
c c

 

 

 − −
 =

 + −
 (108) 
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and ( )bD z  is same as given earlier in Equation (53). 

As before, since s  or Re s  (when s  is complex) is positive, all the higher order 

terms in Equations (101-104) vanish as r → 0. The non-vanishing components of the as-

ymptotic displacement vector and the stress tensor in the cylindrical polar coordinate sys-

tem ( r ,  , z ), can now be obtained by using the standard vector and the second-rank 

tensor transformation rule, given earlier by Equations (54) and (55). The stress component, 

σz, is as given in Equation (104). 

Substitution of Equation (55) in conjunction with Equations (101)–(103) into the 

stress-free condition on the crack-side surfaces, given by Equation (7), gives rise to four 

homogeneous equations, which finally yields 

Either 

( )cos 1 0,s − =   (109) 

or 

( )sin 1 0.s − =   (110) 

Equation (109) yields the lowest nonvanishing eigenvalue, s  = 1/2, 0 < s  < 1, thus 

meeting the criterion of locally finite energy. Equation (110), in contrast, gives rise to s  = 

0, 1, which can take care of rigid body translation and rotation, respectively. Interestingly, 

s  = 1 also accounts for the T-stress. 

4.2.1. Symmetric (Mode I) Loading (Extension/Bending) 

For s  = 1/2, 

2 4 0;A A= =  (111) 

and 

( ) ( ) 
( ) ( ) 

22 33 23
3

1 22 33 23

.
c c cA

A c c c

   

   

   − + +
= −

   + + −
 

(112) 

Finally, on substitution of Equations (111) and (112) into Equations (98), (99) and 

(101)–(104), the relevant components of the displacement vector and the stress tensor in 

the immediate neighborhood of a semi-infinite crack front, under Mode I far-field loading, 

can be written as given below: 

( )
( )  ( )

1/4
2

2 2

22 332

22 33 23

( )
( , , ) cos sin

2

IK z r
u r z c c

c c c
      



    = + + +
−

( ) ( ) ( )  ( )
1/4

2
2 2

23 1 22 33cos / 2 cos sinc c c             + − − + − −  

( ) ( )23 1cos / 2 ,c      + +


 

(113) 
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( )
( )  

1/4
2

2 2

232

22 33 23

( )
( , , ) cos sin

2

IK z r
v r z c

c c c
    



  = + +
−

 

( )  ( ) ( )  
1/4

2 2
2 2

22 33 1 23sin / 2 cos sinc c c         + − − + −  

( )  ( )
2

22 33 1sin / 2 ,c c      + +


 

(114) 

( )  ( ) ( )
1/4

2
2 2

1

( )
( , , ) cos sin cos / 2

2 2

I
x

K z
r z

r
        

 

    = + + +


 

( )  ( ) ( )
1/4

2
2 2

1cos sin cos / 2 ,      


    − + − − 


 

(115) 

( )  ( ) ( )
1/4

2
2 2

1

( )
( , , ) cos sin cos / 2

2 2

I
y

K z
r z

r
        

 

    = − + + −


 

( )  ( ) ( )
1/4

2
2 2

1cos sin cos / 2 ,      


    − + − + 


 

(116) 

( )  ( )
1/4

2
2 2

1

( )
( , , ) cos sin sin / 2

2 2

I
xy

K z
r z

r
      

 

  = + +


 

( )  ( )
1/4

2
2 2

1cos sin sin / 2 ,      − + −  

(117) 

where the mode I stress intensity factor, ( )IK z , is defined as follows: 

( )
( ) ( ) 1/2 44

22 33 23 1

23 44

( ) 2 ( ) ( ) .I b

c
K z D z ik c c c A

c c


    


   = − + +

+
 (118) 

( , , )z r z  is given by Equation (69). 

4.2.2. Skew-symmetric (Mode II) Loading (Sliding Shear/Twisting) 

For s  = 1/2, 

1 3 0;A A= =  (119) 

and 
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( )
( )

( ) ( ) 
( ) ( ) 

22 33 23
4

2 22 33 23

.
c c cA

A c c c

    

     

   − + + −
= −

 +    + + −
 (120) 

(Finally, on substitution of Equations (119) and (120) into Equations (98), (99) and 

(101)–(104), the relevant components of the displacement vector and the stress tensor in 

the immediate neighborhood of a semi-infinite crack front, under Mode II loading, can be 

written as given below: 

( )
( )  ( )

1/4
2 2

2 2

22 332

22 33 23

( )
( , , ) cos sin

2

IIK z r
u r z c c

c c c
      



    = − + + +
−

 ( ) ( )  ( )  ( )
1/4

2 2
2 2

23 1 22 33 23 1sin / 2 cos sin sin / 2 ,c c c c       


    + − + − − + 


 

(121) 

( )
( )  ( )

1/4
2

2 2

22 332

22 33 23

( )
( , , ) cos sin

2

IIK z r
v r z c c

c c c
      



    = + + −
−

 

( ) ( ) ( )  ( )
1/4

2
2 2

23 1 22 33cos / 2 cos sinc c c             + + − + − +  

( ) ( )23 1cos / 2 ,c      + −


 

(122) 

( )  ( )
1/4

2
2 2 2

1

( )
( , , ) cos sin ( ) sin / 2

2 2

II
x

K z
r z

r
        

 


   = − + + +

 
 

( )  ( ) ( )
1/4

2 2
2 2

1cos sin sin / 2 ,      


    − + − − 


 

(123) 

( )  ( )
1/4

2
2 2

1

( )
( , , ) cos sin sin / 2

2 2

II
y

K z
r z

r
      

 

  = + +


 

( )  ( )
1/4

2
2 2

1cos sin sin / 2 ,    


  − + − 


 

(124) 

( )  ( ) ( )
1/4

2
2 2

1

( )
( , , ) cos sin cos / 2

2 2

II
xy

K z
r z

r
        

 

    = + + +


 

( )  ( ) ( )
1/4

2
2 2

1cos sin cos / 2 ,      


    − + − − 


  

(125) 
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in which the mode II stress intensity factor, ( )IIK z , is defined as follows: 

( )( )
( ) ( ) 1/2 44

22 33 23 2

23 44

( ) 2 ( ) ( ) .II b

c
K z D z ik c c c A

c c


    

 


   = − + +

 + +
 (126) 

( , , )z r z  is given by Equation (69). A critical examination of Equations (116) and 

(126) reveals the following relationship involving the two near-field crack driving stresses, 

( , , ) |y Mode Ir z    and ( , , ) |xy Mode IIr z   , and corresponding far-field applied stresses, 

( )y z 
and ( )xy z 

, proportional to ( )IK z  and ( )IIK z : 

( ) ( )
( ) ( )

( ) ( , , ) | ( ) ( , , ) |

( ) ( , , ) | ( ) ( , , ) |

II y Mode I I xy Mode II

II y Mode I I xy Mode II

K z r z K z r z

K z r z K z r z

       

       

   + + −

   − + +
 

( ) 
( ) 

1/4
2

2 2

1/4
2

2 2

cos sin

.

cos sin

   

   

 + −

=

 + +
 

(127) 

Equation (127) shows an absence of  -invariance in the relationship involving the 

two far-field and two near-field stresses mentioned above in the case of an orthorhombic 

crystal with imaginary roots (valid for A  < 1 or, equivalently, 33 22/c c  ) as 

a result of the absence of coupling between ( )1cos / 2  and ( )1sin / 2   (and similar 

coupling between ( )1cos / 2   and ( )1sin / 2   ) in the two driving stresses, 

( , , ) |y Mode Ir z   and ( , , )xy Mode IIr z  . The lack of coupling between ( )1cos / 2 and 

( )1sin / 2 (and similar coupling between ( )1cos / 2  and ( )1sin / 2  ) in the two 

driving stresses, ( , , ) |y Mode Ir z   and ( , , )xy Mode IIr z  , which has also been reported 

in earlier studies [22,56], is instrumental in guaranteeing the fact of the cleavage system 

under consideration being easy, thus ensuring self-similar crack growth or propagation in 

the process, in a manner similar to what happens in an isotropic solid. Comparison of 

Equations (83), (84) and (127) also shows a measure of similarity in terms of the  -de-

pendence discussed above; see further discussion in Section 7.2 below. 

Finally, it may be noted that the above expressions for displacements, given by Equa-

tions (63) ,(64), (75), (76), (113), (114), (121) and (122) and stresses, given by (65)–(67), (77)-

(79), (115)–(117) and (123)–(125), reduce to their two-dimensional counterparts (see, e.g., 

Sih et al. [17]). 

5. Plate Surface Boundary Conditions and Through-Thickness Distribution of  

Singular Stress Fields 

5.1. Satisfaction of Traction-Free Boundary Conditions 

The stress field in the vicinity of the front of a semi-infinite crack under in-plane ex-

tension and out-of-plane bending, respectively, can be recovered if in Equations (68), (118) 

or (80), (126), even and odd functions are selected from ( )*

bD z : 
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( ) ( ) ( )* * *

2 cos ,b bsD z D z D kz= =  (128) 

( ) ( ) ( )* * *

1 sin .b baD z D z D kz= =  (129) 

where * /z z h=  . By using the boundary condition on the free plate surfaces, 

* / 1z z h= =  , the general form of ( )*

bsD z can be obtained as 

( )
( )* *

2

0

2 1
cos .

2
bs n

n

n
D z D z

h




=

+ 
=  

 
  (130) 

Hence, 
* *( ) ( )I IsK z K z=   and 

* *( ) ( )II IIsK z K z=   would represent symmetric 

stress intensity factors; see Section 8 and the penultimate figure below. 

( )*

baD z  that satisfies the traction-free condition on the plate surfaces is, in the ab-

sence of discontinuity of the function at * / 0z z h= = , generally given by 

( )* *

1

1

sin ,ba n

n

n
D z D z

h



=

 
=  

 
  (131) 

In the presence of discontinuity of the function at * / 0z z h= = , ( )*

baD z  must 

be written as follows: 

( )
( )* *

2

0

2 1
cos .

2
ba n

n

n
D z D z



=

 +
=  

 
  (132) 

As a consequence, * *( ) ( )I IaK z K z= and * *( ) ( )II IIaK z K z=  would represent anti-sym-

metric stress intensity factors; see Section 8 below. If the boundary conditions on the trac-

tion-free plate surfaces are satisfied, all the displacements and singular stresses vanish on 

the plate surfaces in the vicinity of the crack front. 

5.2. Hyperbolic Cosine Distributed Far-Field Loading 

Hyperbolic cosine distributed far-field loading, which is proportional to 
*cosh( )z , |

*z | < 1, is applied. The applied symmetric loading function and the corresponding “stress 

intensity factors” (valid for | *z | ≤ 1) are proportional to 

( )
* *

* * exp( ) exp( )
cosh( ) .

2
bs

z z
D z z

+ −
= =  (133) 

The corresponding Fourier series can be derived as follows: 

( )
( ) ( ) 1

* *

2
0 2

1 1 1 2 1
cos .

2 21
1

2

m m

bs

m

e e m
D z m z

m

 



−


=

− + −  +   
= +    

        
+ +  

   

  
(134) 

The applied antisymmetric loading function (valid for | *z | < 1) and the correspond-

ing “stress intensity factors” (valid for | *z | ≤ 1) are proportional to 
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( )* * *1
cosh( ) exp( ) exp( ) .

2
baD z z z z= − = + −  (135) 

 

Since ( )*

baD z  has a discontinuity at *z  = 0, the corresponding Fourier series can 

be obtained as given below: 

( )
( ) ( ) 1

* *

2
0 2

1 1 1 2 1
cos .

2 21
1

2

m m

bs

m

e e m
D z m z

m

 



−


=

− + −  +   
= +    

        
+ +  

   

  (136) 

6. Stress Intensity Factors and Energy Release Rates for a Through-Thickness Center-

Crack (Modes I and II) 

6.1. Through-Thickness Distribution of Stress Intensity Factors (Modes I and II) 

The stress intensity factors, *( )IK z  and ( )IIK z , cannot be determined unless the far-

field loading and a characteristic length (e.g., crack geometry) are specified. Sih et al. [17] 

have shown the applicability of the complex variable approach in conjunction with the 

eigenfunction expansion approach in the derivation of the two-dimensional stress inten-

sity factors for anisotropic plates. The stress intensity factor for an infinite orthorhom-

bic/tetragonal mono-crystalline plate with a central crack of length, 2a, and subjected to 

far-field mode I/II loading is available for the two-dimensional case [17], and can easily be 

extended to the present three-dimensional case as follows: 

( )
( ) ( )

( ) ( )
1 0

*

1 3* 1/2 *

1 0 1 1

3 3

2 2 ( ) ,
II

I b

K z p p
K z Lim D z

p p  

    
→

−
+ = −  (137) 

where 

1 1 ,a x p y = + +  (138) 

0 ,a =  (139) 

( )
( )

2
3

1 1 1 1
2 2

1 3 1 1 0

2
,

4

y xypa
C

p p

 
  

  

  +
 = +

−  + − 
 (140) 

with 1C  being a constant. On substitution of Equations (138)–(149) into it, Equation (137) 

can be expressed in cylindrical polar coordinates as follows: 

( )
( )

( ) ( ) 
( )

*

* 2 *

2 22 203 3

2 ,
II xy

I y b
r

K z r
K z a Lim D z

p p a r a a r a r a


 





→

 
+ = +  

  + − + + + −

 
(141) 

which finally gives 
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( ) ( )* * ,I y bK z a D z =  (142) 

( ) ( )* * ,II xy bK z a D z =  (143) 

for both complex and imaginary roots. Equations (142) and (143) reduce to their two-di-

mensional counterparts [53], by taking ( )* 1bD z =  . It may further be noted that the 

normalization factor, ( ) ,2/i i DK z K  , i = I, II, is equal to ( )*

bD z   for a given far-field 

loading. 

6.2. Through-Thickness Distribution of Energy Release Rates (Modes I and II) 

The through-thickness distributions of the energy release rates due far-field loadings, 

y 
 and xy 

, for a center-crack of length 2a, weakening an infinite plate of finite thick-

ness, 2 h, can be derived by introducing the thickness-wise partial crack closure method 

as follows: 

( )
( )

* * * *

0
0

1
( ,0, ) ( , , ) ,

a

I y
a

G z Lim x z v a x z dxdz
a

 


 →

 
=  − 

  
  (144) 

which, on substitution of 
*

0
( ,0, )y yx z


 

=
=  and 

*( , , )v a x z v
 


=

 − =  , obtained 

from Equations (66) and (64), respectively, for complex roots, and Equations (116) and 

(114), respectively, for imaginary roots, yields 

( )
( )

( )
( ) ( )

( )
( ) ( )

22 33 * *

2

022 33 23
*

0
22 33 * *

2

022 33 23

, 0, ,

1

, 0, ,

a

I I

I
aa

I I

c c a x
K a z K z dx for complex roots

xc c c
G z Lim

a c c a x
K a z K z dx for imaginary roots

xc c c







 →

  −


−
= 

  −
 

−





 
( )

( ) ( )( )

( )
( ) ( )( )

22
22 33 *

2

22 33 23

22
22 33 *

2

22 33 23

,

,

y b

y b

c c
a D z for complex roots

c c c

c c
a D z for imaginary roots

c c c

  

  








−
= 




−

 

(145) 

Interestingly, solutions for both complex and imaginary roots reduce to the follow-

ing: 

( )
( )

( )
( ) ( )

2

222 33* *

22 332

22 33 23

/
2

y

I b

a c c
G z c c D z

c c c

 




 = +
 −

 

( )
( )

( ) ( )
2

2,2 22 33 *

22 332

22 33 23

/ .
2

I D

b

K c c
c c D z

c c c
  = +

 −
 

(146) 

Similarly, 
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( )
( )

* * * *

0
0

1
( ,0, ) ( , , ) ,

a

II xy
a

G z Lim x z u a x z dxdz
a

 


 →

 
=  − 

  
  (147) 

which, on substitution of 
*

0
( ,0, )xy xyx z


 

=
=  and 

*( , , )u a x z u
 


=

 − =  , obtained 

from Equations (79) and (75), respectively, for complex roots, and Equations (125) and 

(121), respectively, for imaginary roots, yields the following: 

 ( )
( )

( )
( ) ( )

( )
( ) ( )

* *33

2

022 33 23
*

0
* *33

332

022 33 23

, 0, ,

1

, 0, ,

a

II II

II aa

II II

c a x
K a z K z dx for complex roots

xc c c
G z Lim

a c a x
c K a z K z dx for imaginary roots

xc c c







 →

  −


−
= 

  −  
 −






( )
( ) ( )( )

( )
( ) ( )( )

22
*33

2

22 33 23

22
*33

2

22 33 23

,

,

xy b

xy b

c
a D z for complex roots

c c c

c
a D z for imaginary roots

c c c

  

  








−
= 

 
 −


 

(148) 

As before, solutions for both complex and imaginary roots reduce to the following: 

 ( )
( )
( )

( ) ( )
2

233* *

22 332

22 33 23

/ .
2

xy

II b

ac
G z c c D z

c c c

 




 = +
 −

 

( )
( )

( )
2

2,2 33 *

22 332

22 33 23

/ .
2

I D

b

K c
c c D z

c c c
  = +

 −
 

(149) 

Equations (146) and (149) reduce to their two-dimensional (plane strain) counterparts 

[53], by taking ( )*

bD z  = 1. It may further be noted that the normalization factor is equal 

to ( )
2

*

bD z 
   for a given far-field loading. 

For the special case of a tetragonal single crystal, the above energy release rates re-

duce to 

 ( )
( )

( )
( ) ( )

2

2,2 11 33* *

11 332

11 33 13

/ .
2

I D

I b

K c c
G z c c D z

c c c
  = +

 −
 (150) 

( )
( )
( )

( )
2

2,2 33* *

11 332

11 33 13

/ .
2

I D

II b

K c
G z c c D z

c c c
  == +

 −
 (151) 

7. Necessary and Sufficient Conditions for Easy or Difficult Cleavage Planes 

7.1. Crack Deflection Criterion, Based on the Relative Fracture Energy 

The important issue of a cleavage plane being deemed easy or difficult can be related 

to a crack deflection criterion, which is based on the relative fracture energy (or the energy 

release rate) available for possible “fracture paths” [17]. The deflection or kinking of a 
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crack from the cleavage system 1 to the cleavage system 2 is favored if (however, not iff, 

i.e., if and only if): 

( ) ( )
1 2

1 2

1
2 2

G G
  

 
 2 2

1 1

G
G





 (152) 

in which Gi and i, i = 1, 2, are energy release rate and surface energy, respectively, of the 

ith cleavage system. The above Griffith–Irwin theory-based crack deflection criterion is not 

accepted as a sufficient condition (albeit being still extremely useful and widely employed, 

including in the present work) for a cleavage system deemed to be easy or difficult for 

crack propagation in single crystals, which calls for development of a new conceptual-

cum-analytical tool, which would take into account short-range interactions. 

Atomistic scale modeling of cracks, however, requires consideration of both the long-

range elastic interactions and the short-range chemical reactions. The Griffith theory does 

not take the latter into account [22]. Secondly and more importantly, fracture criteria de-

rived from equilibrium theories such as the Griffith (thermodynamics-based) energy bal-

ance criterion are not equipped to meet the sufficiency condition, because of the prevailing 

non-equilibrium conditions such as physico-chemical reactions during crack propagation. 

Hence, such criteria can only be regarded as necessary conditions for fracture [79,83], but 

not as sufficient [80,84]. The effect of short-range chemical reactions can obviously be en-

capsulated by atomic scale simulations, such as the investigation of low-speed propaga-

tion instabilities in silicon using quantum-mechanical hybrid, multi-scale modelling due 

to Kermode et al. [85], which, however, entails extensive computational and other re-

sources. Alternatively, and more importantly, such short-range interactions can also be 

captured by elastic properties-based parameters (with a few exceptions), such as the ani-

sotropic ratio, A , or, equivalently, the normalized elastic parameter,  . This is because 

elastic properties are controlled by various aspects of the underlying structural chemistry 

of single crystals, such as the Bravais lattice type, bonding (covalent, ionic, and metallic), 

bonding (including hybridized) orbitals, electro-negativity of constituent atoms in a com-

pound, polarity, etc. [22]. The general theory behind these characteristics pertaining to the 

structural chemistry of crystals are available in well-known treatises (see, e.g., [86–88]). 

More specifically, the elastic properties of superconducting YBa2Cu3O7-δ are strongly in-

fluenced by oxygen non-stoichiometry (as well as various structural defects). It is known 

to crystallize in a defect perovskite structure consisting of layers. When δ = 1, the O(1) sites 

in the Cu(1) layer are vacant and the structure is tetragonal. For δ < 0.65, Cu-O chains 

along the b-axis of the crystal are formed; see Wikipedia, 2010. http://en.wikipe-

dia.org/wiki/Yttrium_barium_copper_oxide (accessed on February 1, 2023). 

Elongation of the b-axis changes the structure from tetragonal (insulator) to ortho-

rhombic (superconductor), with lattice parameters of a = 3.82 Å, b = 3.89 Å, and c = 11.68 

Å. Optimum superconducting properties occur when δ ~ 0.07 and all of the O(1) sites are 

occupied with few vacancies; see Wikipedia, 2010. http://en.wikipedia.org/wiki/Yt-

trium_barium_copper_oxide (accessed on February 1, 2023). The coordination geometry 

of metal centers in YBCO, such as cubic {YO8}, {BaO10}, square planar {CuO4}, and square 

pyramidal {CuO5}, as well as structural features such as puckered Cu plane and Cu rib-

bons were first reported by Williams et al. [89]. Furthermore, Ledbetter [90] and Lin et al. 

[73] measured the elastic constants of polycrystalline YBCO using ultrasonic methods and 

found that while the “Elastic moduli corresponding mainly to shear modes increase mon-

otonically with oxygen concentration”, their counterparts due to “Dilation modes increase 

up to the values of 6.7 of the oxygen index, after which they begin to decrease”; see also 

Lubenets et al. [91]. 

In this connection, it must be noted that the invariant relationship (82), derived earlier 

in Section 4.1, equating the ratio of mode I to mode II stress intensity factors or its far-field 

loading counterpart (long range order) to negative times the ratio of the corresponding 

driving stresses, ( , , ) |y Mode Ir z   / ( , , )xy Mode IIr z    (short range interaction) for the 

http://en.wikipedia.org/wiki/Perovskite_%28structure%29
https://en.wikipedia.org/wiki/Tetragonal
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
http://en.wikipedia.org/wiki/Yttrium_barium_copper_oxide
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case of an orthorhombic crystal with complex roots (valid for A   > 1 or, equivalently, 

33 22/c c  ), guarantees the fact of the cleavage system under consideration being 

difficult, thus further concomitant in ensuring crack deflection or turning from this diffi-

cult cleavage system onto a nearby available easy one, violating the self-similarity of crack 

growth or propagation in the process. This type of behavior of A (or, equivalently,  ), 

crossing a threshold or critical value that signifies transition from one regime to another, 

very much establishes its Reynold’s number-like character. 

It may also be interesting to observe that experimental determination of surface en-

ergy, Gi, can sometimes be notoriously challenging due to the presence of micro-to-nano 

scale defects, such as porosity, dislocation, twin boundaries, misalignment of bonds 

[22,86] with respect to the loading axis, and the like. In contrast, the above-derived invar-

iant relationship (38) demands only measurement of strains or stresses at a point for a 

given far-field loading, which are, relatively speaking, much easier in comparison to de-

termination of surface energies. 

7.2. Similarity/Dissimilarity of Present Solutions with Their Isotropic Counterpart  

As has been mentioned earlier in Section 4.1, similarity analysis is an effective tool to 

solve complex problems in the fracture mechanics of single crystals [22,83]. In what fol-

lows, such similarity or lack thereof to the present solutions for singular stress fields at 

crack fronts weakening orthorhombic single crystals with their isotropic counterpart is 

investigated. Such analyses can lead to a sufficient condition for determination of a cleav-

age system being easy or difficult for crack propagation. 

7.2.1. Isotropic Materials: 

For an isotropic material, the in-plane displacements (for n = 0) can be given as fol-

lows [25,55]: 

( ) ( )( , , ) ,
s s ip

sU x y z ik a z e =  (153) 

( ) ( )( , , ) ,
s s ip

sV x y z ik b z e =  (154) 

in which 

 

p =  s1( ),  (155) 

and 

2 2 ,x y = +  (156) 

1tan ,
y

x


 −=  
 

 (157) 

giving rise to 

 

  = π/2 for all positive values of y, for x = 0. 

7.2.2. Present Solution Involving Complex Roots: 

Going back to Equations (20), (21), (30) and (31), the in-plane displacements can be 

rewritten in the form (for n = 0), by dropping the overhead 


over certain relevant variables 

and constants (in the interest of generality): 
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( ) ( ) ( ) ( )( , , ) ( ) ,
s ss s is

s sU x y z ik a z x py ik a z e = + =  (158) 

( ) ( ) ( ) ( )( , , ) ( ) ,
s ss s is

s sV x y z ik b z x py ik b z e = + =  (159) 

in which 

 

  and 

 

  can be rewritten as follows: 

( )
2 2 2 ,x y y  =  +  (160) 

.
1tan

y

x y






 −=  
 

 (161) 

Therefore, for an orthorhombic (tetragonal and cubic being special cases) crystal with 

complex roots when x = 0, 

1tan ,





 −=  
 

 (162) 

for all positive values of y, which completely differs from its isotropic counterpart. 

7.2.3. Present Solution Involving Imaginary Roots 

Going back to Equations (20), (21), (85) and (86), the in-plane displacements can be 

rewritten in the form (for n = 0), by dropping the overhead 


over certain relevant variables 

and constants: 

( ) ( ) ( ) ( )( , , ) ( ) ,
s ss s is

s sU x y z ik a z x py ik a z e = + =  (163) 

( ) ( ) ( ) ( )( , , ) ( ) ,
s ss s is

s sV x y z ik b z x py ik b z e = + =  (164) 

in which 

 

  and   can be rewritten as follows: 

( )
22 2 ,x y   = +    

( )1tan ,
y

x

 


   −=  
 

 (165) 

again yielding  = π/2 for all positive values of y, when x = 0, thus affirming the similarity 

of crack propagation in such a cleavage system with its isotropic counterpart. 

8. Numerical Results and Discussion 

Table 1 displays the elastic stiffness constants of orthorhombic (superconductor) and 

tetragonal (insulator) YBCO single crystals. If otherwise not specified, the elastic stiffness 

constants are measured at room temperature (Approx. 300 °K). Table 2 shows the elastic 

stiffness ratio square root, 22 11/c c , the normalized elastic parameter, κ, nature of the 

four roots of characteristic equation (complex or imaginary), and the character of the 

cleavage plane (easy or not) for a (010)[001] through-thickness crack with [100] being the 

initial propagation direction (see Figure 3), while Table 3 exhibits their counterparts for a 

(0 1 0)[100] through-thickness crack with [001] being the initial propagation direction (see 

Figure 4). Tables 4–7 present similar results for ( 1  00)[001]  [010], shown in Figure 5, 

(100)[010]  [001], (001)[100]  [010], shown in Figure 2, and (001)[0 1 0]  [100] through-

thickness crack systems, respectively. 
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Figure 3. Schematic of the top half of an orthorhombic mono-crystalline plate weakened by a (010) 

[001] through-thickness crack initially propagating in [100] direction. 

 

Figure 4. Schematic of the top half of an orthorhombic mono–crystalline plate weakened by a (0 1 0) 

[100] through–thickness crack initially propagating in [001] direction. 
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Figure 5. Schematic of the top half of an orthorhombic mono-crystalline plate weakened by a ( 1 00) 

[001] through-thickness crack initially propagating in [010] direction. 

Table 2. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or dif-

ficult) of a (010) [001]  [100] through-thickness cleavage system, shown in Figure 3. 

Material A 22

11

c

c
 κ Roots 

(010)[001]  [100] 

Cleavage System †:  

Easy or Difficult 

YBCO * 1.6266 1.0771 2.624 Complex Difficult 

YBCO ** 0.9884 1.046 1.0321 Imaginary Easy 

YBCO *** 0.8971 1.0771 0.9406 Imaginary Easy 

YBCOT 1.3077 1.0 1.5097 Complex Difficult 

† Cleavage system for a (010) [001] through-thickness crack, with [100] being its initial length direc-

tion. * All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** 

Estimated by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by 

Saint-Paul and Henry [71]. 

Table 3. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or dif-

ficult) of the (0 1 0) [100]  [001] through-thickness cleavage system, shown in Figure 4. 

Material A  
22

11

c

c



    
Roots 

(0 1 0)[100]  [001] 

Cleavage System: 

Easy or Difficult 

YBCO * 0.7641 1.2003 0.8334 Imaginary Easy 

YBCO ** 1.3481 1.3298 2.1763 Complex Difficult 

YBCO *** 0.7641 1.2003 0.8334 Imaginary Easy 

YBCOT 1.1663 1.2382 1.586 Complex Difficult 

* All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** Estimated 

by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by Saint-Paul 

and Henry [71]. 

  



Appl. Mech. 2023, 4 618 
 

 

Table 4. Normalized elastic parameter, roots of characteristic equation, and nature (easy or difficult) 

of the ( 1 00) [001]  [010] through-thickness cleavage system, shown in Figure 5. 

Material A  
22

11

c

c



    
Roots 

( 1 00) [001]  [010 

Cleavage System:  

Easy or Difficult 

YBCO * 1.6266 0.9284 2.2619 Complex Difficult 

YBCO ** 0.9884 0.956 0.9432 Imaginary Easy 

YBCO *** 0.8971 0.9284 0.817 Imaginary Easy 

YBCOT 1.3077 1.0 1.3086 Complex Difficult 

* All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** Estimated 

by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by Saint-Paul 

and Henry [71]. 

Table 5. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or dif-

ficult) of the (100) [010]  [001] through-thickness cleavage system. 

Material A  

22

11

c

c
   

Roots 

(100)[010]  [001] 

Cleavage System: 

Easy or Difficult 

YBCO * 0.543 1.1145 0.5232 Imaginary Easy 

YBCO ** 1.0877 1.2711 1.447 Complex Difficult 

YBCO *** 0.543 1.1145 0.5232 Imaginary Easy 

YBCOT 1.1663 1.2382 1.5863 Complex Difficult 

* All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** Estimated 

by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by Saint-Paul 

and Henry [71]. 

Table 6. Normalized elastic parameter, roots of characteristic equation, and the nature (easy or dif-

ficult) of the (001) [100]  [010] through-thickness cleavage system. 

Material A  
22

11

c

c
   Roots 

(001)[100]  [010] 

Cleavage System:  

Easy or Difficult 

YBCO * 0.7641 0.8331 0.5784 Imaginary Easy 

YBCO ** 1.3481 0.7521 1.2309 Complex Difficult 

YBCO *** 0.7641 0.8331 0.5784 Imaginary Easy 

YBCOT 1.1663 0.8076 1.0345 Complex Difficult 

* All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** Estimated 

by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by Saint-Paul 

and Henry [71]. 
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Table 7. Normalized elastic parameter, roots of characteristic equation, the nature (easy or difficult) 

of the (001) [0 1 0]  [100] through-thickness cleavage system. 

Material Â  

22

11

ˆ

ˆ

c

c  
̂  

Roots 

(001)[0 1 0]  [100] 

Cleavage System:  

Easy or Difficult 

YBCO* 0.543 0.8973 0.4213 Imaginary Easy 

YBCO** 1.0877 0.7867 0.8954 Complex Difficult 

YBCO*** 0.543 0.8973 0.4213 Imaginary Easy 

YBCOT 1.1663 0.8076 1.0345 Complex Difficult 

* All values measured by resonant ultrasound spectroscopy (except 12c ) by Lei et al. [1]. ** Estimated 

by Ledbetter and Lei [79]. *** Same as *, except 12c  and 
66c measured by ultrasound by Saint-Paul 

and Henry [71]. 

Next, the effect of elastic constants, cij (especially c12 and, to a lesser extent, c66), on the 

nature (i.e., easy or difficult) of a cleavage system in YBCO (YBa2Cu3O7−δ) is discussed. 

Only three complete sets of elastic constants are available in the Literature accessible to 

the present author, out of which those due to Ledbetter and Lei [79] are just estimates 

(marked ** in Table 1), while their experimental counterparts due to Reichard et al. [67] 

are based on the assumption of tetragonal symmetry; see Table 1. This only leaves the 

experimental measurements (by resonant ultrasound spectroscopy) due to Lei et al. [1], 

marked * in Table 1. However, their 12c  value appears to be excessively high. This is be-

cause, according to these authors themselves, “no wave speed in the crystal depends only 

on 12c , it is no way to estimate it directly.” It also is well-known that while 12c  and 66c
can be measured independently by static tests [76], these constants are always coupled in 

vibrations-based measurements [77,78]. Therefore, in Table 1 of the present investigation, 

both 12c  and 66c , measured by ultrasound by Saint-Paul and Henry [71], have been 

utilized (marked ***) in replacement of their counterparts due to Lei et al. [1] in order to 

assess the fracture characteristics of YBCO, and to compare them with experiments by 

Cook et al. [6] ], Raynes et al. [9] and Goyal et al. [10] among others. 

Table 2 shows that the anisotropic ratio, A = 1.6266, or, equivalently, normalized elas-

tic parameter, κ = 2.624, for YBCO* (measurements reported by Lei et al. [1]) is larger than 

1 or 22 11/c c  = 0.9284, respectively, giving rise to complex roots (of the characteristic 

equation) for a (010)[001]  [100] through-crack, weakening a YBCO mono-crystalline 

plate. The same is true for a ( 1 00)[001]  [010] crack shown in Table 4, which shows that 

A  (respectively,  ) value of 1.6266 (resp. 2.2619) have crossed the critical magnitude 

of 1 (resp. 0.9284). These results predict that (010)[001]  [100] and ( 1 00)[001]  [010] are 

difficult cleavage systems, which are in contradiction with the experimental observations 

by Cook et al. [6], Raynes et al. [9], and Goyal et al. [10], among others. The reason behind 

this anomaly lies in the excessive values of 12c  (and 66c to a lesser extent) used in the 

computation of the anisotropic ratio, A or A , and normalized elastic parameter, κ or

. 

Tables 3, 5, 6 and 7 show that the planar anisotropic ratios, A  = 0.7641, A = 0.543, 

A  = 0.7641, and Â  = 0.543 (or, equivalently, normalized elastic parameters,    = 

0.8334,   = 0.5232,   = 0.5784, and ̂  = 0.4213 for YBCO*) are less than 1 (or 
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22 11/c c    = 1.2003, 22 11/c c  = 1.1145, 22 11/c c  = 0.8331, and 22 11
ˆ ˆ/c c   = 

0.8973), respectively, giving rise to imaginary roots. Thus, the rest of the crack systems are 

predicted to constitute easy cleavage planes/directions (see Tables 3 and 5–7), the remain-

ing elastic constants measured by Lei et al. [1] are considered to be reasonably accurate. 

Tables 3 and 5–7 further show that for YBCO**, A   = 1.3481, A  = 1.0877, A  = 

1.3481, and Â = 0.543 (or, equivalently, normalized elastic parameters,   = 2.1763, 

  = 1.447,   = 1.2309, and ̂  = 1.0877) are greater than 1 (or 22 11/c c   = 1.2003, 

22 11/c c = 1.2711, 22 11/c c = 0.8331, and 22 11
ˆ ˆ/c c  = 0.7867), respectively, giv-

ing rise to complex roots, and rendering the cleavage systems, (0 1  0)[100]  [001], 

(001)[100]  [010], (100)[010]  [001], and (001)[0 1 0]  [100], to be difficult, thus invalidating 

the values of the corresponding elastic constants estimated by Ledbetter and Lei [92]. Fur-

thermore, Tables 2–7 show that for (tetragonal) YBCOT, A = 1.3077, A  = 1.1663, A

= 1.3077, A = 1.1663, A = 1.1663, and Â =1.1663 (or, equivalently, normalized elastic 

parameters, κ = 1.5097,    = 1.586,    = 1.3086,    = 1.5863,    = 1.0345, and ̂   = 

1.0345) are greater than 1 (or 22 11/c c  = 1, 22 11/c c   = 1.0, 22 11/c c   = 1.0, 

22 11/c c   = 1.2382, 22 11/c c  = 0.8076, and 22 11
ˆ ˆ/c c   = 0.8076), respectively, 

giving rise to complex roots, and rendering all the six cleavage systems, namely (010)[001] 

 [100], (0 1 0)[100]  [001], ( 1 00)[001]  [010], (001)[100]  [010], (100)[010]  [001], and 

(001)[0 1  0]  [100], to be difficult, thus completely invalidating the values of the corre-

sponding experimentally determined elastic constants reported by Reichard et al. [67]. 

As can be seen from Tables 2–7, only for YBCO***, A = 0.8971, A  = 0.7641, A  

= 0.8971, A  = 0.543, A  = 0.7641, and Â  = 0.543 (or, equivalently, normalized elastic 

parameters, κ = 0.9406,  = 0.8334,   = 0.817,   = 0.5232,   = 0.5784, and ̂  = 0.4213) 

are less than 1 (or 22 11/c c   = 1, 22 11/c c    = 1.2003, 22 11/c c    = 0.9284, 

22 11/c c   = 1.1145, 22 11/c c   = 0.8331, and 22 11
ˆ ˆ/c c   = 0.8076), respectively, 

giving rise to imaginary roots, and rendering all the cleavage systems, namely (010)[001] 

 [100], (0 1 0)[100]  [001], ( 1 00)[001]  [010], (001)[100]  [010], (100)[010]  [001], and 

(001)[0 1 0]  [100], to be easy, which is in agreement with the experimentally observed 

fracture characteristics of YBCO due to Cook et al. [6], Raynes et al. [9], and Goyal et al. 

[10], among others; see also Granozio and di Uccio [14] for a summary of the available 

experimental results. They [14] have also presented approximate theoretical results of 

fully oxidized YBCOs (δ = 0, 1), and concluded that the three lowest surface energies fol-

low the inequality:  ()   ()   (). Furthermore, based on experimental results 

from transmission electron microscopy [92], X-ray photo-emission microscopy [93], low-

energy ion scattering spectroscopy [94], and surface polarity [95] analyses performed on 

fully oxidized YBCO crystals, these authors [14] have shown that the low energy cut is 

between the Ba = O and Cu = O planes. 

The efficacy of the indentation test has been extensively studied in the brittle fracture 

Literature [96–98]. Lawn [96] and Anstis et al. [97] have presented the following relation-

ship between fracture toughness and the size of a radial crack produced by a Vickers-type 

sharp indenter: 
3/2

0c rK Pc −=
, where ( )

1/2
§ /r

R

V E H = , finally giving rise to the following: 
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( )
1/2 3/2

0/ ,§Vc

RK E H Pc−=  (166) 

in which P, c0, E, and H represent the indentation load, equilibrium half-crack length, 

Young’s modulus, and hardness (of an isotropic material), respectively, and §R

V  denotes 

a material-independent constant for the Vickers-produced radial crack. Raynes et al. [9], 

following the lead of Anstis et al. [97], have determined the fracture toughness of mono-

crystalline YBa2Cu3O7−δ, taking into account its anisotropy. Table 8 presents the critical 

stress intensity factor or fracture toughness (Kc = KIc) and the critical energy release rate 

or fracture energy (Gc = GIc) of the six easy cleavage systems of mono-crystalline super-

conducting YBCO. It is worthwhile to note here that there is some misconception about 

the computation of fracture energy, Gc, from the corresponding measured value of Kc of 

an anisotropic (e.g., orthorhombic) single crystal in the Literature; see, e.g., Granozio and 

di Uccio [14]. The factor ( )22 33/c c +  (see Equation (146) above), and/or its coun-

terparts for other cleavage systems treated in Appendices A–E, are not accounted for in 

these authors’ computations. The energy release rate in an anisotropic (e.g., orthorhombic) 

single crystal not only varies from one cleavage plane to another, but also varies according 

to propagation direction. 

Table 8. Fracture Toughness (Kc) and Fracture Energy (Gc) of the Six Easy Cleavage Systems of 

Mono-crystalline YBCO. 

Cleavage 

System 

(010)[001] 

  [100] 

(0 1 0)[100] 

  [001] 

( 1 00)[001] 

  [010] 

(100)[010] 

  [001] 

(001)[100] 

  [010] 

(001)[ 0 1 0] 

  [100]  

Fracture 

Toughness,  

Kc [9]  

(MPa m ) 

0.59 ± 0.09 0.59 ± 0.09 0.47 ± 0.12 0.47 ± 0.12 0.32 ± 0.07 0.32 ± 0.07 

Fracture 

Energy, Gc 

(J/m2) 

1.50177 1.91945 1.02649 1.43075 0.73912 0.71163 

Figure 6a,b show that a (010)[001] crack initially propagating in [100] direction would 

turn into a ( 1 00)[001] crack propagating in [010] direction (also in [0 1 0] direction because 

of symmetry), while a ( 1 00)[001] crack initially propagating in [010] direction would con-

tinue in its original track. This is because the Gc of a (010)[001] × [100] cleavage system, 

1.50177 J/m2, is higher than its ( 1 00)[001] × [010] counterpart, 1.02649 J/m2. In a similar 

vein, as shown in Figure 7a,b, a (0 1 0)[100] crack initially propagating in [001] direction 

would turn into a (001)[100] crack propagating in [010] direction (also in [0 1 0] direction 

because of symmetry), while a (001)[100] crack initially propagating in [010] direction 

would continue uninterrupted in its original track. This is because the Gc of a (0 1 0)[100] 

 [001] cleavage system, 1.91945 J/m2, is about 2.6 times its (001)[100] × [010] counterpart, 

0.73912 J/m2. Likewise, as shown in Figure 8a,b, a (100)[010] crack initially propagating in 

[001] direction would turn into a (001) [0 1 0] crack propagating in [100] direction (also in [

1 00] direction because of symmetry), while a (001)[0 1 0] crack initially propagating in [100] 

direction would continue unhindered in its original track. This is because the Gc of a 

(100)[010]  [001] cleavage system, 1.02649 J/m2, is more than 1.4 times its (001)[0 1 0] × [100] 

counterpart, 0.71163 J/m2. Finally, in mono-crystalline superconducting YBCO under tri-

axial-tension far-field loading, a (0 1 0)[100] crack initially propagating in [001] direction 

would eventually turn into a c-plane cleavage fracture, as shown in Figure 9. 
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Figure 10a,b shows variation of the normalized stress intensity factors, ( )*K z  = 

( ) / Plane StrainK z K  , through the thickness of an orthorhombic mono-crystalline plate 

weakened by a through-thickness crack. Variation of the normalized stress intensity fac-

tor, ( )*K z , through the thickness of the same plate weakened by any of the six through-

cracks investigated here is identical. Figure 10a shows the through-thickness variation of 

( ) ( )* /S S Plane StrainK z K z K= for a far-field symmetrically distributed hyperbolic cosine 

load for mode I (stretching) or mode II (in-plane shear), while its skew-symmetric coun-

terpart ( ) ( )* /A A Plane StrainK z K z K= for mode I (bending) or mode II (twisting) is dis-

played in Figure 10b. Of special significance is the discontinuity in the stress intensity 

factor at z* = 0 in the skew-symmetric loading case, shown in Figure 9b. Figure 11 shows 

the corresponding variation of energy release rate, *G , through the top half of the plate 

thickness. For through-thickness symmetric far-field loading, the crack is expected to 

grow through thickness in a stable manner until the stress intensity factor or the energy 

release rate reaches its critical value at mid-thickness. With further increase in the magni-

tude of far-field loading, unstable crack growth is expected to progressively spread 

throughout the plate thickness. For skew-symmetric loading, as reported on earlier occa-

sions [55], the bottom half will experience crack closure. Such types of results describing 

the three-dimensional distribution of stress intensity factors and energy release rates are 

generally unavailable in the fracture mechanics Literature. 

 
(a) 
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(b) 

Figure 6. (a) A (010)[001] crack initially propagating in [100] direction turning into a ( 1 00)[001] crack 

propagating in [010] direction, and (b) a ( 1 00)[001] crack initially propagating in [010] direction 

continuing in its original track. 

 
(a) 
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(b) 

Figure 7. (a) A (0 1 0)[100] crack initially propagating in [001] direction turning into a (001)[100] crack 

propagating in [010] direction, and (b) a (001)[100] crack initially propagating in [010] direction con-

tinuing uninterrupted in its original track. 

 
(a) 
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(b) 

Figure 8. (a) A (100)[010] crack initially propagating in [001] direction turning into a (001)[ 0 1 0] 

crack propagating in [100] direction, and (b) a (001)[010] crack initially propagating in [100] direc-

tion continuing unhindered in its original track. 

 

Figure 9. A (0 1 0)[100] crack initially propagating in [001] direction turning into a c-plane cleavage 

fracture. 
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(a) 

 
(b) 

Figure 10. The variation of (mode I or II) stress intensity factors through thickness due to far-field 

cosine hyperbolic load: (a) symmetric, (b) skew-symmetric. 
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Figure 11. The variation of (mode I, II) energy release rate through thickness due to far-field cosine 

hyperbolic load. 

9. Summary and Conclusions 

A modified eigenfunction expansion technique, based partly on the separation of the 

z-variable and, in part, on the Eshelby [60]–Stroh [15] type affine transformation, is em-

ployed to derive three-dimensional asymptotic displacement and stress fields in the vicin-

ity of the front of a semi-infinite through-thickness crack weakening an infinite ortho-

rhombic single crystal plate. Crack-face boundary conditions and those that are prescribed 

on the top and bottom (free) surfaces of the orthorhombic plate are exactly satisfied. Ex-

plicit expressions for the singular stresses in the vicinity of the front of the through-thick-

ness crack, subjected to far-field in-plane mode I and II loadings, are presented. 

The present investigation considers six through-crack systems—(010)[001] with the 

[100] length direction, (0 1 0)[100] with the [001] length direction, ( 1 00)[001] with the [010] 

length direction, (100)[010] with the [001] length direction, (001)[0 1 0] with the [100] length 

direction, and (001)[100] with the [010] length direction—weakening orthorhombic YBCO 

single crystal plates. More importantly, the present approach predicts whether a crack 

would propagate in its original plane/direction or deflect to a different one. The present 

study is unique in the sense that such a fracture mechanic criterion is employed for accu-

rate determination of the full set of elastic constants of mono-crystalline YBCO. 

The following interesting conclusions can be drawn from the present investigation: 

(i) Atomistic scale modeling of cracks requires consideration of both the long-range 

elastic interactions and the short-range chemical reactions. The Griffith thermodynamic-

based theory does not take the latter into account, and hence must be regarded as a nec-

essary condition (albeit still extremely useful and widely employed) but not as sufficient. 

(ii) The effect of short-range chemical reactions can be adequately captured by the 

elastic properties-based parameters, such as the anisotropic ratio, A, or, equivalently, the 

normalized elastic parameter, κ. This is because the elastic properties are controlled by 

various aspects of the underlying structural chemistry of single crystals, such as the Bra-

vais lattice type, bonding (covalent, ionic, and metallic), bonding (including hybridized) 

orbitals, electro-negativity of constituent atoms in a compound, polarity, etc. 

(iii) More specifically, the elastic properties of superconducting YBa2Cu3O7-δ are 

strongly influenced by oxygen non-stoichiometry (as well as various structural defects). 

(iv) It is somewhat paradoxical (or counter-intuitive) that an invariant (more specifi-

cally, with respect to θ) relationship, such as Equations (81) and (82) equating the ratio of 
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mode I to mode II stress intensity factors or its far-field loadings counterpart (long range 

order) to negative times the ratio of the corresponding driving stresses, ( , , ) |y Mode Ir z 

/ ( , , )xy Mode IIr z   (short range interaction) for the case of an orthorhombic crystal with 

complex roots (valid for A > 1 (or, equivalently, κ > 22 11/c c )), guarantees the fact of 

the (010)[001] × [100] cleavage system being difficult, thus further concomitant in ensuring 

crack deflection or turning from this difficult cleavage system onto a nearby available easy 

one, violating the self-similarity of crack growth or propagation in the process. 

(v) In contrast to (iv), again counter-intuitively, a non-invariant (more specifically, 

with respect to θ), relationship, such as Equations (83) and (84) or (127) resulting from the 

degenerate case (A= 1 or, equivalently, κ = 1) or imaginary roots (valid for A < 1 or, equiv-

alently, κ < 22 11/c c ), guarantees the cleavage system (010)[001] × [100] being easy, thus 

ensuring the self-similarity (i.e., θ invariance) of crack growth or propagation in the pro-

cess. 

(vi) Similarity or dissimilarity of the present asymptotic solutions for a (010)[001] × 

[100] cleavage system involving complex (A > 1 or, equivalently, 22 11/c c  ) and im-

aginary roots (A < 1 or, equivalently, 22 11/c c  ) with their isotropic (A = κ = 1) coun-

terparts can lead to a sufficient condition for determination of a cleavage system being 

easy or difficult for crack propagation. 

(vii) The dimensionless parameters, such as the anisotropic ratio, A, or, equivalently, 

the normalized elastic parameter, κ, can serve as the Holy Grail quantity for an a priori 

determination of the status of a cleavage system to be easy or difficult, very much akin to 

Reynold’s number for fluid flow problems, crossing a critical value which signifies transi-

tion from one regime to another. Here, the anisotropic ratio, A, or, equivalently, normal-

ized elastic parameter, κ, for a (010)[001]  [100] cleavage system, crossing the critical value 

of 1 or 22 11/c c , respectively, signifies transitioning from self-similar crack growth or 

propagation to crack deflection or turning from a difficult cleavage system onto a nearby 

easy one. 

(viii) Just as the introduction of Reynold’s number facilitated the design and setting 

up of experiments in addition to experimental verification of analytical and computational 

solutions in fluid dynamics, the accuracy and efficacy of the available test results on elastic 

constants of YBCO single crystals, measured by modern experimental techniques with 

resolutions at the atomic scale, or nearly so, such as X-Ray diffraction, the ultrasound tech-

nique, neutron diffraction/scattering, Brillouin spectroscopy/scattering, resonant ultra-

sound spectroscopy, and the like, is assessed with a powerful theoretical analysis on crack 

path stability/instability, in part based on a dimensionless parameter, such as the planar 

anisotropic ratio, A. 

(ix) Experimental determination of surface energy, Gi, can sometimes be notoriously 

challenging, due to the presence of micro-to-nano scale defects, such as porosity, disloca-

tion, twin boundaries, misalignment of bonds with respect to the loading axis, and the 

like. In contrast, the above-derived invariant relationship, (38), requires only measure-

ment of strains or stresses at a point for a given far-field loading, which are, relatively 

speaking, much easier in comparison to the determination of surface energies. 

(x) The planar anisotropic ratio, A, or, equivalently, the normalized elastic parameter, 

κ, for YBCO * is larger than 1 or 22 11/c c , respectively, giving rise to complex roots (of 

the characteristic equation) for a (010)[001]  [100] through-crack, weakening a YBCO 

mono-crystalline orthorhombic plate. The same is true for a ( 1 00)[001]  [010] crack. These 
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results predict that (010) and ( 1 00) are difficult cleavage planes, which are in contradiction 

with the experimental observations. 

(xi) Only for YBCO ***, all the cleavage systems are predicted to be easy, which is in 

agreement with the experimentally observed fracture characteristics, thus ensuring that a 

reasonably accurate complete set of nine experimentally determined elastic constants has 

been arrived at, by employing the present theoretical fracture mechanic approach. 

(xii) For tetragonal YBCOT, all six cleavage systems investigated here are found to be 

difficult, thus completely invalidating the values of the corresponding experimentally de-

termined elastic constants reported by Reichard et al. [67]. 

(xiii) Finally, generally unavailable results, pertaining to the through-thickness vari-

ations of stress intensity factors and energy release rates for a crack corresponding to sym-

metric and skew-symmetric hyperbolic cosine loads that also satisfy the boundary condi-

tions on the top and bottom surfaces of an orthorhombic mono-crystalline plate under 

investigation, bridge a longstanding gap in the stress singularity/fracture mechanics Lit-

erature. 
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Appendix A. Singular Stress Fields in the Vicinity of a (010)[001] Through-Crack Front 

Propagating under Mode I (Extension/Bending) and Mode II (Sliding Shear/Twisting) 

in [100] Direction 

The cleavage plane considered is (010) (Figure 3). Here, the z-axis is placed along the 

straight crack front, while the coordinates x, y, are used to define the directions along the 

length of the crack and transverse to it, respectively, in the plane of the plate. u, v, and w 

represent the components of the displacements in the x, y, and z directions, respectively. 

The stress-strain relations for an orthorhombic single crystal are given as follows: 
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 (A1) 

where cij, i, j = 1, ..., 6, denotes the elastic stiffness constants of an orthorhombic mono-

crystalline plate. σx, σy, σz represent the normal stresses, and τxy, τxz, τyz denote the shear 

stresses, while εx, εy, εz denote normal strains, and γxy, γxz, γyz represent the shear strains. 

The three equilibrium equations for a linear elastic solid, made of an orthotropic/or-

thorhombic material, can be expressed in terms of the displacement components, u, v, and 

w, as follows: 
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The characteristic equations for the coupled partial differential equations (A2)–(A4) 

can be written as follows: 

4 2 11

22

2 0,
c

p p
c

+ + =  (A5) 

in which the normalized elastic parameter, 1/ = , is given by 
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in which E1 is Young’s modulus in the x direction, G12 is the shear modulus in the x-y 

plane, while ν12 is the major Poisson’s ratio in the x-y plane. ν13 and ν31 denote the major 

and minor Poisson’s ratios in the x-z plane, while ν32 represents the minor Poisson’s ratio 

in the y-z plane.   can also be expressed in terms of the planar anisotropic ratio (in the x-

y plane), A, as follows: 
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where A is defined as 
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−
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Equation (A5) has either (a) four complex or (b) four imaginary roots, depending on 

whether 

(a) A > 1 or, equivalently, 
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(b) A < 1 or, equivalently, 
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−
 =
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 (A10) 

A = 1, κ = 1 represents the degenerate isotropic material case, for which the solution 

is available in Chaudhuri and Xie [25]. 

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings, 

it can easily be seen that for orthorhombic single crystals with A < 1 or, equivalently, 

22 11/c c  , the (010) plane is the easy cleavage plane, and [100] is the easy propaga-

tion direction. Conversely, A > 1 or, equivalently, 22 11/c c   yields complex roots, 

implying that neither (010) is the easy cleavage plane nor is [100] the easy propagation 
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direction, and the crack will likely deviate from this plane and this direction under mode 

I/II loadings. 

( ) ( )* * ,I y bK z a D z =  (A11) 

( ) ( )* * .II xy bK z a D z =  (A12) 
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Appendix B. Singular Stress Fields in the Vicinity of a (0 1 0)[100] Through-Crack 

Front Weakening an Orthorhombic Single Crystal under Mode I (Extension/Bending) 

and Mode II (Sliding Shear/Twisting) 

The cleavage plane considered is (0 1 0) (Figure 4). Here, the z -axis is placed along 

the straight crack front, [100], while the coordinates x  [001], y  [0 1 0] are used to define 

the directions along the length of the crack (propagation direction) and the direction trans-

verse to it, respectively, in the middle plane of the plate. u , v  and w  represent the 

components of the displacements in x , y , and z  directions, respectively. The stress-

strain relations for an orthorhombic single crystal are given by 
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(A15) 

where ijc , i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the rotated 

coordinate system, x , y  (obtained by rotation of 90o about the z-axis): 

 11 33 12 23 13 13 22 22 23 12 33 11, , , , , ,c c c c c c c c c c c c     = = = = = =  

44 66 55 55 66 44, , .c c c c c c  = = =  

(A16) 

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid 
can now be expressed in terms of the displacement functions, u , v , and w, as follows: 
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The characteristic equations for the coupled partial differential Equations (A17)–

(A19) can be written as follows: 
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 (A20) 

in which the normalized elastic parameter, 1/  = , is given by 
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In which E2 is y-direction Young’s modulus, and G12 is the shear modulus in the x-y 

plane, while ν21 is the minor Poisson’s ratio in the x-y plane. ν31 denotes the minor Pois-

son’s ratio in the x-z plane, while ν23 and ν32 represent the major and minor Poisson’s 

ratios, respectively, in the y-z plane.   can also be expressed in terms of the planar ani-

sotropic ratio (in the x [001]- y [0 1 0] plane), A , as follows: 

( ) ( )
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where A  is defined as 
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Equation (A20) has either (a) four complex or (b) four imaginary roots, depending on 

whether 

(a) A > 1, or, equivalently, 
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(b) A < 1, or, equivalently, 
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A= 1,  = 1 represents the degenerate isotropic material case, for which the solution 

is available in Chaudhuri and Xie [25]. 

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings, 

it can easily be seen that for orthorhombic single crystals with A< 1, or, equivalently, 

22 11 22 33/ /c c c c   = , the (0 1 0) plane is the easy cleavage plane, and [001] is the 

easy propagation direction. Conversely, A> 1, or, equivalently, 22 33/c c   yields 
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complex roots, implying that neither (0 1 0) is the easy cleavage plane nor is [001] the easy 

propagation direction, and the crack will likely deviate from this plane and this direction 

under mode I/II loadings. 
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Appendix C. Singular Stress Fields in the Vicinity of a ( 1 00)[001] Through-Crack 

Front Propagating under Mode I (Extension/Bending) and Mode II (Sliding 

Shear/Twisting) in [010] Direction 

The cleavage plane considered is ( 1 00) (Figure 5). Here, the z-axis is placed along the 

straight crack front, [001], while the coordinates x [010], y [ 1 00] are used to define the 

directions along the length of the crack (propagation direction) and the direction trans-

verse to it, respectively, in the middle plane of the plate. u , v  and w  represent the 

components of the displacements in x , y , and z directions, respectively. The stress-

strain relations for an orthorhombic single crystal are given by 
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where ijc
, i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the rotated 

coordinate system, x , y , z  (obtained by rotation of 90° about the -y-axis): 

11 22 12 12 13 23 22 11 23 13, , , , ,c c c c c c c c c c    = = = = =  

33 33 44 55 55 44 66 66, , , .c c c c c c c c   = = = =  

(A31) 

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid 
can now be expressed in terms of the displacement functions, u , v , and w , as follows: 
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The characteristic equations for the coupled partial differential Equations (A32)–

(A34) can be written as 
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in which the normalized elastic parameter, 1/  = , is given by 
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in which E3 is z-direction Young’s modulus, and G23 is the shear modulus in the y-z plane, 

while ν32 denotes the minor Poisson’s ratio in the y-z plane. ν12 is the major Poisson’s ratio 

in the x-y plane, while ν13 and ν31 represent the major and minor Poisson’s ratios, respec-

tively, in the x-z plane.   can also be expressed in terms of the planar anisotropic ratio 

(in the x [010]- y [ 1 00] plane), A as follows: 

which finally yields 
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in which A  is defined as follows: 
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Equation (A35) has either (a) four complex or (b) four imaginary roots, depending on 

whether 

(a) A > 1, or, equivalently, 
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or 

 

(b) A < 1, or, equivalently, 
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A  = 1,   = 1 represents the degenerate isotropic material case, for which the solu-

tion is available in Chaudhuri and Xie [25]. 
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For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings, 

it can easily be seen that for orthorhombic single crystals with A < 1, or, equivalently, 

22 11 11 22c c c c   = , the (100) plane is the easy cleavage plane (and y [010]-

direction is the easy propagation direction). Conversely, A  > 1 or, equivalently, 

11 22c c   yields complex roots, implying that neither (100) is the easy cleavage 

plane nor is [010] the easy propagation direction, and the crack will likely deviate from 

this plane and this direction under mode I/II loadings. 
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For the special case of a tetragonal single crystal, the above energy release rates re-

duce to 
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Appendix D. Singular Stress Fields in the Vicinity of a (100)[010] Through-Crack 

Front Propagating under Mode I (Extension/Bending) and Mode II (Sliding 

Shear/Twisting) in [001] Direction 

The cleavage plane considered is (100). Here, the z -axis is placed along the straight 

crack front, [010], while the coordinates x [001], y  are used to define the directions 

along the length of the crack (propagation direction) and the direction transverse to it, 

respectively, in the middle plane of the plate. u , v  and w  represent the components 

of the displacements in x [001], y , and z [010] directions, respectively. The stress-

strain relations for an orthorhombic single crystal are given by 
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where ijc , i, j = 1, 2, 6, denote the elastic stiffness constants with respect to the transformed 

coordinate system, x [001], y , and z [010] 
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(A48) 

The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid 

can now be expressed in terms of the displacement functions, u , v  and w , as follows: 
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The characteristic equations for the coupled partial differential Equation (121) can be 

written as follows: 

4 2 33

11

2 0,
c

p p
c

+ + =  (A52) 

in which the normalized elastic parameter, 1/ = , is given by 
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in which E3 is z-direction Young’s modulus, and G13 is the shear modulus in the x-z plane, 

while ν12 and ν21 denote the major and minor Poisson’s ratios, respectively in the x-y plane. 

ν13 is the major Poisson’s ratio in the x-z plane, while ν23 represents the major and minor 

Poisson’s ratio in the y-z plane.   can also be expressed in terms of the planar aniso-

tropic ratio (in the x [001]- y  plane), A , as follows: 
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where A  is defined as 
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Equation (A52) has either (a) four complex or (b) four imaginary roots, depending on 

whether 

(a) A  > 1, or, equivalently, 
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or 

(b) A  < 1, or, equivalently, 
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A  = 1,   = 1 represents the degenerate isotropic material case, for which the solu-

tion is available in Chaudhuri and Xie [25]. 

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings, 

it can easily be seen that for orthorhombic single crystals with A  < 1, or, equivalently, 

11 33c c  , the (010) plane is the easy cleavage plane (and z [001] direction is the easy 

propagation direction). Conversely, A   > 1, or, equivalently, 11 33c c   yields 

complex roots, implying that neither (010) is the easy cleavage plane nor is [001] the easy 

propagation direction, and the crack will likely deviate from this plane and this direction 

under mode I/II loadings. 
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Appendix E. Singular Stress Fields in the Vicinity of a (001)[0 1 0]. Through-Crack 

Front Propagating under Mode I (Extension/Bending) and Mode II (Sliding 

Shear/Twisting) in [100] Direction 

The cleavage plane considered is (001). Here, the ẑ -axis is placed along the straight 

crack front, [0 1 0], while the coordinates x̂  [100], ŷ  are used to define the directions 

along the length of the crack (propagation direction) and the direction transverse to it, 

respectively, in the middle plane of the plate. û , v̂  and ŵ  represent the components of 

the displacements in x̂  [100], ŷ , and ẑ  [0 1 0] directions, respectively. The stress-

strain relations for an orthorhombic single crystal are given by 
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The three equilibrium equations for a linear elastic orthotropic/orthorhombic solid 

can now be expressed in terms of the displacement functions, û , v̂  and ŵ , as follows: 
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The characteristic equations for the coupled partial differential Equations (A63)–

(A65) can be written as follows: 

4 2 11

33

ˆ2 0,
c

p p
c

+ + =  (A66) 

in which the normalized elastic parameter, ˆ ˆ1/ = , is given by 
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in which E3 is y-direction Young’s modulus, and G13 is the shear modulus in the x-z plane, 

while ν21 is the minor Poisson’s ratio in the x-y plane. ν31 denotes the minor Poisson’s ratio 

in the x-z plane, while ν23 and ν32 represent the major and minor Poisson’s ratios, respec-

tively, in the y-z plane. ̂  can also be expressed in terms of the planar anisotropic ratio 

(in the x̂  [100]- ŷ  plane), Â , as follows: 

( )
33

11 33 13

ˆ
ˆ ,

ˆ1

Ac

c c c A
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where Â  is defined as 
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Equation (A66) has either (a) four complex or (b) four imaginary roots, depending on 

whether 
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(a) Â > 1 or, equivalently, 
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or 

(b) Â < 1 or, equivalently, 
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Â  = 1, ̂  = 1 represents the degenerate isotropic material case, for which the solu-

tion is available in Chaudhuri and Xie [25]. 

For the extension-bending (mode I) and in-plane shear-twisting (mode II) loadings, 

it can easily be seen that for orthorhombic single crystals with Â  < 1 or, equivalently,

33 11
ˆ c c  , the (001) plane is the easy cleavage plane (and [100] -direction is the easy 

propagation direction). Conversely, Â > 1 or, equivalently, 33 11
ˆ c c   yields complex 

roots, implying that neither (001) is the easy cleavage plane nor is [100] the easy propaga-

tion direction, and the crack will likely deviate from this plane and this direction under 

mode I/II loadings. 
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