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Abstract: This article presents a new beam model that employs a recursive derivation procedure that
enables the user to set the order of the governing differential equations as an input parameter, without
the need for ad hoc assumptions or methodologies. This article employs a novel system of kinematic
variables, section constants, and section functions that facilitate the development of higher-order
beam models that retain a clear philosophical link to classical beam models such as Euler–Bernoulli
beam theory and Timoshenko beam theory. The present beam model is a type of equivalent single
layer beam model, wherein section constants are used to model the global stiffness characteristics of
the beam, and section functions are used to recover sectional fields of displacements, strains, and
stresses. The present beam model is solved for several example beams, and the results are compared
to the results of finite element analyses. It is shown that the present beam model can accurately
predict the deformed shapes and stress fields of each of the example beams. This article also reveals
an interesting peculiarity of the elastic potential energy that pertains to any unidimensional beam
model that is governed by differential equations that are of finite order.

Keywords: beam; higher-order; series; shear; warping; shear deformation theory; equivalent single
layer; Timoshenko; laminate; composite

1. Introduction

While continual improvements to accessible computing power have corresponded
to ongoing increases in the prevalence of the finite element method and other computa-
tional modeling techniques, the academic and industrial sectors continue to extensively
utilize classical unidimensional beam models such as Euler–Bernoulli beam theory and
Timoshenko beam theory [1,2].

In Euler–Bernoulli beam theory, the internal bending moments produce curvatures
that are dependent upon the flexural (bending) stiffness of the beam; these curvatures
are then successively integrated in order to determine the transverse deflections of the
beam. Timoshenko beam theory [1,2], which is a type of first-order shear deformation
theory, improves upon Euler–Bernoulli beam theory by accounting for additional transverse
compliance that is caused by shear deformations. First-order shear deformation theories
typically model transverse deflections as the super-position of deflections that are caused
by bending and deflections that are caused by shear. Such theories are dependent upon
information pertaining to the material properties of the beam, the geometric dimensions of
the beam, and derived section constants that represent the mechanical characteristics of
the beam.

While the finite element method and other computational structural modeling tech-
niques offer high fidelity solutions to an extremely diverse range of structural analysis
problems, such techniques can be likened to a well-instrumented experimental test: a great
deal of data is provided, but the interpretation of these data is largely dependent upon
the experience of the engineer. Conversely, if an engineer is able to correlate experimental
observations with the predictions of a beam model that is dependent upon section con-
stants, then the aforementioned section constants may be used for subsequent analysis
efforts, as well as to achieve a more comprehensive and intuitive understanding of the

Appl. Mech. 2023, 4, 109–140. https://doi.org/10.3390/applmech4010008 https://www.mdpi.com/journal/applmech

https://doi.org/10.3390/applmech4010008
https://doi.org/10.3390/applmech4010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applmech
https://www.mdpi.com
https://orcid.org/0000-0002-8140-0676
https://doi.org/10.3390/applmech4010008
https://www.mdpi.com/journal/applmech
https://www.mdpi.com/article/10.3390/applmech4010008?type=check_update&version=2


Appl. Mech. 2023, 4 110

mechanical behaviour of the beam. For example, the section constants that are employed
by Timoshenko beam theory provide valuable insight pertaining to the relationship be-
tween the flexural stiffness and the transverse shear stiffness of a beam, and an engineer
may be able to improve upon the design of such a beam by imposing design changes
that are known to directly influence the value of a section constant that has been deemed
sub-optimal. Therefore, simple unidimensional beam models that are based upon section
constants continue to offer practical benefits that are typically absent from finite element
methods and other computational structural modeling techniques.

First-order shear deformation theories are unable to account for the effects of non-
uniform warping, which limits the fidelity of first-order shear deformation theories [3–5].
Higher-order beam models endeavor to account for non-uniform warping of beams and
plates [3,6–8], thereby overcoming the inherent limitations of first-order shear deformation
theories. A beam model that employs third-order shear deformation theory is generally
regarded as a type of higher-order beam model. Unfortunately, third-order shear deforma-
tion theories give inaccurate predictions for beams that have heterogeneous compositions
due to the erroneous cubic warping displacement field that is assumed by such theories;
this problem is particularly pronounced in the analysis of laminated composite beams and
plates [9].

In order to more accurately model the warping displacement fields of laminated
composite beams and plates, numerous researchers have developed so-called “layer-wise”
theories, wherein the kinematics are independently defined for each lamina within a lam-
inate, and the layer-to-layer continuity of some physical parameters is enforced [10,11].
Unfortunately, layer-wise theories tend to be far more analytically complex and computa-
tionally expensive than classical beam models.

Some researchers have developed so-called “equivalent single layer” beam models [12],
which endeavor to overcome the relatively high computational cost of layer-wise theories.
A comprehensive literature review of such equivalent single layer beam models is provided
in Ref. [13]. So-called “zigzag” models are a specialized type of equivalent single layer
beam model, wherein the sectional warping displacement fields of laminated composite
beams and plates are approximated by piecewise linear functions [10,14,15] or by piecewise
polynomial functions [16].

The so-called “Carrera Unified Formulation” (CUF) [17–21] is a framework for the
development of structural analysis and stress analysis models wherein the order of the
displacement field is stipulated as a solution control parameter. With the selection of
appropriate solution control parameters, CUF beam models may be configured to mimic
the behaviour of Euler–Bernoulli beam theory, Timoshenko beam theory, or higher-order
beam models. Practically speaking, a higher-order CUF beam model may serve as a com-
putationally efficient alternative to a three-dimensional finite element analysis. The CUF
has been used for the development of both layer-wise beam models and equivalent single
layer beam models [22,23].

The present author has previously contributed to the development of another higher-
order beam model [5]. In one section of Ref. [5], the authors of Ref. [5] suggest that it
may be possible to extend their derivation to facilitate the development of beam models
of arbitrary order; however, the present author no longer believes that the work-energy
balance that is assumed in Ref. [5] would be conducive for the development of beam
models of arbitrary order. Furthermore, the beam model that is presented in Ref. [5] gives
some erroneous stress predictions for beams that exhibit large rates of change of sectional
warping along their longitudinal axes; the present author now believes that such erroneous
stress predictions are caused by the work-energy balance that is assumed in Ref. [5].

With the increasing prevalence of laminated composite materials, engineers are often
faced with design problems pertaining to beams that exhibit non-trivial transverse shear
compliance as well as non-trivial resistance to non-uniform warping. The mechanical
response of such beams cannot be accurately predicted by first-order shear deformation
theories [5]. Therefore, there continues to exist a need for higher-order unidimensional beam
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models that can be confidently implemented by industry engineers who are accustomed to
the use of classical beam models.

Most higher-order beam models are derived and presented in a manner that has been
formulated to account for a comprehensive range of mechanical phenomena. Consequently,
most state-of-the-art literature on higher-order beam models employs derivations that
bare little resemblance to the familiar derivations of Euler–Bernoulli beam theory and
Timoshenko beam theory. While researchers who frequently review the relevant state-
of-the-art literature may have little difficulty navigating any new research on a novel
higher-order beam model, an engineer wishing to venture into the field of higher-order
beam models for the first time would be faced with a very difficult challenge. Consequently,
the use of higher-order beam models is often limited to academic researchers who focus
much of their time on the development and study of such higher-order beam models.

In the present article, a new unidimensional beam model is proposed. The present
beam model employs a recursive derivation procedure that enables the user to set the order
of the governing differential equations as an input parameter, without the need for ad hoc
assumptions or methodologies. The present article employs a novel system of kinematic
variables, section constants, and section functions that facilitate the development of higher-
order beam models that retain a clear philosophical link to classical beam models such as
Euler–Bernoulli beam theory and Timoshenko beam theory. For example, the present beam
model is predicated on the assumption that a nominal sectional plane can be fitted through
the deformed shape of each section of a deformed beam; the translations and rotations
of each nominal sectional plane of the beam are included among the kinematic variables
of the present beam model. Therefore, the nominal sectional planes that are discussed
herein can be likened to the plane sections that are assumed to exist in first-order shear
deformation theories. In essence, the present beam model is a type of equivalent single
layer beam model, wherein section constants are used to model the global stiffness and
compliance characteristics of the beam, and section functions are used to recover sectional
fields of displacements, strains, and stresses. The present beam model is well suited for
analyses of laminated beams that comprise any number of laminae.

The present work does not include an exhaustive attempt to account for all of the
possible loading directions, mechanical phenomena, or coupling behaviours. Instead,
the present beam model has been intentionally limited to a relatively simplistic two-
dimensional space; this facilitates a clear and intuitive understanding of the implications
of higher-order effects, while employing a derivation that exhibits obvious philosophical
similarities to classical beam theories. The present beam model is herein described in an
intentionally meticulous and explicit manner in order to ensure that it can be successfully
implemented by a diverse range of engineers and academic researchers, irrespective of the
prior experience that these engineers and academic researchers have had with higher-order
beam models.

Through the process of deriving the present beam model, this article also reveals an
interesting peculiarity of the elastic potential energy that pertains to any unidimensional
beam model that is governed by differential equations that are of finite order. This peculiar-
ity is manifested as an apparent paradox that emerges during the calculation of the section
constants that are employed by the present beam model.

2. Form of the Present Beam Model
2.1. General Definitions

The present discussion makes use of a Cartesian coordinate system that is defined by
three mutually orthogonal coordinate axes that are denoted by x, y, and z.

The term “longitudinal axis” denotes an imaginary axis that passes lengthwise through
the beam. The longitudinal axis of the undeformed beam is initially parallel to the x-axis.
The longitudinal axis of the beam deforms as the beam deforms; therefore, the longitudinal
axis may not remain straight or parallel to the x-axis after such a deformation has occurred.
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The term “longitudinal” denotes any direction that is parallel to the x-axis. The term
“transverse” denotes any direction that is perpendicular to the x-axis.

The term “section” denotes a surface that would hypothetically become exposed if the
beam were to be cut into two segments. When the beam does not exhibit any deformation,
each section is a plane that is perpendicular to the x-axis. As the beam deforms, each
section may translate and rotate relative to its initial state, and each section may deform
such that it becomes non-planar.

The term “warping” herein denotes any deformation of a section that causes the
section to become non-planar. The term “non-uniform warping” denotes any warping that
varies along the longitudinal axis of a beam. The term “warping displacement” denotes
any displacement that contributes to warping of a section.

The term “nominal sectional plane” denotes a hypothetical plane that is fitted through
the deformed shape of each section of the beam. Therefore, as the beam deforms, each
nominal sectional plane may translate and rotate relative to its initial state; however,
each nominal sectional plane always remains planar. The specific manner in which each
nominal sectional plane is fitted through the corresponding deformed section of the beam
is described by the derivations that are provided herein. The present beam model does not
assume that plane sections remain planar after the beam has deformed; however, the present
beam model utilizes the orientation of each nominal sectional plane as a surrogate metric
that helps to account for the deformation of the beam in an intuitive manner.

The term “section constant” denotes a numerical constant that represents an inherent
characteristic of the material composition and geometry of a section of the beam. The term
“section function” denotes a mathematical function that represents an inherent characteristic
of the material composition and geometry of a section of the beam. Each section function is
defined as a function of the local coordinates that are contained in the section of the beam.

The term “elevation” is used herein in reference to positions and dimensions that are
measured parallel to the z-axis. Each beam section has a local z-axis that is initially parallel
to the global z-axis. The origin of each local z-axis is positioned at the elevation of the
bottom surface of the beam. Therefore, each z coordinate is an elevation coordinate that is
measured relative to the bottom surface of the beam.

The term “local y-y axis” denotes the local flexural neutral axis that pertains to x-z
curvatures. Each section of the beam has a local y-y axis. Each local y-y axis is initially
parallel to the global y-axis.

The term “local z-z axis” denotes the local flexural neutral axis that pertains to x-y
curvatures. Each section of the beam has a local z-z axis. Each local z-z axis is initially
parallel to the global z-axis.

Some additional definitions are provided in Appendix A.

2.2. Kinematics

Figure 1 shows the deformed shape of a transversely loaded beam, and helps to
illustrate some of the geometric dimensions and kinematic variables that are relevant to the
present beam model.

The symbol u denotes a linear displacement that is measured parallel to the x-axis.
The symbol v denotes a linear displacement that is measured parallel to the y-axis. The sym-
bol w denotes a linear displacement that is measured parallel to the z-axis.

The symbol wn denotes the nominal value of w that corresponds to each section of the
beam. At each x-coordinate, wn represents the value of w that is developed at the position
of the intersection of the local y-y axis and the local z-z axis.

The symbol φw denotes the angle of rotation (angular displacement) of a nominal
sectional plane about its local y-y axis, measured relative to the initial orientation of the
aforementioned nominal sectional plane. The value of φw may vary as a function of x.
The sign convention for φw is defined such that a positive value of φw corresponds to a
rotation in the same direction as a positive value of dwn

dx . Therefore, the sign convention for
φw does not observe the right-hand rule.
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Figure 1. Deformed shape of a transversely loaded beam, illustrating some of the geometric dimen-
sions and kinematic variables that are relevant to the present beam model.

The symbol θw denotes the total nominal shear angle that is measured within the x-z
plane of the beam. The value of θw may vary as a function of x; however, it is assumed
herein that θw is constant with respect to y and z. Since φw represents a true angle of rotation
of the nominal sectional plane at position x, whereas dwn

dx represents a slope of the deformed
longitudinal axis of the deflected beam at position x, the total nominal x-z shear angle is
defined as follows:

θw =
dwn

dx
− φw . (1)

The sign convention for θw is defined such that a positive value of θw corresponds to a
rotation in the same direction as a positive value of dwn

dx . Therefore, the sign convention for
θw does not observe the right-hand rule.

In essence, φw represents the component of dwn
dx that arises due to a rotation of the

nominal sectional plane, whereas θw represents the component of dwn
dx that arises due to the

local x-z shear deformation of the beam.
If it is assumed that dwn

dx is small, then the total x-z curvature of the beam can be
expressed as follows:

x-z curvature =
d2wn

dx2

(
1 +

(
dwn

dx

)2
)−3/2

≈ d2wn

dx2 =
dφw

dx
+

dθw

dx
. (2)

Integrating Equation (1) with respect to x gives the following expression for wn:

wn =
∫

(φw + θw) dx . (3)

The symbol vn denotes the nominal value of v that corresponds to each section of the
beam. At each x-coordinate, vn represents the value of v that is developed at the position
of the intersection of the local y-y axis and the local z-z axis.

The symbol φv denotes the angle of rotation (angular displacement) of a nominal
sectional plane about its local z-z axis, measured relative to the initial orientation of the
aforementioned nominal sectional plane.

The symbol θv denotes the total nominal shear angle that is measured within the x-y
plane of the beam. In a similar manner to Equation (1), the total nominal x-y shear angle is
defined as follows:

θv =
dvn

dx
− φv . (4)
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2.3. Simplifying Assumptions

In the interest of clarity and ease of exposition, the present beam model has been
developed in the context of the following simplifying assumptions:

1. All externally applied loads act parallel to the z-axis.
2. All externally applied concentrated moments act about axes that are parallel to

the y-axis.
3. All imposed linear displacements occur parallel to the z-axis.
4. All imposed angular displacements (rotations) occur about axes that are parallel to

the y-axis.
5. The beam is configured such that none of the applied loadings result in the develop-

ment of any non-zero values of vn, φv, or θv.
6. The beam is configured such that none of the applied loadings result in the develop-

ment of any torsional deformations of the beam.

The foregoing assumptions dictate that all transverse shear forces act parallel to the z-axis,
and all moments act about axes that are parallel to the y-axis. Although the mechanical re-
sponse of the beam is assumed to be symmetrical about the x-z plane, it is worth noting that
the present beam model is capable of accurately modeling beams that are not symmetrical
about a plane that is parallel to the x-y plane.

2.4. Governing Equations

The governing equations of the present beam model include differential equations
that are herein referred to as the “governing differential equations”.

The present beam model is based upon the assumption that the displacement field
within a beam can be represented by differential equations that are of infinite order. For each
of the governing differential equations of the beam model, the terms of the differential
equation are denoted by sequential integer values: an integer value of one denotes the term
that corresponds to the lowest derivative that is present within the differential equation,
and each successively greater integer value denotes a term that corresponds to a succes-
sively higher derivative that is present within the differential equation. The various terms
of the governing differential equations may be represented numerically or algebraically.

The present beam model employs numerous functions, variables, and constants that
are defined herein; some of these functions, variables, and constants are defined such that
they correspond to a specific term of the governing differential equations of the beam model.
For each function, variable, or constant that corresponds to a specific term of the governing
differential equations, the aforementioned function, variable, or constant is denoted by
a symbol that includes subscripted notation that appears between curly brackets; any
subscripted notation that appears between curly brackets indicates which specific term of
the governing differential equations corresponds to the aforementioned function, variable,
or constant. For example, a function that is denoted by R{5} corresponds to term 5 of the
governing differential equations of the beam model. Similarly, a constant that is denoted
by A{j+1} corresponds to term j + 1 of the governing differential equations of the beam
model, where j is an integer value.

The symbol u∞ denotes the total longitudinal displacement that is developed at a
point within the beam. Upon observing the simplifying assumptions that are described in
Section 2.3, u∞ can be expressed at any point within the beam, as follows:

u∞ =
∞

∑
j=1

(
u{j}

)
, (5)

where

u{j} = R{j}
d(2j−2)φw

dx(2j−2)
; (6)
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u{j} is the component of the longitudinal displacement that corresponds to term j of the
governing differential equations; and R{j} is a section function that corresponds to term
j of the governing differential equations. At each x coordinate, Equation (6) defines the
value of u{j} at any point within the section of the beam. In essence, u∞ is the value of u
that is given by Equation (5).

In cases wherein j = 1, Equation (6) simplifies as follows:

u{1} = R{1} φw . (7)

u{1} describes the longitudinal displacement of each point that is contained in a nominal
sectional plane of the beam; therefore, R{1} is a linear function of the local coordinates that
are contained in the section of the beam. Conversely, for each integer value of j that is
greater than one, u{j} describes a component of the longitudinal distance between each
point on a deformed section of the beam and the corresponding point on the corresponding
nominal sectional plane of the beam. Therefore, if the symbol uHO denotes the sum of all
sectional fields of u{i} for all integer values of i that are greater than one, then uHO describes
the total longitudinal distance between each point on a deformed section of the beam and
the corresponding point on the corresponding nominal sectional plane of the beam.

In most cases, it is both impractical and unnecessary to define a beam using governing
differential equations that are of infinite order. Therefore, it is convenient to truncate
Equation (5) to a finite number of terms, as follows:

uN =
N

∑
j=1

(
u{j}

)
, (8)

where uN is the total longitudinal displacement that is developed at a point within the
beam; u{j} is the component of uN that corresponds to term j of the governing differential
equations; u{j} is defined in accordance with Equation (6); and N is a finite integer value
that represents the number of terms that are to be included in the truncated infinite series
that represents uN . In essence, uN is the value of u that is given by Equation (8).

The symbol εx denotes the total longitudinal normal strain that is developed at a point
within the beam. At any point within the beam, εx can be expressed by differentiating
Equation (8) with respect to x, as follows:

εx =
duN

dx
=

N

∑
j=1

(
ε{j}

)
, (9)

where

ε{j} =
du{j}

dx
= R{j}

d(2j−1)φw

dx(2j−1)
; (10)

and ε{j} is the component of εx that corresponds to term j of the governing differential equa-
tions.

The symbol σx denotes the total longitudinal normal stress that is developed at a point
within the beam. At any point within the beam, σx can be expressed as follows:

σx =
N

∑
j=1

(
σ{j}

)
, (11)

where

σ{j} = ε{j} E = R{j} E
d(2j−1)φw

dx(2j−1)
; (12)

σ{j} is the component of σx that corresponds to term j of the governing differential equations;
and E is the longitudinal elastic modulus of the material that is present at the elevation at
which σ{j} is to be defined.
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The symbol Myy denotes the total moment about the local y-y axis of the beam section.
It can be shown that Myy can be expressed by integrating moments of longitudinal normal
stresses about the local y-y axis, as follows:

Myy =
N

∑
j=1

(
M{j}

)
, (13)

where

M{j} = − A{j}
d(2j−1)φw

dx(2j−1)
; (14)

M{j} is the component of Myy that corresponds to term j of the governing differential
equations; each value of A{j} is a section constant that represents the beam’s resistance to
the development of a corresponding derivative of φw with respect to x; and N is equal to
the total number of terms in Equation (13) (the equilibrium equation for Myy). A{1} is the
flexural (bending) stiffness of the beam about the local y-y axis of the beam section, based
upon the assumption that u{1} varies linearly along the z-axis.

A sign convention for Myy is defined in accordance with the right-hand rule; therefore,
in the context of an applied concentrated moment, a positive value of Myy corresponds
to a moment that acts in a direction that opposes the direction of a positive value of dwn

dx .
Similarly, in the context of an internal bending moment, a positive value of Myy corresponds

to an internal bending moment that opposes the direction of a positive value of d2wn
dx2 .

The symbol Vz denotes the total transverse shear force that acts parallel to the z-axis.
If the undeformed beam exhibits constant sectional geometry and composition along its
length, then differentiating Myy with respect to x gives the following expression for Vz:

Vz =
N

∑
j=1

(
V{j}

)
, (15)

where

V{j} = − A{j}
d(2j)φw

dx(2j)
; (16)

and V{j} is the component of Vz that corresponds to term j of the governing differen-
tial equations.

The symbol gz denotes the applied transverse loading per unit length, dx, applied
parallel to the z-axis. If the undeformed beam exhibits constant sectional geometry and
composition along its length, then differentiating Vz with respect to x gives the following
expression for gz:

gz =
N

∑
j=1

(
g{j}

)
, (17)

where

g{j} = − A{j}
d(2j+1)φw

dx(2j+1)
; (18)

a positive value of gz denotes a loading that acts in the negative z direction; and g{j} is the
component of gz that corresponds to term j of the governing differential equations.

The symbol γxz denotes the total x-z shear strain that is developed at a point within
the beam. At any point within the beam, γxz can be expressed as follows:

γxz =
N

∑
j=1

(
γ{j}

)
, (19)
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where γ{j} is the component of γxz that corresponds to term j of the governing differential
equations. More comprehensive formulae for γ{j} are derived in Section 3.3.

The symbol τxz denotes the total x-z shear stress that is developed at a point within
the beam. At any point within the beam, τxz can be expressed as follows:

τxz =
N

∑
j=1

(
τ{j}

)
, (20)

where
τ{j} = γ{j} G ; (21)

τ{j} is the component of τxz that corresponds to term j of the governing differential equa-
tions; and G is the x-z shear modulus of the material that is present at the elevation at which
τ{j} is to be defined. More comprehensive formulae for τ{j} are derived in Section 3.3.

For each sectional field of γ{j}, it can be shown that there exists a corresponding
component of the total nominal x-z shear angle (see Section 3.3); therefore, the total nominal
x-z shear angle that is present at each x coordinate can be expressed as follows:

θw =
N

∑
j=1

(
θ{j}

)
, (22)

where

θ{j} = −C{j}
d(2j)φw

dx(2j)
; (23)

θw is the total nominal x-z shear angle; θ{j} is the component of θw that corresponds to term
j of the governing differential equations; and each value of C{j} is a section constant that
relates to the development of θ{j}.

For each M{j} term in Equation (13), there exists a corresponding V{j} term in
Equation (15). Similarly, for each V{j} term in Equation (15), there exists a corresponding
g{j} term in Equation (17). In addition, for each V{j} term in Equation (15), there exists a
corresponding θ{j} term in Equation (22).

The term “governing differential equations” herein denotes the combination of
Equations (13)–(18), (22) and (23). The term “governing equations” herein denotes the
combination of Equation (1) and the governing differential equations. Strictly speaking,
Equation (1) is also a differential equation; however, in the interest of clarity, Equation (1)
is excluded from the present definition of the term governing differential equations. Ulti-
mately, the governing equations dictate the deformed shape that is predicted by the present
beam model.

The governing differential equations of the present beam model include two kinematic
variables: φw and θw, where each value of θw can be decomposed into a value of θ{j} for
each integer value of j from j = 1 to j = N, inclusively. With reference to Equation (1), it
is evident that the kinematic variables of the present beam model are equivalent to those
present in Timoshenko beam theory. If N is set equal to one, then the present beam model
simplifies to a form that is equivalent to Timoshenko beam theory, where A{1} represents
flexural stiffness, and A{1}/C{1} represents transverse shear stiffness.

3. Section Constants and Section Functions for the Present Beam Model
3.1. General

In the interest of clarity and ease of exposition, the section constants and section
functions of the present beam model are derived herein in the context of the following
simplifying assumptions:

1. The beam comprises a multi-layered laminate, wherein each lamina is composed
of a linear elastic orthotropic material that has three orthogonal symmetry planes,
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and wherein the surface normal of each of the aforementioned symmetry planes is
parallel to one of the x, y, and z coordinate axes of the beam.

2. The undeformed beam exhibits a constant rectangular sectional geometry and a
constant material composition along its length.

3. All stresses act parallel to the x-z plane.
4. All normal strains and normal stresses act parallel to the x-axis of the beam; therefore,

the effects of Poisson’s ratio are ignored.

The aforementioned simplifying assumptions are observed in addition to the simplifying
assumptions that are described in Section 2.3.

Notwithstanding the foregoing, the reader will appreciate that the general philosophy
that is embodied by the present derivations can be applied to higher fidelity formulations
that account for the effects of comprehensive three-dimensional mechanical phenomena
and general anisotropy.

3.2. Elasticity Relationships Pertaining to the First Term

For the purpose of calculating the value of A{1}, it is assumed that u{1} varies linearly
along the z-axis, as follows:

u{1} = R{1} φw , (24)

where
R{1} = −

(
ZΩ − Zyy

)
; (25)

Ω is a specific elevation of interest within the beam section; ZΩ is the value of Z at elevation
Ω; Zyy is the value of Z at the elevation of the local y-y axis of the beam section; u{1} is
the component of uN that corresponds to term 1 of the governing differential equations;
u{1} is defined at elevation Ω; R{1} is a section function that corresponds to term 1 of the
governing differential equations; and R{1} is defined at elevation Ω.

Differentiating u{1} with respect to x gives the following expression for ε{1}:

ε{1} =
du{1}

dx
= R{1}

dφw

dx
, (26)

where ε{1} is the component of εx that corresponds to term 1 of the governing differential
equations; and ε{1} is defined at elevation Ω.

An expression for σ{1} can now be written as follows:

σ{1} = ε{1} EΩ = R{1} EΩ
dφw

dx
, (27)

where σ{1} is the component of σx that corresponds to term 1 of the governing differential
equations; σ{1} is defined at elevation Ω; and EΩ is the longitudinal elastic modulus of the
material that is present at elevation Ω.

The symbol F{1} denotes the total longitudinal force that is generated within the beam
as a result of σ{1}. The value of F{1} can be expressed as follows:

F{1} =
ZT∫

ZΩ=ZB

σ{1} B dZΩ , (28)

where ZB is the value of Z at the bottom surface of the beam section; ZT is the value of Z at
the top surface of the beam section; and B is the total width of the beam section, measured
parallel to the y-axis. For a beam that is only subjected to transverse loading, the value of
F{1} must be equal to zero. Substituting Equations (25) and (27) into Equation (28), setting
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F{1} equal to zero, and simplifying the resulting equation, the following expression can
be written:

0 =

ZT∫
ZΩ=ZB

(
ZΩ − Zyy

)
B EΩ dZΩ . (29)

The value of Zyy can then be determined by solving the integral in Equation (29) and
rearranging the resulting expression, as follows:

Zyy =

ZT∫
ZΩ=ZB

ZΩ B EΩ dZΩ

ZT∫
ZΩ=ZB

B EΩ dZΩ

. (30)

At this point, it is convenient to introduce a new elevation variable, ζ, as follows:

ζ = Z− Zyy . (31)

From inspection of Equation (31), it is evident that ζ is an elevation coordinate that is
measured relative to the local y-y axis of the beam section.

Substituting Equation (31) into Equation (25), the expression for R{1} can now be
rewritten, as follows:

R{1} = − ζΩ , (32)

where ζΩ is the value of ζ at elevation Ω.
The component of Myy that is caused by bending curvatures alone (ignoring the effects

of non-uniform warping) is herein denoted by M{1}. The value of M{1} can be determined
by integrating the moments of σ{1} values about the local y-y axis of the beam section,
as follows:

M{1} =
ζT∫

ζΩ=ζB

σ{1} B ζΩ dζΩ , (33)

where M{1} is the component of Myy that corresponds to term 1 of the governing differential
equations; ζB is the value of ζ at the bottom surface of the beam section; and ζT is the
value of ζ at the top surface of the beam section. Substituting Equations (27) and (32) into
Equation (33) gives the following expression:

M{1} = − A{1}
dφw

dx
, (34)

where

A{1} =
ζT∫

ζΩ=ζB

ζΩ
2 B EΩ dζΩ ; (35)

A{1} is a section constant that corresponds to term 1 of the governing differential equations;
and A{1} is the flexural stiffness of the beam section.

3.3. Elasticity Relationships Pertaining to Higher-Order Terms

The following derivation is described in the context of an arbitrary term of the govern-
ing differential equations; therefore, this derivation may be executed recursively in order
to develop the equations and relationships that correspond to each term of the governing
differential equations.
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The following equation expresses the component of x-z shear stress that is developed
due to a rate of change of σ{j} with respect to x:

τ{j} =
−1
B

ζL∫
ζλ=ζB

(dσ{j}
dx

)
B dζλ , (36)

where λ is a specific elevation of interest within the beam section; ζλ is the value of ζ at
elevation λ; L is a specific elevation of interest within the beam section; ζL is the value
of ζ at elevation L; σ{j} is defined at elevation λ; τ{j} is the component of τxz that is
developed due to a rate of change of σ{j} with respect to x; and τ{j} is defined at elevation
L. From inspection of Equations (20) and (36), it is evident that τxz is defined at elevation L.

For any integer value of j that is greater than zero, elevation λ is equal to the elevation
at which R{j} is defined. For example, if R{j} is defined at elevation Ω, and j is an integer
value that is greater than zero, then elevation λ is equal to elevation Ω. Alternatively, if R{j}
is defined at an elevation that is denoted by Γ, and j is an integer value that is greater than
zero, then elevation λ is equal to elevation Γ. For any integer value of j that is greater than
zero, R{j}, u∞ , uN , u{j}, εx, ε{j}, σx, and σ{j} are all defined at the same elevation. Therefore,
for any integer value of j that is greater than zero, elevation λ is equal to the elevation at
which R{j}, u∞ , uN , u{j}, εx, ε{j}, σx, and σ{j} are defined.

Introducing a new section function, Q{j}, Equation (36) can be rewritten, as follows:

τ{j} =
Q{j}

B
d(2j)φw

dx(2j)
, (37)

where

Q{j} = −
ζL∫

ζλ=ζB

R{j} B Eλ dζλ ; (38)

Q{j} is a section function that corresponds to term j of the governing differential equations;
Q{j} is defined at elevation L; and Eλ is the longitudinal elastic modulus of the material
that is present at elevation λ.

The following equation expresses the component of x-z shear strain that is developed
due to a rate of change of σ{j} with respect to x:

γ{j} =
τ{j}
GL

=
Q{j}
B GL

d(2j)φw

dx(2j)
, (39)

where γ{j} is defined at elevation L; and GL is the x-z shear modulus of the material that is
present at elevation L. From inspection of Equations (19) and (39), it is evident that γxz is
defined at elevation L.

The symbol θ{j} denotes the component of θw that corresponds to V{j}. The symbol
γ{j}R

denotes the difference between γ{j} and θ{j}. Therefore, recalling Equation (23),
the value of γ{j}R

can be expressed at each elevation, as follows:

γ{j}R
= γ{j} − θ{j} =

(Q{j}
B GL

+ C{j}

)
d(2j)φw

dx(2j)
, (40)

where C{j} is a section constant that corresponds to term j of the governing differential equations.
u{j+1} can be defined as the component of uN that is caused solely by γ{j}R

. Therefore,
the value of u{j+1} can be expressed as follows:

u{j+1} = u{j+1}B
+

ζΓ∫
ζL=ζB

γ{j}R
dζL , (41)
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where Γ is a specific elevation of interest within the beam section; ζΓ is the value of ζ at
elevation Γ; u{j+1} is the component of uN that corresponds to term j + 1 of the governing
differential equations; u{j+1} is defined at elevation Γ; and u{j+1}B

represents the value of
u{j+1} at the bottom surface of the beam. Since all values of u{j+1} are dependent upon θ{j},

it is convenient to express u{j+1}B
as a function of d(2j)φw

dx(2j) and a constant, H{j+1}, as follows:

u{j+1}B
= H{j+1}

d(2j)φw

dx(2j)
, (42)

where H{j+1} is a constant.
Substituting Equations (40) and (42) into Equation (41), and introducing a new section

function, P{j+1}, Equation (41) can be rewritten as follows:

u{j+1} =
(

P{j+1} + H{j+1} + C{j}
(

ζΓ + Zyy
) ) d(2j)φw

dx(2j)
, (43)

where

P{j+1} =

ζΓ∫
ζL=ζB

Q{j}
B GL

dζL ; (44)

P{j+1} is a section function that corresponds to term j + 1 of the governing differential
equations; P{j+1} is defined at elevation Γ; and

(
ζΓ + Zyy

)
represents the distance between

elevation Γ and the bottom surface of the beam.
Combining Equation (6) with Equation (43), the expression for u{j+1} can be rewritten

as follows:

u{j+1} = R{j+1}
d(2j)φw

dx(2j)
, (45)

where
R{j+1} = P{j+1} + H{j+1} + C{j}

(
ζΓ + Zyy

)
; (46)

R{j+1} is a section function that corresponds to term j + 1 of the governing differential
equations; and R{j+1} is defined at elevation Γ.

An expression for ε{j+1} can now be written as follows:

ε{j+1} =
du{j+1}

dx
= R{j+1}

d(2j+1)φw

dx(2j+1)
, (47)

where ε{j+1} is the component of εx that corresponds to term j + 1 of the governing
differential equations; and ε{j+1} is defined at elevation Γ.

An expression for σ{j+1} can now be written as follows:

σ{j+1} = ε{j+1} EΓ = R{j+1} EΓ
d(2j+1)φw

dx(2j+1)
, (48)

where σ{j+1} is the component of σx that corresponds to term j + 1 of the governing
differential equations; σ{j+1} is defined at elevation Γ; and EΓ is the longitudinal elastic
modulus of the material that is present at elevation Γ.

The symbol F{j+1} denotes the total longitudinal force that is generated within the
beam as a result of σ{j+1}; the value of F{j+1} can be expressed as follows:

F{j+1} =

ζT∫
ζΓ=ζB

σ{j+1} B dζΓ . (49)
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For a beam that is only subjected to transverse loading, the value of F{j+1} must be
equal to zero. Substituting Equations (48) and (46) into Equation (49), setting F{j+1} = 0,
and simplifying the resulting equation, the following expression can be written:

0 =

ζT∫
ζΓ=ζB

(
P{j+1} + H{j+1} + C{j}

(
ζΓ + Zyy

) )
B EΓ dζΓ . (50)

The value of H{j+1} can be expressed in terms of C{j} by solving the integral in
Equation (50) and rearranging the resulting expression, as follows:

H{j+1} = h{j+1}C
+ ha1 C{j} , (51)

where

h{j+1}C
=

−
ζT∫

ζΓ=ζB

P{j+1} B EΓ dζΓ

ζT∫
ζΓ=ζB

B EΓ dζΓ

; (52)

ha1 =

−
ζT∫

ζΓ=ζB

(
ζΓ + Zyy

)
B EΓ dζΓ

ζT∫
ζΓ=ζB

B EΓ dζΓ

; (53)

h{j+1}C
is a constant that corresponds to term j + 1 of the governing differential equations;

and ha1 is a constant.
From inspection of Equations (30), (31) and (53), it is evident that Zyy + ha1 = 0.

Substituting Equation (51) into Equation (46), and setting Zyy + ha1 = 0, the expression for
R{j+1} can be rewritten as follows:

R{j+1} = P{j+1} + h{j+1}C
+ C{j} ζΓ . (54)

The moment due to the rate of change of u{j+1} with respect to x can be determined
by integrating the moments of the corresponding σ{j+1} values about the local y-y axis of
the beam section, as follows:

M{j+1} =

ζT∫
ζΓ=ζB

σ{j+1} B ζΓ dζΓ , (55)

where M{j+1} is the component of Myy that corresponds to term j + 1 of the governing
differential equations; and M{j+1} is the moment that is generated as a result of any rate of
change of u{j+1} with respect to x. Substituting Equations (48) and (54) into Equation (55)
gives the following expression:

M{j+1} = − A{j+1}
d(2j+1)φw

dx(2j+1)
, (56)

where

A{j+1} = −
ζT∫

ζΓ=ζB

(
P{j+1} + h{j+1}C

+ C{j} ζΓ

)
ζΓ B EΓ dζΓ ; (57)
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and A{j+1} is a section constant that corresponds to term j + 1 of the governing differential
equations. Recalling Equation (35), it is convenient to express A{j+1} in terms of C{j} by
rewriting Equation (57) as follows:

A{j+1} = b{j+1}C
− A{1} C{j} , (58)

where

b{j+1}C
= −

ζT∫
ζΓ=ζB

(
P{j+1} + h{j+1}C

)
ζΓ B EΓ dζΓ ; (59)

and b{j+1}C
is a constant that corresponds to term j + 1 of the governing differential

equations.

3.4. Truncation of the Infinite Series

The recursive derivation that is presented in Section 3.3 shows that any non-zero rate
of change of θ{j} with respect to x corresponds to the inevitable development of a non-zero
sectional field of σ{j+1}, for any integer value of j that is greater than zero. In general,
the sectional field of σ{j+1} causes the development of M{j+1}, for any integer value of
j. In order to develop governing differential equations that have N terms, the value of
M{N+1} must be equal to zero. In order to set the value of M{N+1} equal to zero, the value
of A{N+1} must also be equal to zero, in accordance with Equation (56). Substituting j = N
into Equation (58), and setting A{N+1} = 0, the following expression can be written:

C{N} =
b{N+1}C

A{1}
, (60)

where b{N+1}C
is the value of b{j+1}C

that is given by Equation (59) in cases wherein j = N.

3.5. Calculation of Section Constants
3.5.1. Conceptual Description of Procedure

The present section proposes a procedure for the calculation of each value of C{i} and
A{i} for all integer values of i from i = 1 to i = N, inclusively.

Since the present beam model is based upon a hypothetical infinite series, any finite
truncation of this hypothetical infinite series introduces uncertainty regarding the treatment
of strain energy, and the specific method by which the infinite series is truncated influences
the robustness of the solution that can be achieved. In light of the foregoing, the author
proposes that the following solution method offers a good balance between robustness,
analytical fidelity, and practical implementation.

The proposed solution procedure begins by assuming a function that expresses Myy
in terms of x, as follows:

Myy = f (x) , (61)

where f denotes a function of the variables and unknown constants that are included
in the parentheses that follow f . An expression for Vz can be derived by differentiating
Equation (61) with respect to x. An expression for gz can be derived by performing two
successive differentiations of Equation (61) with respect to x.

A function that expresses φw in terms of x is then assumed, provided that the assumed
function for φw is a possible solution to Equations (13)–(18) (the governing differential
equations); therefore, φw may be expressed in terms of x and A{1} · · · A{N}, as follows:

φw = f
(

x, A{1} · · · A{N}

)
, (62)

where A{1} · · · A{N} denotes the set of all values of A{i} for all integer values of i from
i = 1 to i = N, inclusively.
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Substituting Equation (58) into Equation (62), and calculating the value of A{1} in accor-
dance with Equation (35), Equation (62) can be rewritten in terms of x and C{1} · · ·C{N−1},
as follows:

φw = f
(

x, C{1} · · ·C{N−1}

)
, (63)

where C{1} · · ·C{N−1} denotes the set of all values of C{i} for all integer values of i from
i = 1 to i = N− 1, inclusively.

Each of the various derivatives of φw that are present in Equations (14), (16) and (18)
can be expressed by performing successive differentiations of Equation (63) with respect
to x.

Substituting Equation (23) into Equation (22), the total nominal x-z shear angle in the
beam under the assumed loading can be expressed as follows:

θw = −
N

∑
j=1

(
C{j}

d(2j)φw

dx(2j)

)
, (64)

where each value of C{j} is an unknown constant.
Substituting each relevant derivative of Equation (63) into Equation (64), and then

substituting the resulting expression into Equation (3), Equation (3) can be rewritten in
terms of x and C{1} · · ·C{N}, as follows:

wn = f
(

x, C{1} · · ·C{N}

)
, (65)

where C{1} · · ·C{N} denotes the set of all values of C{i} for all integer values of i from i = 1
to i = N, inclusively.

The symbol WT denotes the total external work that is done on the beam, accounting
for the effects of all terms up to and including term N. WT can be expressed as follows:

WT =
−1
2

x2∫
x=x1

gz wn dx , (66)

where x1 is the minimum value of x along the length of the beam; and x2 is the maximum
value of x along the length of the beam.

The symbol WP denotes the potential energy due to external work that is done on
the beam, accounting for the effects of all terms up to and including term N. WP can be
expressed as follows:

WP =

x2∫
x=x1

gz wn dx . (67)

Substituting Equation (65) and the relevant derivative of Equation (61) into Equation (67),
and solving the definite integral, Equation (67) can be rewritten in terms of C{1} · · ·C{N},
as follows:

WP = f
(

C{1} · · ·C{N}

)
. (68)

The symbol Uε denotes the total internal longitudinal normal strain energy in the
beam. Uε can be expressed as follows:

Uε =
1
2

x2∫
x=x1

ζT∫
ζλ=ζB

εx
2 B Eλ dζλ dx , (69)
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where εx is defined at elevation λ. The following expression can be written by substituting
Equations (9) and (10) into Equation (69):

Uε =
1
2

x2∫
x=x1

ζT∫
ζλ=ζB

(
N

∑
j=1

(
R{j}

d(2j−1)φw

dx(2j−1)

))2

B Eλ dζλ dx , (70)

where Uε is the total internal longitudinal normal strain energy, accounting for the effects
of all terms up to and including term N; R{j} is defined at elevation λ; R{j} may be
expressed as a function of C{1} · · ·C{j−1}, for any integer value of j that is greater than one,
in accordance with Equation (54); and C{1} · · ·C{j−1} denotes the set of all values of C{i}
for all integer values of i from i = 1 to i = j− 1, inclusively.

The inclusion of C{N} in the governing differential equations causes the development
of warping displacements and longitudinal normal strains that are associated with term
N + 1; therefore, the calculation of the potential energy due to internal longitudinal normal
strains must account for the effects of longitudinal normal strains that are associated with
term N + 1. Equation (9) can be rewritten in a manner that accounts for the effects of all
terms up to and including term N + 1, as follows:

εP =
N+1

∑
j=1

(
ε{j}

)
, (71)

where εP represents the longitudinal normal strain that accounts for the effects of all terms
up to and including term N + 1; and εP is defined at elevation λ.

The symbol UεP denotes the potential energy due to internal longitudinal normal
strains. UεP can be expressed as follows:

UεP =
1
2

x2∫
x=x1

ζT∫
ζλ=ζB

εP
2 B Eλ dζλ dx , (72)

where εP is defined at elevation λ. The following expression can be written by substituting
Equations (10) and (71) into Equation (72):

UεP =
1
2

x2∫
x=x1

ζT∫
ζλ=ζB

(
N+1

∑
j=1

(
R{j}

d(2j−1)φw

dx(2j−1)

))2

B Eλ dζλ dx , (73)

where UεP is the potential energy due to internal longitudinal normal strains, accounting
for the effects of all terms up to and including term N + 1; R{j} is defined at elevation λ;
and R{j} may be expressed as a function of C{1} · · ·C{j−1}, for any integer value of j that is
greater than one, in accordance with Equation (54). It is worth noting that Equation (73) ac-
counts for the effects of the longitudinal normal strains that are associated with term N + 1;
this is necessary in order to account for the potential energy due to internal longitudinal
normal strains that are generated as a result of C{N}. Substituting each relevant derivative
of Equation (63) into Equation (73), and solving the definite integrals, Equation (73) can be
rewritten in terms of C{1} · · ·C{N}, as follows:

UεP = f
(

C{1} · · ·C{N}

)
. (74)
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The symbol UγP denotes the potential energy due to internal x-z shear strains. The sym-
bol Uγ denotes the total internal x-z shear strain energy in the beam. UγP and Uγ can be
expressed as follows:

UγP = Uγ =
1
2

x2∫
x=x1

ζT∫
ζL=ζB

γxz
2 B GL dζL dx , (75)

where γxz is defined at elevation L. The following expression can be written by substituting
Equations (19) and (39) into Equation (75):

UγP = Uγ =
1
2

x2∫
x=x1

ζT∫
ζL=ζB

(
N

∑
j=1

(
Q{j}

d(2j)φw

dx(2j)

))2
1

B GL
dζL dx , (76)

where UγP is the potential energy due to internal x-z shear strains, accounting for the effects
of all terms up to and including term N; Uγ is the total internal x-z shear strain energy in
the beam, accounting for the effects of all terms up to and including term N; Q{j} is defined
at elevation L; and Q{j} may be expressed as a function of C{1} · · ·C{j−1}, for any integer
value of j that is greater than one, in accordance with Equation (38). Substituting each
relevant derivative of Equation (63) into Equation (76), and solving the definite integrals,
Equation (76) can be rewritten in terms of C{1} · · ·C{N−1}, as follows:

UγP = Uγ = f
(

C{1} · · ·C{N−1}

)
. (77)

The total work-energy balance of the system can be expressed as follows:

WT = Uε + Uγ . (78)

In cases wherein N = 1, C{1} · · ·C{N} only comprises one value, and this value can be
determined by solving Equation (60) or by solving Equation (78). In cases wherein N = 2,
C{1} · · ·C{N} comprises two values, and these values can be determined by simultaneously
solving Equations (60) and (78). Conversely, in cases wherein N > 2, C{1} · · ·C{N} com-
prises more than two values, and Equations (60) and (78) do not constitute a sufficient
number of equations to solve for C{1} · · ·C{N}.

The symbol Π denotes the total potential energy in the system. Π can be expressed
as follows:

Π = WP + UεP + UγP = f
(

C{1} · · ·C{N}

)
. (79)

C{1} · · ·C{N} can be determined by minimizing Π. Π can be minimized by calculating
the first partial derivative of Π with respect to C{i}, for each integer value of i from i = 1 to
i = N, inclusively, and setting each such partial derivative equal to zero, as follows:

∂Π

∂C{i}
= 0 . (80)

A unique version of Equation (80) is written for each integer value of i from i = 1 to
i = N, inclusively; therefore, there are N unique versions of Equation (80). Equation (80)
represents a system of N equations and N unknown values, wherein the aforementioned
unknown values comprise the values of C{i} for all integer values of i from i = 1 to i = N,
inclusively. Satisfying the system of equations that is defined by Equation (80) will ensure
that Π is minimized. Therefore, C{1} · · ·C{N} may be calculated by solving the system of
equations that is defined by Equation (80). The aforementioned solution method may be
likened to the Rayleigh–Ritz method. Ultimately, a valid solution for C{1} · · ·C{N} must
simultaneously satisfy Equations (60), (78) and (80).
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Once each value of C{j} has been determined, the corresponding value of A{j+1} can
be calculated by substituting C{j} into Equation (58), for any integer value of j that is greater
than zero.

The discrepancy between Uε and UεP constitutes an interesting peculiarity that war-
rants some discussion, as these quantities would typically be equal to each other in most
other contexts. If C{1} · · ·C{N} is determined such that Equation (60) is satisfied, then the
resulting values of M{N+1} and V{N+1} will each be equal to zero. If M{N+1} and V{N+1}
are each equal to zero, then ε{N+1} and σ{N+1} do not do any work that contributes to
the development of φw or θw, in accordance with the governing equations of the beam
model; therefore, in order to satisfy Equation (78), the effects of ε{N+1} and σ{N+1} must be
excluded from Equations (70) and (78). Notwithstanding the foregoing, ε{N+1} and σ{N+1}
do contribute to the total elastic potential energy that is stored within the beam; therefore,
the effects of ε{N+1} and σ{N+1} must be accounted for in Equations (73), (74) and (79).
This apparent paradox is a direct consequence of truncating the governing differential
equations to a finite number of terms; therefore, it is not a real physical paradox, but the
author believes that it is an inherent characteristic of any unidimensional beam model that
is governed by differential equations that are of a finite order. In fact, it can be shown that
the aforementioned apparent paradox is present in Timoshenko beam theory.

3.5.2. Assumption of Sinusoidal Loading to Simplify Procedure

In order to execute the solution procedure that is presented in Section 3.5.1, it is
convenient to assume a beam configuration that facilitates a simple solution for φw for
any integer value of N that is greater than zero. It is assumed that there exists a simply
supported beam of infinitesimal length ℵ, wherein 0 ≤ x ≤ ℵ, and wherein the beam is
simply supported at x = 0 and at x = ℵ. It is assumed that a sinusoidal distribution of
transverse loading is applied to the beam, wherein the distribution of loading is of the form
of a single half-sin wave form, and wherein the loading tends to zero at x = 0 and at x = ℵ.
Equations (13)–(18) can be written in the context of the aforementioned beam, as follows:

Myys
= −m sin

(π

ℵ x
)

= −
N

∑
j=1

(
A{j}

d(2j−1)φws

dx(2j−1)

)
, (81)

Vzs = −
(π

ℵ

)
m cos

(π

ℵ x
)

= −
N

∑
j=1

(
A{j}

d(2j)φws

dx(2j)

)
, (82)

and

gzs =
(π

ℵ

)2
m sin

(π

ℵ x
)

= −
N

∑
j=1

(
A{j}

d(2j+1)φws

dx(2j+1)

)
, (83)

where φws represents φw in the context of the presently assumed simply supported beam
and sinusoidal transverse load distribution; Myys

represents Myy in the context of the
presently assumed simply supported beam and sinusoidal transverse load distribution;
Vzs represents Vz in the context of the presently assumed simply supported beam and
sinusoidal transverse load distribution; gzs represents gz in the context of the presently
assumed simply supported beam and sinusoidal transverse load distribution; ℵ is the total
length of the beam; and m is a constant that denotes the maximum magnitude of Myys

.
Solving Equation (81) for φws , and applying the relevant boundary conditions from

Table 1, the value of φws can be expressed in terms of x, as follows:

φws = ℵ(2N−1)
(

m
SA

)
cos
(π

ℵ x
)

, (84)
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where

SA =
N

∑
j=1

(
(−1)( j) π(2j−1) ℵ(2N−2j) A{j}

)
. (85)

Substituting the relevant derivatives of Equation (84) into Equation (64), the total
nominal x-z shear angle in the present example beam can be expressed as follows:

θws = − SC ℵ(2N−1)
(

m
SA

)
cos
(π

ℵ x
)

, (86)

where

SC =
N

∑
j=1

(
(−1)( j)

(π

ℵ

)(2j)
C{j}

)
; (87)

and θws represents θw in the context of the presently assumed simply supported beam and
sinusoidal transverse load distribution.

Substituting Equations (84) and (86) into Equation (3), and imposing the boundary
conditions wn = 0 at x = 0 and wn = 0 at x = ℵ, the overall deflection of the beam can be
expressed as follows:

wns = (1 − SC)

(
ℵ
π

)
ℵ(2N−1)

(
m
SA

)
sin
(π

ℵ x
)

, (88)

where wns represents wn in the context of the presently assumed simply supported beam
and sinusoidal transverse load distribution.

Substituting Equations (83) and (88) into Equation (67), setting x1 = 0, and setting
x2 = ℵ, the following expression can be written:

WPs = ℵ
(2N−1)

(
ℵ
4

)(
m
SA

)2
DWP , (89)

where
DWP = 2

(π

ℵ

)
(1 − SC) SA ; (90)

WPs represents WP in the context of the presently assumed simply supported beam and
sinusoidal transverse load distribution; and A{j} may be expressed as a function of C{j−1},
for any integer value of j that is greater than one, in accordance with Equation (58).

Substituting the relevant derivatives of Equation (84) into Equation (73), setting x1 = 0,
and setting x2 = ℵ, the following expression can be written:

UεPs = ℵ
(2N−1)

(
ℵ
4

)(
m
SA

)2
DεP , (91)

where

DεP = ℵ(2N−1)
ζT∫

ζλ=ζB

(
N+1

∑
j=1

(
(−1)( j)

(π

ℵ

)(2j−1)
R{j}

))2

B Eλ dζλ ; (92)

UεPs represents UεP in the context of the presently assumed simply supported beam and
sinusoidal transverse load distribution; R{j} is defined at elevation λ; and R{j} may be
expressed as a function of C{1} · · ·C{j−1}, for any integer value of j that is greater than one,
in accordance with Equation (54).

Substituting the relevant derivatives of Equation (84) into Equation (76), setting x1 = 0,
and setting x2 = ℵ, the following expression can be written:

UγPs = ℵ
(2N−1)

(
ℵ
4

)(
m
SA

)2
DγP , (93)
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where

DγP = ℵ(2N−1)
ζT∫

ζL=ζB

(
N

∑
j=1

(
(−1)( j)

(π

ℵ

)(2j)
Q{j}

))2
1

B GL
dζL ; (94)

UγPs represents UγP in the context of the presently assumed simply supported beam and
sinusoidal transverse load distribution; Q{j} is defined at elevation L; and Q{j} may be
expressed as a function of C{1} · · ·C{j−1}, for any integer value of j that is greater than one,
in accordance with Equation (38).

Substituting Equations (89), (91) and (93) into Equations (79) and (80), the following
expression is found:

∂DWP

∂C{i}
+

∂DεP

∂C{i}
+

∂DγP

∂C{i}
= 0 . (95)

A unique version of Equation (95) is written for each integer value of i from i = 1 to
i = N, inclusively; therefore, there are N unique versions of Equation (95). Equation (95)
represents a system of N equations and N unknown values, wherein the aforementioned
unknown values comprise the values of C{i} for all integer values of i from i = 1 to i = N,
inclusively. Therefore, C{1} · · ·C{N} may be calculated by solving the system of equations
that is defined by Equation (95).

In cases wherein N is equal to one, the results of the present procedure are not
dependent upon the assumed value of ℵ. Conversely, in cases wherein N is a finite value
that is greater than one, the results of the present procedure are dependent upon the
assumed value of ℵ. Solving for C{1} · · ·C{N} using Equation (95) will inherently satisfy
Equations (60) and (80), irrespective of the assumed value of ℵ, and irrespective of the
value of N. Conversely, solving for C{1} · · ·C{N} using Equation (95) will only satisfy
Equation (78) for some values of ℵ. In light of the foregoing, the selection of an appropriate
value of ℵ warrants some discussion.

The present procedure was formulated in a manner that minimizes the potential
energy of the system; however, in some cases, there may exist non-physical solutions that
satisfy the requirement for minimum potential energy. For example, in some cases, there
may exist a solution for C{1} · · ·C{N} that achieves a minimum potential energy solution
through the use of negative stiffness terms or negative compliance terms; such a solution
may satisfy Equation (80), but would not serve as a usable beam model. Such non-physical
solutions may be likened to zero-energy deformation modes that sometimes emerge in
finite element analyses. For example, finite element analyses sometimes exhibit so-called
“shear-locking” modes and so-called “hourglass” modes, which are non-physical (and
therefore erroneous) solutions to the minimum potential energy equation.

For each beam, the symbol ℵC N denotes a characteristic beam length that corresponds
to the value of N that is used for the analysis of the beam. For each beam, there exists a
unique value of ℵC N that corresponds to each value of N. If ℵ is set to a value that is greater
than ℵC N , then the resulting solution for C{1} · · ·C{N} that is determined using the present
procedure will give non-physical predictions of structural responses. In addition, if ℵ is set
approximately equal to ℵC N , then each value of C{i} that is determined using the present
procedure will approach a magnitude of infinity, for each integer value of i from i = 1 to
i = N, inclusively. Therefore, the present procedure should be executed using a value of
ℵ that is significantly less than the value of ℵC N . Due to the complexity of the equations
that are presented herein, the author has not derived a closed-form solution for the value
of ℵC N ; however, the value of ℵC N can be determined analytically, as follows: employ
the present procedure in order to calculate a solution for C{1} · · ·C{N} that corresponds
to each of a broad range of ℵ values; create a plot that compares each value of C{i} to the
corresponding value of ℵ, for each integer value of i from i = 1 to i = N, inclusively; and
set ℵC N equal to the value of ℵ at which each value of C{i} approaches a magnitude of
infinity, for any integer value of i from i = 1 to i = N, inclusively.
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As ℵ approaches a value of zero, Equation (95) is forced to give a solution for
C{1} · · ·C{N} that simultaneously satisfies Equations (60), (78) and (80). In other words,
if C{1} · · ·C{N} is determined using Equation (95), wherein the value of ℵ is set approxi-
mately equal to zero, then it can be shown that the resulting beam model will not be liable
to generate predictions of the aforementioned non-physical behaviours. In fact, as the
value of ℵ approaches zero, the solution for C{1} · · ·C{N} that is determined using the
present procedure tends to approach a solution that is practically applicable to any system
of loadings and boundary conditions that may be applied to a beam.

In light of the foregoing, if C{1} · · ·C{N} is to be determined using the present proce-
dure, then the value of ℵ should be set approximately equal to zero. Due to the complexity
of the equations that are presented herein, the author has not derived a closed-form solution
for C{1} · · ·C{N} that corresponds to an ℵ value of zero; however, such a solution can be
determined analytically, as follows: employ Equation (95) in order to calculate a solution
for C{1} · · ·C{N} that corresponds to each of a broad range of ℵ values, provided that each
of the aforementioned ℵ values is less than the value of ℵC N ; for each value of C{i}, create
a plot that compares the aforementioned value of C{i} to the corresponding value of ℵ,
and fit a polynomial trend-line through this plot, for each integer value of i from i = 1 to
i = N, inclusively; and extrapolate each of the aforementioned polynomial trend-lines to
an ℵ value of zero in order to determine the corresponding value of C{i} that corresponds
to an ℵ value of zero, for each integer value of i from i = 1 to i = N, inclusively.

In cases wherein N = 1, the present procedure gives identical results to Timoshenko
beam theory, provided that the shear correction factor is calculated using the “directional
shear energy” method that is discussed in Ref. [24]. For example, provided that N = 1,
in the case of a homogeneous beam of rectangular section, the foregoing procedure will
give a solution that is identical to that which would be given by a Timoshenko beam theory
analysis wherein a shear correction factor of 5/6 is employed.

Table 1. Present beam model’s treatment of some common boundary conditions.

Physical Constraint Boundary Conditions at Position of Constraint

Roller (no transverse deflection) wn = 0
Guided (no rotation) dwn

dx
= 0

Fixed (clamped) wn = 0, φw = 0, and
d(2j−2)φw

dx(2j−2)
= 0

Free End d(2j−1)φw

dx(2j−1)
= 0

where j is an integer value that satisfies 0 < j ≤ N.

4. Boundary Conditions for the Present Beam Model

Equations (1), (13)–(18), (22) and (23) combine to form the governing equations that
dictate the deformed shape of the beam that is predicted by the present beam model. Table 1
summarizes the present beam model’s treatment of some common boundary conditions.

The boundary conditions for a fixed (clamped) support and the boundary condition for
a free end warrant some discussion, as such boundary conditions are not always required
for other beam theories.

At a fixed (clamped) support, the value of uN must be equal to zero at all positions
within the local section of the beam, since all longitudinal displacements are restrained at
a fixed (clamped) support. Equations (6) and (8) can be combined to obtain the value of
uN at any position within the local section of the beam. From inspection of Equation (6), it

is evident that u{j} is dependent upon R{j} and d(2j−2)φw
dx(2j−2) for any integer value of j that is

greater than zero.
At a free end, the value of σx must be equal to zero at all positions within the local

section of the beam, since no longitudinal forces or moments act on the free end of the
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beam. Equations (11) and (12) can be combined to obtain the value of σx at any position
within the local section of the beam. From inspection of Equation (12), it is evident that σ{j}

is dependent upon R{j} and d(2j−1)φw

dx(2j−1) for any integer value of j that is greater than zero.
The derivations that are provided in Sections 3.2 and 3.3 show that each term of the

governing differential equations corresponds to a unique R{j} function. The author believes
that it is extremely improbable (and perhaps impossible) that any finite set of R{j} functions
could sum to zero. Therefore, in order to ensure that uN = 0 at all positions within the

local section at a fixed (clamped) support, it is necessary to set φw = 0 and d(2j−2)φw
dx(2j−2) = 0 at

the fixed (clamped) support, for each integer value of j from j = 1 to j = N, inclusively.
Similarly, in order to ensure that σx = 0 at all positions within the local section at a free end,

it is necessary to set d(2j−1)φw

dx(2j−1) = 0 at the free end, for each integer value of j from j = 1 to
j = N, inclusively.

5. Practical Implementation of the Present Beam Model

The present beam model is implemented by carrying out the following sequence
of steps:

1. In order to utilize the present beam model, it is first necessary to calculate the var-
ious section constants that are included in its governing equations. The procedure
that is described in Section 3.5.2 can be employed in order to calculate C{1} · · ·C{N}.
Accordingly, C{1} · · ·C{N} can be determined using Equation (95), provided that the
value of ℵ is set approximately equal to zero. Once C{1} · · ·C{N} has been determined,
A{1} · · · A{N} can be calculated by substituting each value of C{i} into Equation (58),
for each integer value of i from i = 1 to i = N− 1, inclusively.

2. Once C{1} · · ·C{N} has been determined, the equations and relationships that are
presented in Sections 3.2 and 3.3 can be employed in order to calculate the R{j} and
Q{j} section functions that correspond to each integer value of j from j = 1 to j = N,
inclusively. In the case of a multi-layered laminated composite beam, each section
function shall be expressed as a piecewise polynomial.

3. Once the C{1} · · ·C{N} and A{1} · · · A{N} section constants have been determined,
these section constants can be substituted into Equations (14), (16), (18) and (23), and the
resulting expressions can be combined with Equations (1), (13), (15), (17) and (22) in
order to define the general form of the governing equations of the present beam model.
For any particular beam configuration, it is possible to establish at least one loading
function that describes the loading that is imposed upon the beam; each loading
function may be an expression of Myy, Vz, or gz. The specific governing equations that
pertain to the beam can then be defined by substituting the aforementioned at least
one loading function into the aforementioned general form of the governing equations.
While adhering to the relevant boundary conditions in accordance with the provisions
that are set out in Section 4, the governing equations can then be solved using one
of numerous possible techniques, such as analytical methods, the finite difference
method, the finite element method, or any other method that is applicable to the
solution of ordinary differential equations. The solution of the governing equations
facilitates the calculation of the values of wn, φw, θw, and θ{j} that correspond to each
x-coordinate, for each integer value of j from j = 1 to j = N, inclusively.

4. Once the section functions have been calculated and the governing equations have
been solved, the equations and relationships that are presented in Sections 2.4, 3.2,
and 3.3 can be employed in order to recover the sectional fields of uN , εx, γxz, σx,
and τxz that correspond to each section of the beam.

The derivations that are described in Sections 3.2 and 3.3 include numerous integrals
that must be evaluated in order to calculate the various section constants and section
functions of a beam; in the context of a multi-layered laminated composite beam, each such
integral shall be computed as a piecewise integral.
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6. Validation of the Present Beam Model

A series of analyses were carried out in order to validate the present beam model.
The present validation study was carried out in the context of three example beams that
were previously presented in Ref. [5]. Some parts of the following descriptions are similar
to descriptions that were provided in Ref. [5]; for greater clarity, the reader is directed to
the Consent for Publication section of this article.

For the purpose of the present validation study, a single beam configuration was
considered. This beam has a total length of 36 mm, and is symmetrically supported by
two pin/roller supports that are positioned 24 mm apart. A single point load of 200 N is
applied transversely (parallel to the z-axis) at the center of the beam. The aforementioned
beam configuration and loading is illustrated in Figure 2.

Lamina 3
Lamina 2
Lamina 1

200 N

3 mmx

12 mm 12 mm

18 mm 18 mm

Figure 2. Loading configuration of the example beams used to validate the present beam model [5].
The reader is directed to the Consent for Publication section.

Three example beams, each comprising a unique laminate, were considered for the
present validation study. Each of the example beams exhibits the aforementioned beam
configuration that is illustrated in Figure 2. Each of the example beams has a width of
1 mm, measured parallel to the y-axis. The three laminates that were considered are
denoted by “Laminate A”, “Laminate B”, and “Laminate C”. Each laminate comprises three
laminae. Each lamina has a thickness of 1 mm, measured parallel to the z-axis; therefore,
each laminate has a total thickness of 3 mm, measured parallel to the z-axis. Laminate A
comprises three identical laminae, which are each composed of a typical unidirectional
carbon fiber reinforced polymer having its fibers initially oriented parallel to the x-axis.
The upper lamina of Laminate B is composed of the same material as that which is present
within Laminate A, the lower lamina of Laminate B is composed of a typical aluminium
alloy, and the inner (core) lamina of Laminate B is composed of a typical unidirectional
carbon fiber reinforced polymer having its fibers oriented parallel to the y-axis. The upper
and lower laminae of Laminate C are each composed of the same material as that which is
present within Laminate A, whereas the inner (core) lamina of Laminate C is composed of
a material that is similar to a typical unidirectional carbon fiber reinforced polymer having
its fibers oriented parallel to the y-axis, but with a shear modulus that is one tenth that
of typical materials of this type. The aforementioned three laminates are summarized in
Table 2.

“Beam A” denotes the beam that comprises Laminate A. “Beam B” denotes the beam
that comprises Laminate B. “Beam C” denotes the beam that comprises Laminate C.

A MATLAB [25] implementation of the present beam model was used to predict
the mechanical response of each of the three example beams, in accordance with the
implementation procedure that is summarized in Section 5. Once the section constants and
section functions were determined for each of the example beams, the governing equations
were solved using the finite difference method with a grid spacing of 0.09 mm.

As a comparison with the present beam model, each of the three example beams was
also analyzed using the finite element method. NX NASTRAN [26] was used for these
finite element analyses. A detailed description of these finite element analyses is provided
in Ref. [5].
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Table 2. Laminates employed in the example beams used to validate the present beam model [5].
The reader is directed to the Consent for Publication section.

Laminate A Laminate B Laminate C

Lamina 3 Carbon 0◦ Carbon 0◦ Carbon 0◦

E = 119,000 N/mm2 E = 119,000 N/mm2 E = 119,000 N/mm2

G = 4230 N/mm2 G = 4230 N/mm2 G = 4230 N/mm2

Thickness = 1 mm Thickness = 1 mm Thickness = 1 mm

Lamina 2 Carbon 0◦ Carbon 90◦ Modified Carbon 90◦

E = 119,000 N/mm2 E = 9270 N/mm2 E = 9270 N/mm2

G = 4230 N/mm2 G = 3228 N/mm2 G = 323 N/mm2

Thickness = 1 mm Thickness = 1 mm Thickness = 1 mm

Lamina 1 Carbon 0◦ Aluminium Carbon 0◦

E = 119,000 N/mm2 E = 68,900 N/mm2 E = 119,000 N/mm2

G = 4230 N/mm2 G = 26,200 N/mm2 G = 4230 N/mm2

Thickness = 1 mm Thickness = 1 mm Thickness = 1 mm

In the interest of brevity, the following notation is employed herein: the present beam
model with N = 1 is denoted by “PM1”, the present beam model with N = 2 is denoted by
“PM2”, the present beam model with N = 3 is denoted by “PM3”, the present beam model
with N = 4 is denoted by “PM4”, and the finite element model is denoted by “FEM”. It is
worth reiterating that PM1 is equivalent to a Timoshenko beam theory analysis wherein
the shear correction factor is calculated using the “directional shear energy” method that is
discussed in Ref. [24].

The transverse deflections, wn, predicted by each model are shown in Figures 3–5.
For each of the FEM models, the transverse deflection at each position along the x-axis is
taken as the mean of the z displacements of all of the nodes that are present at that x position.
From examining Figures 3 and 4, it is evident that each of PM1, PM2, PM3, and PM4 exhibits
strong agreement with FEM for Beam A and Beam B; this can be attributed to the relative
dominance of the first term of the governing differential equations for each of these beam
configurations. Beam C exhibits non-trivial contributions from the higher-order terms of
the governing differential equations; Figure 5 shows that PM1 over-predicts the transverse
deflections of this beam, whereas PM2, PM3, and PM4 each exhibit strong agreement with
FEM. Additionally, outside of the loaded span (for x < −12 mm and x > 12 mm), PM1
under-predicts the transverse deflections of Beam C, whereas PM2, PM3, and PM4 each
closely follow the prediction of FEM.

−18 −12 −6 0 6 12 18

−0.2

0

x (mm)

w
n

(m
m

) FEM
PM1
PM2
PM3
PM4

Figure 3. Transverse deflections of Beam A.
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Figure 4. Transverse deflections of Beam B.
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Figure 5. Transverse deflections of Beam C.

The sectional fields of σx predicted by each model are shown in Figures 6–8. The sec-
tional fields of τxz predicted by each model are shown in Figures 9–11. The sectional
fields of σx and τxz are each plotted adjacent to the plane of symmetry (x = 0.5 mm),
midway between the plane of symmetry and the support (x = 6 mm), adjacent to the
support (x = 11.5 mm and x = 12.5 mm), midway between the support and the free end
of the beam (x = 15 mm), and at the free end of the beam (x = 18 mm). By inspecting
Figures 6–11, it is evident that the present beam model consistently offers successive im-
provements in analytical fidelity for each incremental increase in the value of N; this trend
is made particularly obvious upon careful inspection of the sectional fields of τxz that are
shown at x = 0.5 mm, x = 11.5 mm, and x = 12.5 mm. In the context of the presently
assumed example beams, it is evident that the present beam model offers diminishing
levels of improvement in analytical fidelity for each incremental increase in the value of N.
For example, in the context of the presently assumed example beams, the improvement in
analytical fidelity that is afforded by increasing the value of N from one to two appears
to be greater than the improvement in analytical fidelity that is afforded by increasing the
value of N from two to three.

In the context of the presently assumed example beams, the present validation study
offers compelling evidence of the validity of the present beam model, and strongly supports
the application of the present beam model for its intended purposes.
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Figure 6. Sectional fields of longitudinal normal stresses within Beam A.
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Figure 7. Sectional fields of longitudinal normal stresses within Beam B.
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Figure 8. Sectional fields of longitudinal normal stresses within Beam C.
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Figure 9. Sectional fields of x-z shear stresses within Beam A.
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Figure 10. Sectional fields of x-z shear stresses within Beam B.
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Figure 11. Sectional fields of x-z shear stresses within Beam C.

7. Concluding Remarks

In this study, a new unidimensional beam model was presented. The present beam
model employs a recursive derivation procedure that enables the user to set the order of
the governing differential equations as an input parameter, without the need for ad hoc
assumptions or methodologies. The present article employed a novel system of kinematic
variables, section constants, and section functions that facilitate the development of higher-
order beam models that retain a clear philosophical link to classical beam models such
as Euler–Bernoulli beam theory and Timoshenko beam theory. The present beam model
is a type of equivalent single layer beam model, wherein section constants are used to
model the global stiffness and compliance characteristics of the beam, and section functions
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are used to recover sectional fields of displacements, strains, and stresses. The present
beam model is well suited for analyses of laminated beams that comprise any number
of laminae. The present beam model was solved for several example beams, and the
results were compared to the results of finite element analyses. It was shown that the
present beam model is able to accurately predict the deformed shapes and stress fields of
each of the example beams. From these example analyses, it is evident that the present
beam model consistently offers successive improvements in analytical fidelity for each
incremental increase in the number of terms that is included in the governing differential
equations. However, it is also evident that the present beam model offers diminishing levels
of improvement in analytical fidelity for each incremental increase in the number of terms
that is included in the governing differential equations. The present article also revealed an
interesting peculiarity of the elastic potential energy that pertains to any unidimensional
beam model that is governed by differential equations that are of finite order.
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Appendix A. Supplementary Definitions

The term “mechanical centroid” denotes a specific point on each section of the beam;
the mechanical centroid is positioned such that the following criterion is satisfied: if the
beam is subjected to a uniform bending moment in the absence of any other applied loads,
then each section of the beam will not develop any longitudinal normal strains at the
position of its mechanical centroid. Therefore, at each section of the beam, the mechanical
centroid represents the position of the intersection of the local y-y axis and the local z-z axis.

At each section of the beam, the mechanical centroid is contained in the longitudinal
axis of the beam. In other words, the longitudinal axis of the beam intersects each section
at the position of the mechanical centroid.

A longitudinal displacement is a displacement that occurs parallel to the x-axis. A lon-
gitudinal normal strain is a normal strain that is developed parallel to the x-axis. A longitu-
dinal normal stress is a normal stress that acts parallel to the x-axis.

A transverse loading is a loading that acts perpendicular to the x-axis. A transverse
shear force is a shear force that acts perpendicular to the x-axis.

The term “longitudinal elastic modulus” denotes the Young’s modulus of elasticity
measured parallel to the x-axis.

The term “shear strain” herein denotes engineering shear strain.
The term “field” denotes a set of data that describes the value of a quantitative variable

at each point that is contained in a particular geometric space. For example, a displacement



Appl. Mech. 2023, 4 139

field describes the displacement of each point that is contained in a particular geomet-
ric space.

The term “sectional field” denotes a set of data that describes the value of a quantitative
variable at each point that is contained in a particular section of the beam. In other words,
a sectional field is a field that pertains to the space that is embodied by a section of the
beam. For example, a sectional field of τxz describes the value of τxz that is developed at
each point that is contained in a particular section of the beam.

The term “initial orientation” herein denotes an orientation that is measured when
the beam does not exhibit any deformation. For example, the initial orientation of each
nominal sectional plane is defined such that the aforementioned nominal sectional plane is
perpendicular to the x-axis.

The term “left curly bracket” denotes the symbol {. The term “right curly bracket”
denotes the symbol }. The term “between curly brackets” is used in reference to notation
that is shown between a left curly bracket and a right curly bracket, provided that the left
curly bracket is positioned to the left of the aforementioned notation, and provided that the
right curly bracket is positioned to the right of the aforementioned notation.
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