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Abstract: The aim of this study is to develop a new method to predict the effective elastic and
thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This
work consists first of all in building a large database containing microstructures of two phases
of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume
fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of
Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity
in the heterogeneous material, when the value of C is quite important (C » 1) or quite low (C « 1),
it means that the material is extremely heterogeneous, while C= 1, the material becomes totally
homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s
modulus of the inclusion and that of the matrix ( C = Ei

Em
), while for thermal properties, this ratio is

expressed as a function of the thermal conductivity of both phases (C = λi
λm

). In our work, the model
will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate
the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity
values using a finite element method. The collected databases will be trained and tested on a deep
learning model composed of a first convolutional network capable of extracting features and a second
fully connected network that allows, through these parameters, the adjustment of the error between
the found output and the expected one. The model was verified using a Mean Absolute Percentage
Error (MAPE) loss function. The prediction results were excellent, with a prediction score between
92% and 98%, which justifies the good choice of the model parameters.

Keywords: numerical homogenization; convolutional neural network; deep learning; regression
model

1. Introduction

Heterogeneous and composite materials [1–3] are becoming increasingly popular in
many industrial sectors, including the aeronautic and automotive. However, their potential
cannot be fully exploited nowadays because of their variability and the complexity of their
microstructural morphology.

In order to predict the performance (e.g., thermal, mechanical, . . . ) of these composites
and heterogeneous media for arrangements and morphologies of heterogeneities as varied
as in reality, it would be too costly in time and means to rely directly on experimental
and numerical homogenization approaches [4–6] based on the use of real [7] or virtual [8]
microstructures. However, it is possible to use the experimental data to generate many
random but statistically equivalent virtual microstructures. The goal is the systematic
prediction of macroscopic behavior patterns of these materials. The large range of materials
to be treated represents a very complete database for the use of artificial intelligence and
neural networks to build homogenized and especially well-optimized behavioral models [9]
on the level of determining parameters such as shape, volume fraction, contrast. . .
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In recent years, a number of experimental studies have been done in order to predict
the mechanical and thermal behavior of heterogeneous materials. Mentges and Dashtbo-
zorg [10] developed an Artificial Neural Network (ANN) model able to predict the elastic
proprieties of short fiber composite. The data set is created using finite element calculation
and orientation averaging, where the input represents the microstructural parameters
(Young modulus of fiber, Young modulus of the matrix, volume fraction, the orientation of
fiber, etc.), and the output is the Young modulus resulting from experimental homogeniza-
tion approach. Li and Zhuang [11] also intend to model the multi-scale constitution using
a Feed-forward Neural Network (FNN) and a Recurrent Neural Network (RNN), which
represent a specific approach for Deep Learning technology. The data base is obtained via
the implementation of offline multiscale computation based on finite element calculations.
Another model was developed by Emily and Kailasnath [12] in order to forecast the me-
chanical properties of a family of two phases of materials using their microstructure image
as input and the elastic modulus as output. The purpose of this work is to train and test the
data set through various machine learning algorithms like Random Forest (RF), Extra Trees
Forest (ETF), Gradient Boosted Trees (GBT), etc. Liang and Gan [13] provide an alternative
for predicting the creep modulus of cement paste using a Deep Convolutional Neural
Network (DCNN) that can learn from a database containing 18,920 microstructures and
their corresponding creep modulus using an experimentally validated microscale lattice
model for short-term creep. Zhenya and Zhenkun [14] proposed an engineering approach
that deals with the development of an analytical and computationally efficient tool using
an artificial neural network for predicting the bulking and ultimate loads of composite
hat-stiffened panels under in-plane shear. The data set has been collected by combining the
FE method and the experimental verification. The characteristic parameters were extracted
and compressed using an Auto-Encoder (AE). Thereafter, the back-propagation neural
network was trained to predict the bulking and ultimate loads. Allan and Priyank [15]
demonstrated the applicability of neural networks for modeling the mechanical properties
of composites from the stacking pattern of the laminates. The purpose of this work is to
predict the eigenvalues of the laminate stiffness matrix as a function of the number of layers
and angles of orientation. The closest work to that which we will do in this article is the
study of Do-Won and Jae [16] that consist of predicting the transverse mechanical behavior
of unidirectional composites using a convolutional neural network. The model learns from
a database containing 900 representative volume elements by constructing 300 for each
volume fraction of the inclusion (40%, 50%, 60%) in order to obtain the stress–strain curve
as a result.

The objective of this work is to develop a machine learning model based on con-
volutional neural networks capable of predicting the elastic and thermal behavior of a
two-phase heterogeneous material containing a single inclusion that takes different shapes
(circular, elliptical, square, rectangular) randomly embedded in the material. The model
will be trained and tested through six different scenarios by modifying the volume fraction
of the inclusions (20%, 25%, 30%) and the contrast value, which represents the ratio between
the properties of the inclusion and the matrix (10, 100). Each database contains 5000 images
of the microstructure converted to binary, and their corresponding bulk, shear, and thermal
conductivity modulus using a finite element calculation. It is clear that the studied case
(mono-inclusion) is quite simple, but the developed model based on microstructures con-
taining randomly positioned inclusions with different shapes allows finding the effective
properties of microstructures with more complicated shapes by using the collected data
without requiring the finite element calculation.

The paper is structured as follows. In Section 2, we’ll describe the process of mi-
crostructure generation using matplotlib [17] and openCV [18], then the process of output
collection using finite element calculation. Section 3 is the purpose of our article. It consists
of training and testing our CNN model using Keras [19] and Tensorflow [20] libraries in
order to have prediction and validation results using the collected data sets. And in the last
section, we give concluding remarks.
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In order to show the global architecture of the model, we have added a graphical
abstract that gives a complete overview of the whole process, starting from the data
collection phase until the prediction phase.

2. Dataset Collection

The human brain is a source of inspiration for the development of artificial neural
networks since it is able to learn by observing and analyzing a huge amount of data and
also by trial and error. The larger the training database, the closer the predicted value is to
the real value. For this fact, we have built a rich database that deals with different cases of
microstructures using finite element calculations. Table 1 shows the different scenarios that
we will deal with.

Table 1. The 6 different calculation scenarios to be tested, collected by modifying the contrast and the
volume fraction.

Scenarios Contrast Volume Fraction

Scenario 1 20%
Scenario 2 10 25%
Scenario 3 30%

Scenario 4 20%
Scenario 5 100 25%
Scenario 6 30%

The volume fraction values have been chosen in such a way that the data collection
process does not take much time, but the developed model is still applicable for any volume
fraction between 20% and 30%.

2.1. Generation of Virtual Microstructure

This step consists of collecting the input data, also called Features, which represent
in our model the microstructures. In previous studies, the generation of microstructures
is always done using Digimat Software, which is software used to generate a Represen-
tative Volume Element (RVE) of the great variety of material microstructures. One of the
disadvantages of this platform is that it is able to generate only one microstructure per test.
In our case, this software would be useless because we needed to run the finite element
calculation on a database that contains thousands of 2D images. In order to automate this
step, we have developed a python script based on the use of the library Matplotlib and Open
CV, capable of generating a huge number of microstructures with different shapes and
volume fractions. The algorithm is organized as shown in Figure 1

- Fix the volume fraction by fixing the dimensions of the matrix and the inclusion.
- Define the random position of the inclusion by using the random function of the

Numpy library.
- Define the shape of the inclusion by changing the plotting function (Circle, Ellipse,

Rectangle. . . )
- Binarize the image using the THRESH_BINARY function .
- Save the drawn figure.

This algorithm will be put thereafter in a loop whose limits will be fixed according to
the number of the microstructure we want to obtain. In our study, we are going to work on
databases containing 5000 images each. Each database is divided into 4 sub-bases (1250
images for each shape: circular, elliptical, square, rectangular).
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Figure 1. Descriptive flowchart of the data collection process through a python script based on the
use of Matplotlib and OpenCV.

2.2. Finite Element Calculations

The second step consists in collecting the output data, also called Labels, which repre-
sent, in our model, the calculated values (bulk, shear, and thermal conductivity).

Specific boundary value problems are used in this study for the determination of
isotropic effective elastic properties. More details are given in [21]. To compute effective
properties, we choose an elementary volume with imposed macroscopic strain tensors as

Ek
∼

=

 1
3 0 0
0 1

3 0
0 0 1

3

, Eµ
∼

=

 0 1
2 0

1
2 0 0
0 0 0

 (1)

An apparent bulk modulus kapp and an apparent shear modulus µapp can be defined as

kapp =
1
3

trace〈σ〉

µapp = 〈σ12〉
(2)
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where σ is the local stress tensor, σ12 is the local shear tensor and < > represents the average
on the hole microstructure.

For the thermal problem, the temperature, its gradient, and the heat flux vector are
denoted by T,∇T, and q, respectively. The heat flux vector and the temperature gradient
are related using Fourier’s law, which reads

q = λ∇T (3)

in the isotropic case. The scalar λ is the thermal conductivity coefficient of the considered
phase. A volume V of heterogeneous material is considered again. To compute effective
thermal conductivity, the following test temperature gradient, and flux will be prescribed
on the elementary volume as

Gi = (111)T and Qi = (111)T (4)

They are used respectively to define the following apparent conductivities:

λapp =
1
3

trace〈q〉, λapp =
1
3

trace〈∇T〉 (5)

As discussed before, the heterogeneous material used is composed of a matrix and a
single inclusion as shown in Figure 2. The value of the volume fraction is modified during
the first phase (generation of microstructure), while the value of contrast must be edited
in the calculation files before starting the simulations by modifying the value of Young’s
modulus as well as the thermal conductivity.

Figure 2. Binarization of the different microstructure images with a different shape and a fixed
volume fraction (30%) using THRESH_BINARY function of OpenCV library.

The finite element calculation using the software requires the presence of the following
files: a matrix file containing the behaviors of the first phase, an inclusion file containing
the behaviors of the second phase, a mesh file, and the input files, in our case we used
three files (bulk, shear, and thermal conductivity). Figure 3 shows the elastic and thermal
behavior of the different phases
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Figure 3. The elastic (Young modulus) and thermal (Thermal conductivity) properties of two different
material phases (the values in the table are not realistic, just used for the calculation).

This step is divided into two parts: In the first part, we have developed a shell script
able to launch the download and the calculation of different modules on finite element
software, the algorithm is organized as shown in Figure 4:

- convert the binary images generated by the first code into “.ras”.
- create the multi-phase mesh.
- launch the calculation to obtain the “.post” file

In the second part, we developed a python script using Data Analysis Library “Pandas”
able to generate an excel file of calculated values from calculation files.

Figure 4. Descriptive flowchart of the output collection process based on the use of finite element software.

Figure 5 shows an example of a finite element calculation of the bulk modulus based
on a 2D morphological image of a composite. It also shows the displacement map in both
directions (x and y) using an adequate finite element mesh.
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Figure 5. Example of a finite element calculation of the bulk modulus based on a 2D morphological
image of a composite.

3. Convolutional Neural Network

Convolutional neural networks are a particular form of multi-layer network neurons
whose connection architecture is inspired by that of the visual cortex of mammals. They
are able to categorize the simplest to the most complex information. They consist of a
multi-layer stack of neurons and mathematical functions that pre-process the information
before moving on to the hidden computational layers.

3.1. Loading and Pre-Processing Data

In order to predict the behavior of heterogeneous materials, we developed a convolu-
tional neural networks model using Keras and Tensorflow capable of learning from the data
set provided without extracting the features. This model takes as input the microstructures
converted in binary (matrix in white and inclusion in black). In this first work, we put
different shapes of inclusions (circular, elliptical, rectangular, square) by fixing the number
of inclusion to 1 and by changing the volume fraction (20%, 25%, 30%) and the contrast
between the properties of the inclusion and the matrix (10, 100) in order to have six different
databases to work with. The first step is to normalize the input by dividing the pixels of
each image by 255. The data will then be divided in a random way into two parts: 80% for
the training and 20% for the test.

3.2. CNN Model

The input layer takes 5000 images in total (3200 for model training, 800 for validation,
and 1000 for testing). The training data will be filtered through convolution layers using
3× 3 filters, subsequently rectified with the ReLU activation function and reshaped using
the max polling operation. The output of the convolutional network will then be the input
of the Fully connected where we used three hidden layers before generating the output
vector with the flattening operation. Since we work in the case of a regression, the output
will be rectified using a linear activation function in order to keep the same output value.
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3.2.1. Convolutional Layer

The convolutional layer is the core element of the convolutional neural network.
The goal is to detect the most important features by observing the image in its entirety. The
convolution layer will focus on each part of the data by analyzing the image by area as
shown in Figure 6. In our case, the pattern represents the inclusion; using convolution the
model will be able to know the shape and position of the reinforcement in a precise way.
The model keeps in memory these characteristics and understands that they represent the
selected label. Mathematically speaking, the principle is to drag a window representing the
filter on the image and to calculate the convolution product between the filter and each
portion of the scanned image. This layer takes as input an image as a 3D tensor and returns
what is called a feature-map (also a 3D tensor).

Figure 6. Detection of the important features of the 2D microstructure using the different filters of
convolutional layer.

This method is much more efficient than the traditional approach for two main reasons:

1. Less error in learning because the model does not learn from images but from features.
2. More accuracy in detection, because the model must recognize features and patterns.

When using a convolution layer, we will focus on certain aspects, such as the number of
neurons and the size of the pattern. In our model, we have used five convolution layers
by doubling the number of neurons (filters) each time, starting with a layer of 16 filters
and arriving at the last one containing 256 filters. The size of the extracted pattern is set
to 3× 3 pixels for all layers. A first convolution layer (16 filters) will learn small patterns,
then the one with 32 filters will learn bigger patterns made of the characteristics of the first
layer until we reach the last layer.

3.2.2. Maxpolling Layer

The main idea of Machine Learning is to reduce information to make the data inter-
pretable by the human brain. However, with the layer of convolution used, the amount
of information has increased, so it is necessary to reduce the obtained result using Max-
polling operation.

This operation consists in reducing the size of the images while preserving their
important features. We obtain the same number of features in output as in input, but they
are much smaller. This operation is often placed between two convolution layers, it allows
the reduction in the number of parameters and network computation.

In fact, Maxpooling takes input from feature maps to extract the max value as shown in
Figure 7. It keeps only the important information. This allows the Deep Learning model to:
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- gain in accuracy by keeping only relevant data.
- gain in speed: the learning of the model is done much faster because the data is getting

progressively smaller.

Figure 7. Reduction of the image shape using polling operation consists at extracting the maximum
value from each sub-matrix.

This layer takes as a parameter the kernel size. In our work, the size is fixed to 2 * 2,
the dimensions of the image will be divided by 2 after each pooling operation.

3.2.3. Flatten Layer

The goal of image processing using neural network technology is to obtain an output
label from an input image. For example, in our study, we will give a microstructure as
input to obtain the elastic and thermal properties as output, except that the output from the
convolution operation, as well as the maxpolling, is a 3 dimensional tensor (height, width,
color), which cannot be a final layer. Therefore, we use a layer called Flatten layer which
allows the compressing of the tensor to reduce its dimension. It takes as input a 3D tensor
and returns a vector. The pixels are recovered line by line and added to the final vector.
The example is shown in Figure 8.

Figure 8. Transformation of the output matrix into a vector using flattening by recovering the pixels
line by line and adding them to the final vector.
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3.2.4. Activation Layer

The activation function is an essential element in the creation of a neural network,
which is used to modify the data in a non-linear way. This non-linearity allows changing
the data representation, which is not possible with a linear transformation. Several types of
activation functions exist, such as the sigmoid function used in binary classification [22]
or the softmax function for multi-class problems. In order to choose the right activation
function, it is necessary to know the direct transformation applied to the data but also its
derivative, which will be used in the retro-propagation in order to adjust the values of
the weights.

In our model, two activation functions are used:

3.2.4.1. The ReLU Function
Its equation is defined by:

y = max(0, x) (6)

The derivative is defined as:

y′ = f (x) =

{
0 if x < 0
1 if x > 0

(7)

As the convolution performs addition and multiplication operations, the generated
values are linear with respect to the input ones, but in an image, the linearity is not very
important. So the ReLU function will rectify the values by breaking part of the linearity
and therefore allows the acceleration of the calculation. This function will be used after
each convolutional layer.

3.2.4.2. The Linear Function
The linear function has an equation similar to that of a linear line:

y = f (x) = x (8)

Our research consists in predicting numerical values, so it is a linear regression problem
since the output units will be identical to their input level. Hence a linear activation function
will be applied at the last hidden layer.

3.3. Compiling and Training

The compilation of the model represents the last step for the model creation that is
used to predict the best optimization decisions, by setting these three parameters.

The optimizer controls the learning rate, i.e., the speed at which the optimal weights
are computed. The lower the rate, the more accurate the weights, but the longer the learning
time. In our case, we will use “Adam,” which is generally the best optimizer to use in order
to adjust the learning rate throughout the training.

Adam optimizer involves a combination of two gradient descent methodologies
Momentum is used to speed up the gradient descent algorithm by taking into account

the “exponentially weighted average” of the gradients. The use of averages makes the
algorithm converge to the minimal value at a faster rate as

wt + 1 = wt − αmt (9)

where

mt = βmt−1 + (1− β)

[
δL
δwt

]
(10)

mt: aggregate of gradients at time t [current] (initially, mt = 0)
mt − 1: aggregate of gradients at time t − 1 [previous]
Wt: weights at time t
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Wt + 1: weights at time + 1
αt: learning rate at time t
∂L: derivative of Loss Function
∂Wt: derivative of weights at time t
β: Moving average parameter (const, 0.9).

Root Mean Square Propagation (RMSP) is an adaptive learning algorithm that seeks to
upgrade AdaGrad. Instead of considering the cumulative sum of the squared gradients
like in AdaGrad, it considers the “exponential moving average” like:

wt + 1 = wt −
αt

(vt + ε)1/2

[
δL
δwt

]
(11)

where

vt = βvt−1 + (1− β)

[
δL
δwt

]2
(12)

Wt: weights at time t
Wt + 1: weights at time t + 1
αt: learning rate at time t
∂L: derivative of Loss Function
∂Wt: derivative of weights at time t
Vt: sum of square of past gradients. [i.e sum (∂L/∂Wt− 1)] (initially, Vt = 0)
β: Moving average parameter (const, 0.9)
ε: A small positive constant (10−8).

The results of the Adam optimizer are generally better than every other optimiza-
tion algorithm, have a faster computation time, and require fewer parameters for tun-
ing. Because of all that, Adam is recommended as the default optimizer for most of
the applications.

The Loss Function is used to find the error or the difference between the predicted
value and the true value in the learning process. To develop our model, we chose Mean
Absolute Percentage Error (MAPE), which presents the most common choice for regression.
The more its value is minimal, the better the model works, its equation is defined as

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ti − Pi
Ti

∣∣∣∣ (13)

where

n is the number of fitted points.
Ti is the actual value.
Pi is the predicted value.

Metrics: It is a parameter used to evaluate the performance of the model, similar to the
loss function, but not used during the training process. In our model, we have chosen the
Mean Absolute Error (MAE). It is a metric used to measure the accuracy of the model as

MAE =
1
n

n

∑
j=1

∣∣Tj − Pj
∣∣ (14)

where

n is the number of fitted points.
Tj is the actual value.
Pj is the predicted value.

The model will be trained by using the function fit(). The main objective of this
function is the evaluation of the model during the training. It takes as parameters

- The training data (train_X), the target data (train_y).
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- The validation data.
- Epochs: the number of times the model will run the data. The more epochs we run,

the more the model will improve up to a certain point. After this point, the model will
stop improving at each epoch.

In our model, the training data present, the generated microstructure, and the targets
are bulk, shear, and thermal conductivity modulus. The number of epochs is fixed at 30. It
means that we will divide the entire data set into 30 small batches.

3.4. Evaluation and Prediction

The model evaluation consists of following the evolution of the loss function and
the metrics according to the number of epochs. As mentioned at the beginning of this
paper, the developed deep learning model will be trained and evaluated using six different
databases, and, therefore, we obtain eighteen curves for each parameter. That’s why we will
present only two curves, the best one (scenario 4) and the worst one (scenario 6). The fact
that the model gives a better score for scenario 4 does not mean that it only performs well
in the case of low fractions. For example, the prediction score for scenario 3 (30%) is 95%
while that of scenario 1 is 93.3% (20%).

Figure 9 below represents the loss function, i.e., the average absolute percentage of
error. The blue curve shows the training data starting from a high value due to the random
choice of weights and decreasing during the training until reaching its minimum value.

Figure 9. Mean Absolute Percentage Error curves using training and validation data consists in
following the evolution of the training according to the number of epochs, (a) presents scenario 4
while (b) presents scenario 6.

The other one in red shows the prediction error on the data used for model validation,
which starts from a low value and tends towards the same minimum value as the first curve.

The error function converges towards a value included between 0.88% and 0.96%,
which explains the efficiency of our model.

This fast convergence is due to the presence of convolutional layers, which consists in
analyzing and processing the images in order to facilitate the calculations which will be
done by hidden layers. Thanks to feature extraction, the model was able to find the right
weight values in 30 epochs.

The second one represents the metrics, that is to say, the Mean Absolute Error, as shown
in Figure 10.
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Figure 10. Mean Absolute Error curves using training and validation data consists in following the
evolution of the training according to the number of epochs, (a) presents scenario 4 while (b) presents
scenario 6.

This metric allows us to measure the average amplitude of the errors in a set of
predictions. We can notice from the figure that the training curve, as well as the validation
curve, tends to a minimum value close to zero, which shows the small difference between
the true values and those predicted.

The MAE presents another method of evaluation. It has the same curve shape as the
MAPE but not the same convergence values.

This is the final step and the expected result of the model generation. It consists in
applying the prediction model on the test data set and then comparing the output and the
true value of shear and bulk and thermal modulus in order to calculate the coefficient of
determination as

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (15)

where:

Yi is the actual value.
Ŷi is the predicted value.

Pearson’s linear coefficient of determination, noted R2, is a measure of the quality of
the prediction of a linear regression.

By testing our model on the 1000 test images generated at the beginning for each
database, we obtained a score between 0.92 and 0.97, inclusive, which justifies the good
choice of model parameters.

In order to visualize the prediction results, regression curves have been drawn to better
explain the phenomenon. Linear regression consists in determining a line or a surface
that reduces the differences between the predicted and actual output values. The y-axis
shows the model’s predicted values. While the x-axis shows the data set’s actual values.
The estimated regression line is the diagonal line in the center of the plot.

Figures 11–13 show the results of predictions of different values of modulus (bulk,
shear, thermal conductivity) for the case of scenario 4. We can observe that the linear
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regression line passes through the maximum of the points. We may conclude that the
regression model fits the data reasonably well.

Having a 100% accurate prediction, i.e., an error value equal to zero, is technically
impossible. This is exactly the case for the points that are far from the regression line, these
points cannot be outliers*, because we have already processed the data from the calculation
using feature engineering methods such as IQR* and Z score*. Therefore, these points can
only be prediction faults, i.e., situations that are a bit difficult for the model, but this does
not prevent us from mentioning that the prediction results are excellent, which is well
shown by the R score.

- Outliers*: a data which does not ”fit in” with the rest of the data that we are analysing.
- IQR*: the interquartile range, it’s the measure of statistical dispersion equal to the

difference between 25% and 75% percentile.
- Z-score*: a tool capable of re-scaling data, its value is between −3 and 3 in the

most cases.

Figure 11. Convolutional predictions for the bulk modulus.

In our case, the CNN is the most efficient type of network. The prediction results
we found are almost impossible to obtain using other machine learning algorithms like
decision trees or random forests or even using an ANN. The advantage of this type of
network is that it includes an image processing step before proceeding to prediction.
The image goes through convolution, maxpolling, and flattening layers before going to the
computation layer. This method is used to reduce the memory footprint and allows for
translation invariance processing and therefore improve model performance and increase
prediction score.
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Figure 12. Convolutional predictions for the shear modulus.

Figure 13. Convolutional predictions for the thermal conductivity.
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The aim of the proposed work is not to compare the prediction results of different
volume fractions; the main task is to build a machine learning model able to handle all
possible cases (different shapes and volume fractions) without using experimental tests or
numerical calculations. Through this model, we are able to know the elastic and thermal
behavior of a heterogeneous material in a few seconds through its microstructure by
referring to the collected database without being obliged to launch calculations on software
that can take hours and sometimes days to be done.

4. Conclusions

Through this article, we tested a new method of homogenization based on convolu-
tional neural networks that will allow us to save time and resources compared to other
approaches (numerical, analytical). The process of model construction consists first of
all in collecting the microstructures by changing the shape and position of the inclusions,
the contrast, as well as the volume fraction, and then calculating the different modulus
(bulk, shear, thermal conductivity) using finite element homogenization. At the end, the col-
lected database will be trained and tested on our model, which is divided into two parts: a
convolutional network that processes the images to facilitate the calculations and a hidden
layer network that will, in the end, provide us with the predicted values.

The results obtained demonstrate the appropriate choice of model parameters as well
as the efficiency of the operations used in the image processing step.

In this work, we tested the convolutional neural network technology on 2D virtual
microstructures with a single inclusion and different shapes in the elastic linear case and the
thermal conductivity case. In the next work, we will test 2D and 3D microstructures with
more complicated RVE; additionally, we will move away from Hooke’s law by working in
the plastic domain.
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