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Abstract: A Dynamic Finite Element (DFE) method for coupled axial-flexural undamped free vi-
bration analysis of functionally graded beams is developed and subsequently used to investigate
the system’s natural frequencies and mode shapes. The formulation is based on the Euler—Bernoulli
beam theory and material grading is assumed to follow a power law variation through the thickness
direction. Using the closed-form solutions to the uncoupled segments of the system’s governing dif-
ferential equations as the basis functions of approximation space, the dynamic, frequency-dependent,
trigonometric interpolation functions are developed. The interpolation functions are used with the
weighted residual method to develop the DFE of the system. The resulting nonlinear eigenvalue
problem is then solved to determine the coupled natural frequencies. Example elements using DFE,
Finite Element Method (FEM) and the Dynamic Stiffness Method (DSM) are implemented in MAT-
LAB for testing, verification, and validation. Good agreement was observed and the DFE formulation
exhibited superior convergence performance compared to the FEM.

Keywords: coupled vibration; functionally graded beams; dynamic finite element; FEM

1. Introduction

Functionally graded materials (FGM) are a type of composite with continuously
varying properties throughout its volume. The concept of FGM was originally developed
in the 1980s in an attempt to create a reliable and durable heat shield for spacecraft re-
entry [1]. FGM have seen applications in areas such as aerospace, automotive, electronic
and biomedical engineering. Traditionally, the use of FGM has been limited due to the
manufacturing challenges of creating smooth, continuous, varying properties. Recent
advances in manufacturing techniques, such as electron beam freeform fabrication and
additive manufacturing, are improving the manufacturability of FGM and could lead to
wider use of and interest in the material [2-4]. Therefore, there is a growing interest and
need for closed form and numerical analysis of FGM beams.

Most recent studies on FGM beams have generally been focused on damped beam
models and damaged simulation cases such as [5-9]. Additional studies on undamped
free vibrational analysis of FGM is still needed. Various methods and theories have been
proposed to analyze the free vibration performance of FGM beams. Numerous studies have
used direct analytical methods to derive and solve the governing differential equations
of motion [10-12]. The finite element method (FEM) is the most popular computational
method for solving structural mechanics and has also been explored to analyze the free-
vibration characteristics of FGM beams based on Euler-Bernoulli and first-order shear
deformation beam theories [13-17]. The Rayleigh-Ritz and Chebyshev collocation methods
have also been explored and reported in [18-20]. The dynamic stiffness method (DSM) was
also applied for free vibration analysis of FGM using both Euler-Bernoulli and Timoshenko
beam theories by various authors [21-25].

Of the approaches mentioned above, the FEM and DSM are of particular importance
for this study. The FEM is often used when analyzing structural mechanics and its greatest
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advantage is its robustness and generalizability. It can be used to model complex geometries
and loadings. However, the accuracy of the method is dependent on the number of elements
used and this becomes increasingly important when analyzing high frequency mode shapes,
where increasing number of elements is required to produce accurate results. The DSM on
the other hand is an analytical method similar to FEM, but the results of this method are
exact within the limits of the theory. This method solves the system’s governing equations
by combining the two coupled differential equations of motions into a single, higher-order
ordinary differential equation. The general close-form solution is then used to obtain a
frequency-dependent stiffness matrix [26,27]. A single DSM element can produce an infinite
number of natural frequencies and mode shapes. Although the DSM method provides
accurate results even at higher-frequency modes, it does not have the generality of the FEM
and is often limited when dealing with complex geometry.

The Dynamic Finite Element (DFE) method is a hybrid method introduced that com-
bines the strengths of DSM and FEM methods [28]. Like the FEM, the DFE formulation
uses the general procedure of the weighted residual method. However, instead of using
polynomial shape functions, the DFE shape functions are frequency-dependent, trigono-
metric expressions obtained from the basis functions of approximation space, satisfying
the uncoupled portions of the governing differential equations. The solution of the DFE
method is a frequency-dependent stiffness matrix like DSM, where the inertial and stiff-
ness properties are combined into a single dynamic (frequency-dependent) stiffness matrix.
When compared to the FEM, DFE has improved convergence and accuracy due to the use of
Dynamic Trigonometric Shape Functions (DTSFs). The superior convergence performance
is particularly apparent at higher frequencies.

The DFE method has been successfully extended to the vibration analysis of various
intact and defective beam-like structures [29-36]. Formulations included various cou-
pled/combined loading cases and layered sandwich beam models. In all cases, either
homogenous material properties were assumed through the beam thickness or the homog-
enization method to evaluate apparent/equivalent properties. However, the DFE method
has not been extended to free vibrational analysis of non-homogenous materials such as
FGM beams.

In the present study, the Dynamic Finite Element (DFE) method is extended to the free
vibration analysis of FGM Euler-Bernoulli beams, under various boundary conditions and
material variation. In the following section, the material variation model and the mathe-
matical procedure of the Euler-Bernoulli DFE formulation is presented. A one-element
DFE model is then developed and validated against classical, FEM and DSM results for
homogeneous and FGM beams. The efficiency and accuracy of a one-element DFE model is
then demonstrated at various boundary conditions and with material variations. Materials
and methods are presented in Section 2, the results are provided in Section 3, followed by
final conclusions summarizing the most important achievements of the presented work.

2. Materials and Methods

The coordinate system and notation used is shown in Figure 1, where the beam has a
length L, thickness h, and width b. Material properties are Young’s Modulus E and mass
density p.
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Figure 1. Coordinate system and notation for formulation [22].
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The effective material property, P, for a FGM is evaluated using the following rule of
mixtures, expressed as [9,21,22]:

P(z) = (Pt — P,)Vi + By 1

where P; and Pj, are the material properties at the top and bottom surfaces of the beam,
respectively. The effective material properties are assumed to vary according to a power
law distribution. V; is the volume fraction of the top constituent of the beam, defined

as [9,21,22]:
z 1\*
Vi = (h + 2> (2)

Variation of the volume fraction against thickness for different values, k, is represented
in Figure 2, where k = 1 indicates a linear variation of material composition from the top
to the bottom, k = 0 represents a beam composed entirely of the top material, and k = oo
characterizes a beam composed entirely of the bottom material.
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Figure 2. Variation in volume fraction through thickness in terms of k.

To derive the differential equations governing the free vibrations of Euler-Bernoulli
FGM beams, Su & Banerjee established the expressions for the system’s strain and kinetic
energy and applied Hamilton’s principle. The resulting coupled differential equations of
motion are [21]:

g+ LW+ Agv” — Ayw” =0 3)

CIgW — IV w4 A" — Apw™ =0 @)
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where (') stands for the spatial derivative with respect to the beam’s longitudinal axis, y,
where 0 <y <L, and (') denotes the derivative with respect to t (time). The parameters I;
and A; are defined as: ‘
I = le‘p(z)dA 5)
Ai = fZlE(Z)dA

Assuming simple harmonic motion, axial and lateral displacements, v(y, t) and w(y, t),
respectively, both functions of space (y) and time (t), can be written as (i.e., separation
of variables): '

v(y' t) = V(y)’fl,wt (6)
w(y, t) = W(y)e!
where w denotes the frequency of vibration and V(y) and W(y) are the amplitudes of axial and
flexural displacements, respectively. By substituting expressions (6) into Equations (3) and (4),
the governing equations can be rewritten as:

IyVw? — [W' w? + AgV" — Ay W =0 (7)

IWw? + LV'w? — LW w? + A V" — A;W™ =0 (8)

where the space dependency (y) of amplitudes has been omitted for brevity, and both
expressions have been divided by the non-zero term, /!

The boundary conditions are produced as a by-product of the governing differential
equation derivation. The loads or natural boundary conditions are the resultant axial force
(F), shear force (S) and bending moment (M), defined as:

F=—AV' + A;W"
S=—-LVw? = AV + LW w? + A W" )
M= AV — A;W”

The initial steps in a DFE formulation follow similar derivation as conventional FEM. First,
by implementing the Galerkin-type method of weighted residuals, Equations (7) and (8) are
formulated into residual equations weighted by the virtual axial and lateral displacements, 6v
and dw, respectively. The integral value of weighted residuals is then set to zero, resulting in the
following integral form of the system’s governing equations:

L
W, — / 50(IpVa? — W @? + AoV — AW )5y =0 (10)
0

L
Wy = / 6w(IOWw2 F LV — LW W? + AV — AZW””>6y -0 (11)
0

A set of integration by parts is performed, leading to the following weak form of the
above integral equations:

Wy = 80(— AV’ + A W) |§
+ [P () s0(IpV — LW) + 80 (AgV! + A;W" ))&y = 0

(12)

Wy = (5w(—Lw?V — A V" + LaPW + AW ) + 5w (A V! — AW7)) |-

+ [E () sw(IoW) + (—w?)sw/ (LW — V) (13)
+5w//(A2W// _ A1V/))5]/ =0

The above expressions also satisfy the principle of virtual work,
W = Wiyt — Wext =0 (14)

where W represents the total virtual work, W;,;; stands for the internal virtual work, and W,y;
is the external virtual work. The underlined terms in expressions (12) and (13) represent the
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virtual work generated by the load boundary conditions of the system, presented earlier as
expressions (9). For the free vibration of a system, the total external work is null, Wey; =0,
and therefore:

5?)(—AOVl + AW |x:0 = dWext |x:0
50(—AOV/ + AW") ‘x:L = 0Woext | x=L
(dw(—Lw?V-A1V" + Lw?*W' + AW ) + sw' (A1 V'-A,W")) | 4o
= 0Woxt ‘ x=0
(dw(=Lw?V — A V" + Law?W' + AgW™ ) + dw' (A V) — AgW")) | ,;
= 5Wext|x:L

(15)

Consequently, the net resultant virtual work caused by the external force and moment
terms in (12) and (13) goes to zero. With the boundary conditions satisfied, the remaining
parts of the resulting expressions can now be discretized, which means the beam length (L)
is divided into several elements, leading to the following elemental form:

1
Wk :/ ((~w?)s0(loV — BW') + 60/ (AgV' — A1 W") )by (16)
0

fo( D sw(IpW) + (—w?) (5w ) (LW — V) (17)
+dw" (AzW" Aq V/))éy

The above integral equations WX and WX, respectively, stand for the flexural and
torsional contributions of each individual element ‘k’, of length ‘I’, in the total virtual work
of the entire system, W, and W;,. At this point, the DFE formulation diverges from the
conventional FEM derivation. Instead of using polynomial interpolation (shape) functions
to express the field variables, V and W, in terms of nodal variables (i.e., conventional FEM),
further manipulation is performed before DTSFs are applied, leading to the elemental
dynamic stiffness matrix.

The closed-form solutions of the uncoupled governing differential equations are used
as the basis functions of approximation space to derive the dynamic shape functions, which
are then exploited to find the element (frequency-dependent) dynamic stiffness matrix.

The following term, & = y/I (0 < & < 1), is introduced into Equations (16) and (17),
resulting in the following non-dimensional form:

1
Wk = / v <Iole2 — LW w? + #V" - ‘?;W’”) dE, (18)
0
1
WE = / Sw (Iole2 + LV w? - Illw 24 %V”’ - ‘?3 W““)éa (19)
0

Applying additional integration by parts to the above discretized (elemental) weak-
form equations, leads to the following (equivalent) form of the equations:

wh = [0/ (V) | l§+ /01 V(—wzlolév = ‘30&;">da

+w / 50 (I, W')de, — /0 (?1W”>d£

Coupling

(20)
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O

WK = {6@0’(——“’1212 W) + dw" (%W’) — dw" (%w)} |
w 12

! A2 i

dSw" — w21015w> d§

(21)

+w2/ 6w’(11v)da—/ s ( A1y ) ag
Jo Jo 12

Coupling

each consisting of two integral (uncoupled and coupled) terms, and one boundary term.
The coupling terms are separated and labeled here for clarity. The closed-form solutions of
the uncoupled integral terms (*) and (**), respectively, can be written as:

V(&) = Dycos(v&) + Dasin(vE)

W(E) = Cycos(a&) + Casin(ak) 4+ Czcosh(BE) + Cysinh(BE) 2)
where Cy 34 and D, are constants and
. —CU21012
Y= TO (23)

o p = \/;I\/{—Bi \/132—4AC} (24)

with
A=A,
B = w?l, (25)
C= —w210

The interpolation functions, also referred to as shape functions of approximation space,
are then obtained as follows. First, using the generalized parameters (a), (éa), (b), and
(6b) for the field variables (i.e., solution functions), V and W, and virtual displacements
(i.e., test functions), 8V and W, can be written as:

v (b

fry v g

W = (P(£)),, {b} (26)
SW = (P (£) ) {5b}

The axial and flexural dynamic basis functions of approximation space, respectively,
also reported in [28], are defined as:

Va(e) = <COS(V£) (f)> @)

Wy (&) = <cos(oc£) Singxocé,) cosh(BE) — cos(a&) sinh(BE) — sin(ocE,)>

o2 + 2 o3+ p3

Replacing the generalized parameters (a), (éa), (b), and (6b) with the nodal variables,

(Vi Vo), (V[ V3, Wy W, W, Wj),and (6W; J6W; 6W, 6W}), respectively,
expression (26) can be rewritten as:

{Vw} = [Pu],{a}
{8V} = [Pu],{da}
{Wn} = [Pn], {b}
{oWn} = [Pu],, {00}

(28)

(29)
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where the matrices [P, ], and [Pn]« are defined as:

P(¢= 0)} 1 0
Pujo = = sin 30
{Pn}y {PQ(C =1/, cos(7y) 57) (30)
Pl/(‘: =0)
P'(E=0)
P, =
{P.}, PE = 1)
p'(E=1) J,
1 X ° 0 (31)
0 1 0 ﬂ“g;ga
COS(’)/) Sin7(7) COShEIﬁ)_;'_lBCZOS(DC) smh(/3)+ﬁ83m(oc)
/351nh([3)+zxsm(a) ﬁcosh(ﬁ) wcos(a)

—asin(a) cos(a) e PRENE

By combining (26), (30), and (31) the approximation in terms of nodal variables can be
written as:
V(@) = (PE))o[Paly (Vi) = (N{E) (Vi) )
W(E) = (P(&)o [Pl {Wu} = (N{E}) { W}

where (N(¢)), and (N(¢&)),, are the frequency—dependent trigonometric shape functions
for the axial and flexure, respectively. Expression (31) can be combined and rewritten as:

V() _
where N| = va(w) 0 0 Nz-o(w) 0 0
[ ]_[ 0 Nip(w) Noy(w) 0 Nzyp(w)  Nygp(w) (34)

{us}=vi Wi W, V» W, Wil

The following shape functions, also presented in [30], are used to express the approxi-
mate elemental axial displacement in terms of nodal displacements, and along the element
domain k, of length I [28,32]:

_ cos(7y)sin(7¢)
Ny, = cos(7¢) — — Db, (35)
_ sin(y4)
NUZ - Dt (36)
where
D; = sin(y) (37)

The following shape functions are used to state the approximate elemental bending
displacement in terms of nodal displacements, along the domain [28,30]:

Ny, = “D—/;{—cos(mf) + cos(a(1 — ¢&))cosh(pB) + cos(a)cosh(B(1 —¢))

5 . AR (38)
—cosh(B) — gsin(a(1 —¢))sinh(p) + gsin(a)sinh(B(1 - 7))}
Ny, {,B[cosh( (1—¢)sin(a)) — cosh(B)sin(a(1l —&)) — sin(ag)] (39)
—Hx[cos( a(1— ¢))sinh(B) — cos(a)sinh(B(1 — ¢)) — sinh(BE)]}
ﬁ cos(a cos(ad)cos — cos —
Nuws = p{—cos(a(¢ —1)) + cos(ag)cosh(p) h(B(1—-¢)) (40)

+cos( a)cosh(BE) — Esm(txg)smh(ﬁ) + Esin(a)sinh(ﬁ@)}
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Nuy = - {Bl-cosh(BZ)sin(a) + sin(a(1 - £)) + cosh(B)sin(ag)] "
+a[—cos(ag)sinh(B) + sinh(B(1 — &)) + cos(a)sinh(BE)]}
where s
Dy = zxﬁ{—Z(l — cos(a)cosh(B)) + (zx a_ﬁﬁ >sin(0c)sinh(ﬁ)} (42)

Using expressions (20) and (21) and the shape functions (35) through (42), the element
dynamic stiffness matrix, [K (w)]k, is derived. This consists of uncoupled and coupled

dynamic stiffness matrices, [K (w)]ﬁ and [K(w)]lcc, respectively. There are four coupled

and four uncoupled matrix components. The element dynamic stiffness matrix, [K (w)}k, is
formulated by adding the eight coupled and uncoupled submatrices.

The system’s global dynamic stiffness matrix, [K(w)], is then obtained by assembling
all the element matrices and applying the boundary conditions. The nonlinear eigenvalue
problem, resulting from this method, is:

[K(w){Un} = {0} (43)

where {U, } is the vector of global nodal displacements of the system. The natural frequen-
cies of the system would be the values of w, which yields a zero determinant, |K(w)| =0,
for the global dynamic stiffness matrix [28].

It is worth noting that the basis functions are specifically chosen so that when the
frequency, w, approaches zero, the roots, «, 3, and vy of the characteristic equations (22)
also approach zero. Subsequently, the dynamic trigonometric shape functions and basis
functions become identical to those generated from the Hermite approximations, which
are commonly used in conventional beam FEM. The form of the DFE basis functions were
formulated to exhibit this property to ensure a complete solution at all frequencies. In other
words, if this was not considered, a static deformation solution would not be possible.

Two illustrative examples are presented in this study to validate the presented DFE
formulation through free vibration analysis. First, the DFE Euler-Bernoulli formulation is
validated against the well-defined solution for solid beams. In this example, the beam is
made of aluminum and results are compared against classical methods, FEM and the DSM
method for Euler-Bernoulli beams. A pure aluminum beam can be considered a special
case of an FGM beam. Using the current model, a solid aluminum beam would require
an unattainable value of k = oo (refer to Figure 2). To avoid the use of infinity as a value
two methods have been proposed, either setting the top and bottom properties within
£0.0001% or using a value of k = 106 [21,22]. It was observed that either method would
produce the same results, and for the purposes of this investigation the first method was
used. The material properties for the solid aluminum beam are: p; = 2700.0027 kg/m?,
pp = 2700 kg/ m3, E; = 70.00007 GPa, and E, = 70 GPa. An in-house DSM code was cre-
ated in MATLAB to validate against reference [21], where various material grading, bound-
ary conditions (clamped—free, simply supported, clamped-clamped, clamped—pinned) and
slender ratios were investigated.

The following non-dimensional parameter was used to normalize and compare results
reported in different sources:

Aj = w;L? % (44)

To further validate the proposed DFE formulation, with coupling terms in effect,

a second study is done with an FGM beam (k = 0.3) composed of aluminum and
alumina (Al;O3), as also presented in Ref. [9]. The properties of the aluminum are:
E, = 70 GPa, p, = 2700 kg/m? and the properties of the alumina are: E; = 380 GPa,
pr = 3800 kg/m? [31]. Simsek [9] used a governing equation developed based on the
third-order shear deformation theory, and the solutions for both Timoshenko and Euler—
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Bernoulli beams were presented. The frequency results were non-dimensionalized using

the following parameter [9]:
et [
=i (45)

with I, and A, defined previously in (5). The natural frequencies, w, were calculated
by manipulating Equation (45), and then using Equation (44) converted into a consistent
non-dimensional form.

Finally, free vibration analysis was performed to find the first four natural frequencies
and mode shapes of a series of FGM beams. The beams are composed of steel and alumina
for various k values and at a slenderness ratio of L/h = 100. The properties of the steel
are: E, = 210GPa, p, = 7800 kg/m3 and the properties of the alumina are: E; = 390 GPa,
rhoy = 3960 kg/m3, as also reported in [9]. A comparison is made between the convergence
performance of DFE and FEM formulations.

3. Results

The convergence test results and performance for the in-house FEM code is presented
in Figure 3. For the 3rd mode of a pure aluminum beam, the conventional FEM converges
at around 10-12 elements. In contrast, DFE results show exact solutions at a single element
(Tables 1-4).

1.4

121 \

0.8 \

Ermor(%)

0.4 r

0.2 r

0 2 4 5] 8 10 12 14
Mumber of elements

Figure 3. Convergence study for the 3rd mode of a pure aluminum beam with clamped—free
boundary conditions.

The first three natural frequencies for an aluminum beam using classical Euler—
Bernoulli beam solution [37], DSM [21], in-house DSM and FEM codes, and DFE for
various boundary conditions are presented in Tables 1-4. It was observed that, as the slen-
derness ratio, L/ h, is increased, the results of the element-based methods would converge
towards the classical solution [37]. There is a slight deviation between some results of the
element-based methods with the classical solution, particularly at higher frequencies.

The first 4 non-dimensional frequencies for various FGM beams (k = 0.1, k = 1, and
k = 5) and different boundary conditions are presented in Tables 6-9. For all boundary
conditions, the results from DFE and FEM showed greater deviation from the baseline DSM
results at higher frequency modes. In regard to material grading, the highest deviation
between DFE and FEM from DSM results occurred in the linear variation (k = 1) case. For
all cases, DFE performed as well or better than FEM, particularly at higher modes. The



Appl. Mech. 2022, 3

1232

mode shapes for k = 1 and each boundary condition are presented in Figure 5. The mode
shapes for varied material grading (k = 0.1 and k = 5) are presented in Figure 6.

The first (fundamental) natural frequency values obtained using DFE, DSM, FEM and
reference results for Euler-Bernoulli and Timoshenko beam theories are presented in Table 5.
Excellent agreement was found for reference Euler—Bernoulli results and the three-element
DFE solution, and deviation was found to be very small, i.e., 0.121%, 0.160%, and 0.145%
for L/h ratios of 10, 30, and 100, respectively. For the same slenderness ratios, DSM method
performed better, with a difference of 0.004%, 0.0164% and 0.0163%. Deviation between the
DEFE results and the Timoshenko beam values are 1.24%, 0.269%, and 0.181%. Again, DSM
outperforms other methods, with a difference of 1.107%, 0.126%, and 0.0202%. The FEM
showed the greatest discrepancy between results and reference values. When using the
same numbers of elements, errors of 0.210%, 0.235% and 0.208% for Euler-Bernoulli and
1.323%, 0.345%, and 0.208% for Timoshenko beam theories were found.

Table 1. The first three non-dimensional frequencies of a pure aluminum beam for a range of
slenderness ratios and simply supported boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

Frequency 1/,

No. i Classical DSM DSM DFE DFE FEM
Results[27] ~ Ref[13]  Code  (1ELE) (3ELE)  (10ELE)

10 9.8696 9.8293  9.8293  9.8293  9.8293  9.8293

! 30 9.8696 9.8651  9.8651  9.8651  9.8651  9.8652
100 9.8696 98692 9.8692  9.8692  9.8692  9.8693

10 39.478 38845 38845 38845 38845  38.849

2 30 39.478 39.406 39406 39406 39406 39411
100 39.478 39472 39472 39472 39472 39476

10 88.826 85711 85711 85711 85711 85757

3 30 88.826 88463 88463 88463 88462 88511
100 88.826 88794 88794 88794 88794  88.841

Table 2. The first three non-dimensional frequencies of a pure aluminum beam for a range of
slenderness ratios and clamped-clamped boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

Frequency 1/,

No. i Classical DSM DSM DFE DFE FEM
Results [27] Ref [12] Code (1 ELE) (3 ELE) (10 ELE)

10 22.373 22.259 22.259 22.259 22.259 22.260

1 30 22.373 22.361 22.361 22.361 22.361 22.361
100 22.373 22.372 22.372 22.373 22.372 22.373

10 61.673 60.522 60.522 60.522 60.522 60.538

2 30 61.673 61.542 61.542 61.542 61.542 61.558
100 61.673 61.673 61.661 61.661 61.660 61.661

10 120.90 116.21 116.21 116.21 116.21 116.32

3 30 120.90 120.35 120.35 120.35 120.35 120.47

100 120.90 120.85 120.85 120.86 120.85 120.97
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Table 3. The first three non-dimensional frequencies of a pure aluminum beam for a range of
slenderness ratios and clamped—free boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

Frequency 1/,

No. i Classical DSM DSM DFE DFE FEM
Results [27] Ref [12] Code (1 ELE) (3 ELE) (10 ELE)

10 3.5160 3.5092 3.5092 3.5092 3.5092 3.5092

1 30 3.5160 3.5153 3.5153 3.5153 3.5153 3.5153
100 3.5160 3.5160 3.5159 3.5159 3.5159 3.5159

10 22.035 21.743 21.743 21.743 21.743 21.743

2 30 22.035 22.002 22.002 22.001 22.001 22.002
100 22.035 22.032 22.032 22.032 22.032 22.032

10 61.677 59.801 59.801 59.801 59.801 59.816

3 30 61.677 61.478 61.478 61.478 61.478 61.493
100 61.677 61.677 61.677 61.677 61.677 61.693

Table 4. The first three non-dimensional frequencies of a pure aluminum beam for a range of
slenderness ratios and clamped-pinned boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

Frequency 1/,

No. i Classical DSM DSM DFE DFE FEM
Results [27] Ref [12] Code (1 ELE) (3 ELE) (10 ELE)

10 15.418 15.345 15.345 15.345 15.345 15.345

1 30 15.418 15.410 15.410 15.410 15.410 15.410
100 15.418 15.418 15.417 15.417 15.417 15.418

10 49.965 49.095 49.095 49.095 49.095 49.103

2 30 49.965 49.866 49.866 49.866 49.866 48.875
100 49.965 49.956 49.956 49.956 49.956 49.965

10 104.25 100.39 100.39 100.39 100.39 100.46

3 30 104.25 103.80 103.80 103.80 103.80 103.87
100 104.25 104.21 104.21 104.21 104.21 104.28

Table 5. The first (fundamental) non-dimensional frequency of a FGM beam with k = 0.3 under
simply supported boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

L/h Ref [25] DSM DSM DFE DFE FEM
Ref[13] (1 ELE) (@1ELE) (3ELE) (@GELE)

Euler-Bernoulli Timoshenko

10 17.329 17.138 17.614 17.328 17.378 17.350 17.365
30 17.392 17.373 17.676 17.395 17.447 17.420 17.433
100 17.405 17.398 17.684 17.402 17.455 17.430 17.441

In Figure 4, the convergence performance of the DFE and FEM for k = 1 and can-
tilevered (clamped—free) boundary condition is presented. The DFE formulation error
decreases more at fewer elements when compared to FEM.
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Figure 4. Convergence study for the 4th mode of a FGM beam (k = 1), with clamped-free
boundary conditions.

Table 6. The first 4 non-dimensional frequencies for a FGM beam for (k = 0.1, 1, and 5), under
clamped-free boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

k=01 k=1 k=5
Frequency S SM DSM DFE FEM
No. i DSM D
Code (1(1)) ng) (1(1;%1{115) Code (1(1)) ng) (15%1\{15) Code (10 ao

(1 ELE) (1 ELE) (1 ELE) ELE) ELE)

1 6.2673 6.2673 6.2673 4.7669 4.7672 4.7672 4.0493 4.0495 4.0495

2 39272 39272 39274 29870 29883 29883 25374 25381 25382

3 109.92 109.95 109.97 83.599 83.703 83.722 71.014 71.085 71.102

4 215.38 215.40 215.60 163.81 164.11 164.26 139.16 139.34 139.47

Table 7. The first 4 non-dimensional frequencies for a FGM beam for (k = 0.1, 1, 5), under simply
supported boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

k=0.1 k=1 k=5
Frequency S S S
No. i DSM DSM DSM DFE FEM
Code (o bie) qomLe) % qoEre aopte o (10 (10

(1 ELE) (1 ELE) (1 ELE) ELE) ELE)

1 17.592 17.592 17.592 13.381 13.382 13.382 11.366 11.367 11.367

2 70.360 70.361 70.367 53.515 53.542 53.547 45.459 45.476 45.481

3 158.28 158.28 158.37 120.38 120.51 120.58 102.26 102.34 102.40

4 281.30 281.32 281.78 213.94 214.36 214.69 181.74 182.00 182.29




Appl. Mech. 2022, 3 1235

Table 8. The first 4 non-dimensional frequencies for a FGM beam for (k = 0.1, 1, and 5), under
clamped—clamped boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

k=0.1 k=1 k=5
Frequency DSM DSM DSM DFE FEM
No. i
Code (1(1)) ng) (151%5) Code (1(1)) ISEE) (15?315) Code (10 ao

(1 ELE) (1 ELE) (1 ELE) ELE) ELE)

1 39872 39872 39881 30326 30333 30352 25761 25766 25778

2 10989 10988 10995 83576 83627 8373 70997 71027 71103

3 215.35 215.36 215.66 163.79 164.00 164.38 139.13 139.27 139.56

4 355.83 355.85 356.99 270.63 271.21 272.40 229.90 230.27 231.19

Table 9. The first 4 non-dimensional frequencies for a FGM beam for (k = 0.1, 1, and 5), under
clamped-pinned boundary conditions.

Non-Dimensional Fundamental Natural Frequency (A;)

Frequepcy - k=0.1 - k=1 - k=5

Nl Cole  DEE MM Coge  (DFE MM Gl a0
(1 ELE) (1 ELE) (1 ELE) ELE) ELE)

1 27.485 27.485 27.485 20.947 20.954 20.955 17.783 17.788 17.788

2 89.050 89.053 89.069 67.770 67.832 67.842 57.560 57.597 57.607

3 185.75 185.77 185.90 141.32 141.56 141.66 120.04 120.19 120.27

4 317.55 317.59 318.25 241.55 24221 242.70 205.20 205.60 206.02
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Figure 5. First 4 mode shapes for a FGM beam (k = 1); (A) clamped—free, (B) simply supported,
(C) clamped—clamped, and (D) clamped—pinned boundary conditions.
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Figure 6. First 3 mode shapes for a cantilever beam at k = 0.1 (left) and k = 5 (right).

4. Discussion

Excellent agreement is achieved for DFE in all conditions. The classical results used
generic closed-form solutions to the 4th-order Euler-Bernoulli governing equation solution
that is often found in standard texts (see, e.g., [37]). Due to the highly convergent nature
of DSM and DFE formulations, their results converge at higher frequencies, while FEM
results deviate. For FEM, additional elements would be required to match the accuracy of
DFE and DSM.

Comparison between the data in Figures 3 and 4 and Tables 1-4 further illustrates the
superior convergence performance of DFE over the conventional FEM. The 3rd mode of an
aluminum beam converges at around 10-12 elements using FEM. In contrast, DFE results
show that a single element is capable of producing the exact solution. This is due to the fact
that the DFE method uses the solution of the uncoupled governing equations to create the
DTSFs. Since this validation case uses no material grading, the coupling terms approach
zero and the DFE solution is exact within the limits of the theory, i.e., attaining the same
results as the DSM. When material grading is introduced, a single DFE element does not
produce the exact results like the DSM method, i.e., due to coupling effects. Additional
DFE elements are required to converge to the solution. However, as seen in Figure 4,
convergence occurs with fewer DFE elements than FEM.

Note that the in-house DSM code and the reference DSM results deviate by about 1.6%.
The authors were unable to resolve the difference between the two results; however, there
is an excellent agreement between the results of the in-house DSM code and reference [25].
Furthermore, the results of the in-house DSM, DFE and FEM converge to the same solution
at higher element numbers. Therefore, for validation and comparison purposes, the in-
house DSM results were used. Since the formulations in this paper are based on Euler—
Bernoulli assumptions, a greater discrepancy is expected when comparing to reference
Timoshenko beam results.

The results of Tables 6-9 show that, when using the same number of elements, the DFE
model outperforms the FEM. This becomes more apparent at higher frequencies. For example,
in the case of a cantilever beam with k = 1, the 4th frequency shows a discrepancy of 0.274%
and 0.183%, for FEM and DFE, respectively, when compared with DSM. Now referring to the
first frequency results, the error is found to be 0.00629% for both FEM and DFE when compared
with DSM. To accurately model the 4th mode using FEM, one would need at least 4 elements to
express the mode shape. Since DFE uses frequency-dependent interpolation functions, a single
element can produce an infinite number of frequencies. Figure 4 shows that even with a single
element, the DFE produces less errors than 5 FEM elements. At higher frequencies, fewer DFE
elements can be used to develop results that are better or comparable to FEM. For the 4th mode,
DFE and FEM begin to converge at 10 elements.

The mode shapes for a FGM beam of k = 1, and clamped-free, simply supported,
clamped—clamped, and clamped—pinned boundary conditions, are shown in Figure 5.
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Bending was found to be the dominant mode and therefore the axial mode shapes are
not shown. As can be observed in Figure 6, when varying k, the dominant mode shape
remained unchanged. Therefore, for the current theory, the through thickness variance of
material properties does not affect the mode shape. This is expected due to the fact that the
Euler-Bernoulli bending theory assumes that the cross section remains a plane, and the
beam deforms only on the neutral axis.

5. Conclusions

A Dynamic Finite Element (DFE) formulation for the free vibration analysis of Func-
tionally Graded Beams was presented. Analysis on the natural frequency and mode shapes
of functionally graded Euler-Bernoulli beams, using DFE and other methods was per-
formed. Results from the presented DFE element were compared against FEM, exact results
of DSM, and other data found in the open literature. Boundary conditions, slenderness
(L/h) ratio, and k values were varied to investigate their effects on the beam vibration
response. The convergence of the DFE formulation outperformed conventional FEM, partic-
ularly at higher frequencies. Since the formulation is based on Euler-Bernoulli assumption,
the mode shapes were not affected by the through the thickness variation in properties. In
the absence of material grading, the coupling effects, and the corresponding terms in the
element’s DFE matrix, reduces to zero and a one element DFE model produces exact results
within the limits of the theory.

This study was limited to Euler-Bernoulli theory and in future studies the DFE model
could be extended to higher-order beam theories such as Timoshenko beams. Also, this
study was limited to solving a simple beam element, whereas a future study could demon-
strate the generality of DFE in solving structures such as frames.

Author Contributions: Conceptualization, A.G. and S.M.H.; methodology, A.G. and S.M.H.; formal
analysis, A.G.; investigation, A.G.; data curation, A.G.; writing—original draft preparation, A.G.;
writing—review and editing, A.G. and S.M.H.; visualization, A.G.; supervision, S.M.H.; project
administration, S.M.H.; funding acquisition, S.M.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Not applicable.
Acknowledgments: The authors wish to acknowledge the support provided by Ryerson University.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication
of this paper. This paper presents the results of recent research, conducted by the first author under
the supervision of the second author.

References

1. Niino, M,; Hirai, T.; Watanabe, R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft. ]. Jpn.
Soc. Compos. Mater. 1987, 13, 257-264. [CrossRef]

2. Mahamood, R.M.; Akinlabi, E.T. Laser metal deposition of functionally graded Ti6Al4V /TiC. Mater. Des. 2015, 84, 402—410.
[CrossRef]

3.  Taminger, KM.B.; Hafley, R.A. Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process. In Proceedings of the 3rd
Annual Automotive Composites Conference, Hampton, VA, USA, 9-10 September 2003.

4. Li, L,;Syed, WU.H,; Pinkerton, A.J. Rapid additive manufacturing of functionally graded structures using simultaneous wire
and powder laser deposition. Virtual Phys. Prototyp. 2006, 1, 217-225. [CrossRef]

5. Akbas, $.D.; Fageehi, Y.A ; Assie, A.E.; Eltaher, M.A. Dynamic analysis of viscoelastic functionally graded porous thick beams
under pulse load. Eng. Comput. 2022, 38, 365-377. [CrossRef]

6. Esen, I; Koc, M.A_; Cay, Y. Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an
accelerating mass including inertial effects of the mass. Lat. Am. ]. Solids Struct. 2018, 15, 1-18. [CrossRef]

7. Esen, I.; Koc, M.A.; Eroglu, M. Dynamic behaviour of functionally graded Timoshenko beams on a four parameter linear elastic
foundation due to a high speed travelling mass with variable velocities. J. Smart Syst. Res. 2021, 2, 48-75.

8.  Kog, M.A. Finite element and numerical vibration analysis of a Timoshenko and Euler-Bernoulli beams traversed by a moving

high-speed train. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 165. [CrossRef]


http://doi.org/10.6089/jscm.13.257
http://doi.org/10.1016/j.matdes.2015.06.135
http://doi.org/10.1080/17452750601141523
http://doi.org/10.1007/s00366-020-01070-3
http://doi.org/10.1590/1679-78255102
http://doi.org/10.1007/s40430-021-02835-7

Appl. Mech. 2022, 3 1238

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Simsek, M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos.
Struct. 2010, 92, 904-917. [CrossRef]

Al-Zahrani, M.A; Asiri, S.A.; Ahmed, K.L; Eltaher, M.A. Free Vibration Analysis of 2D Functionally Graded Strip Beam using
Finite Element Method. . Appl. Comput. Mech. 2022, 8, 1422-1430.

Giunta, G; Crisafulli, D.; Belouettar, S.; Carrera, E. Hierarchical theories for the free vibration analysis of functionally graded
beams. Compos. Struct. 2011, 94, 68-74. [CrossRef]

Neamah, R.A.; Nassar, A.A.; Alansari, L.S. Modeling and Analyzing the Free Vibration of Simply Supported Functionally Graded
Beam. J. Aerosp. Technol. Manag. 2022, 14. [CrossRef]

Aubad, M.].; Khafaji, 5.0.W.; Hussein, M.T.; Al-Shujairi, M.A. Modal analysis and transient response of axially functionally
graded (AFG) beam using finite element method. Mater. Res. Express 2019, 6, 1065g4. [CrossRef]

Kahya, V.; Turan, M. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear
deformation theory. Compos. Part B Eng. 2017, 109, 108-115. [CrossRef]

Kahya, V.; Turan, M. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element.
Compos. Part B Eng. 2018, 146, 198-212. [CrossRef]

Rahmani, F.; Kamgar, R.; Rahgozar, R. Finite element analysis of functionally graded beams using different beam theories. Civ.
Eng. J. 2020, 6, 2086-2102. [CrossRef]

Yarasca, ].; Mantari, J.L.; Arciniega, R.A. Hermite-Lagrangian finite element formulation to study functionally graded sandwich
beams. Compos. Struct. 2016, 140, 567-581. [CrossRef]

Pradhan, K.K.; Chakraverty, S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh—Ritz method.
Compos. Part B Eng. 2013, 51, 175-184. [CrossRef]

Wattanasakulpong, N.; Mao, Q. Dynamic response of Timoshenko functionally graded beams with classical and non-classical
boundary conditions using Chebyshev collocation method. Compos. Struct. 2015, 119, 346-354. [CrossRef]

Zhao, Y.; Huang, Y.; Guo, M. A novel approach for free vibration of axially functionally graded beams with non-uniform
cross-section based on Chebyshev polynomials theory. Compos. Struct. 2017, 168, 277-284. [CrossRef]

Su, H.; Banerjee, ].R.; Cheung, C.W. Dynamic stiffness formulation and free vibration analysis of functionally graded beams.
Compos. Struct. 2013, 106, 854-862. [CrossRef]

Su, H.; Banerjee, ].R. Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams.
Comput. Struct. 2015, 147, 107-116. [CrossRef]

Banerjee, ].R.; Ananthapuvirajah, A. Free vibration of functionally graded beams and frameworks using the dynamic stiffness
method. J. Sound Vib. 2018, 422, 34—47. [CrossRef]

Rajasekaran, S. Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based
dynamic stiffness approach. Meccanica 2013, 48, 1053-1070. [CrossRef]

Deng, H.; Cheng, W. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams. Compos. Struct.
2016, 141, 253-263. [CrossRef]

Banerjee, ].R. Dynamic stiffness formulation for structural elements: A general approach. Comput. Struct. 1997, 63, 101-103.
[CrossRef]

Banerjee, J.R.; Sobey, A.J.; Su, H.; Fitch, ].P. Use of computer algebra in Hamiltonian calculations. Adv. Eng. Softw. 2008, 39,
521-525. [CrossRef]

Hashemi, S.M. Free Vibrational Analysis of Rotating Beam-Like Structures: A Dynamic Finite Element Approach. Ph.D.
Dissertation, Department of Mechanical Engineering, Lavel University, Quebec, QC, Canada, 1998.

Hashemi, S.M.; Richard, M.]. A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams.
Aerosp. Sci. Technol. 2000, 4, 41-55. [CrossRef]

Hashemi, S.M.; Adique, E.J. A Quasi-Exact Dynamic Finite Element for Free Vibration Analysis of Sandwich Beams. Appl. Conpos.
Mater. 2010, 17, 259-269. [CrossRef]

Erdelyi, N.H.; Hashemi, S.M. A Dynamic Stiffness Element for Free Vibration Analysis of Delaminated Layered Beams. Model.
Simul. Eng. 2012, 2012, 2. [CrossRef]

Kashani, M.T.; Jayasinghe, S.; Hashemi, S.M. Dynamic finite element analysis of bending-torsion coupled beams subjected to
combined axial load and end moment. Shock. Vib. 2015, 2015, 471270. [CrossRef]

Erdelyi, N.H.; Hashemi, S.M. On the Finite Element Free Vibration Analysis of Delaminated Layered Beams—A New Assembly
Technique. Shock. Vib. 2016, 2016, 3707658. [CrossRef]

Borneman, S.R.; Hashemi, S.M. Vibration-Based, Nondestructive Methodology for Detecting Multiple Cracks in Bending-Torsion
Coupled Laminated Composite Beams. Shock. Vib. 2018, 2018, 9628141. [CrossRef]

Kashani, M.T.; Hashemi, S.M. A Finite Element Formulation for Bending—Torsion Coupled Vibration Analysis of Delaminated
Beams Subjected to Combined Axial Load and End Moment. Shock. Vib. 2018, 2018, 1348970, Special Issue on SHMV. [CrossRef]
Kashani, M.T.; Hashemi, S.M. Dynamic Finite Element Modelling and Vibration Analysis of Prestressed Layered Bending—Torsion
Coupled Beams. Appl. Mech. 2022, 3, 103-120. [CrossRef]

Tse, ES.; Morse, LE.; Hinkle, R.T.; Hinkle, R.T.; Morse, L.E. Mechanical Vibrations: Theory and Applications, 2nd ed.; Tse, E.S., Morse,
LE., Hinkle, R.T., Hinkle, R.T., Morse, LE., Eds.; Allyn and Bacon: Boston, MA, USA, 1978; ISBN 0-205-05940-6.


http://doi.org/10.1016/j.compstruct.2009.09.030
http://doi.org/10.1016/j.compstruct.2011.07.016
http://doi.org/10.1590/jatm.v14.1257
http://doi.org/10.1088/2053-1591/ab4234
http://doi.org/10.1016/j.compositesb.2016.10.039
http://doi.org/10.1016/j.compositesb.2018.04.011
http://doi.org/10.28991/cej-2020-03091604
http://doi.org/10.1016/j.compstruct.2016.01.015
http://doi.org/10.1016/j.compositesb.2013.02.027
http://doi.org/10.1016/j.compstruct.2014.09.004
http://doi.org/10.1016/j.compstruct.2017.02.012
http://doi.org/10.1016/j.compstruct.2013.06.029
http://doi.org/10.1016/j.compstruc.2014.10.001
http://doi.org/10.1016/j.jsv.2018.02.010
http://doi.org/10.1007/s11012-012-9651-1
http://doi.org/10.1016/j.compstruct.2016.01.051
http://doi.org/10.1016/S0045-7949(96)00326-4
http://doi.org/10.1016/j.advengsoft.2007.03.013
http://doi.org/10.1016/S1270-9638(00)00114-0
http://doi.org/10.1007/s10443-009-9109-3
http://doi.org/10.1155/2012/492415
http://doi.org/10.1155/2015/471270
http://doi.org/10.1155/2016/3707658
http://doi.org/10.1155/2018/9628141
http://doi.org/10.1155/2018/1348970
http://doi.org/10.3390/applmech3010007

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

