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Abstract: This paper presents an analytical method for determining the bending stresses and de-
formations in prismatic, noncircular profile shafts with trochoidal cross sections. The so-called
higher trochoids can be used as form-fit shaft-hub connections. Hybrid (mixed) higher trochoids
(M-profiles) were developed for the special application as a profile contour for the form-fit shaft
and hub connections in an earlier work by the author. M-profiles combine the advantages of the
two standardised polygonal and spline contours, which are used as shaft-hub connections for the
transmission of high torques. In this study, the geometric and mechanical properties of the higher
hybrid trochoids were investigated using complex functions to simplify the calculations. The pure
bending stress and shaft deflection were determined for M-profiles using bending theory based on the
theory of mathematical elasticity. The loading cases consisted of static and rotating bends. Analytical,
numerical, and experimental results agreed well. The calculation formulas developed in this work
enable reliable and low-cost dimensioning with regard to the stresses and elastic deformations of
profile shafts subjected to bending loads.

Keywords: higher trochoids; noncircular cross sections; profiled shafts; form-fit shaft and hub
connections; bending stress; bending deflection; rotating bending stress

1. Introduction

In recent years, the noncircular profiles have been increasingly incorporated in in-
dustrial applications as form-fitting shaft-hub connections. These profiles have a higher
transmission capacity than the commercially available connections such as press and key
connections.

The so-called higher trochoids can be used as form-fit shaft–hub connections. Hybrid
(mixed) higher trochoids (M-profiles) were proposed in [1] and adapted to a practical
industrial application in [2]. M-profiles combine the advantages of standardised polygon
(DIN 32711 [3]) and spline (DIN 5486 [4]) contours used as shaft–hub connections for the
transmission of torsional loads.

A new German standard for hypotrochoidal profiled connections (H-profiles) was pub-
lished in 2021 (DIN 3689 T-1 [5]). Furthermore, new noncircular profiles were developed,
investigated, and optimized on the ground of the higher trochoids in research projects at
the West Saxony University of Zwickau, Germany [1,2]. Higher trochoids are classified into
three main profile families. Hybrid trochoids (M-profiles) are well adaptable to an arbitrary
construction space.

In many practical applications, the shaft fails outside of the connection due to bending
stresses. For such cases, the analytical approaches may be cheaper and more reliable than
numerical methods. The geometrical and mechanical properties of the higher trochoids can
be formulated using the complex functions.

According to Muskhelishvili [6], conformal mapping enables the derivation of ana-
lytical solutions for bending stresses. For the solution of pure bending, only a conformal
mapping of the profile contour is adequate. However, a complete mapping of the profile
cross-section is necessary for the shear force bending.
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2. Geometry of Higher Trochoids

Higher trochoids were treated systematically for the first time by Wunderlich [7] and
are represented by complex functions. Thus, the two-parameter equations can be combined
into one complex equation, reducing the mathematical effort. This approach was used in [8]
for a plane–curve representation. As shown in Figure 1, KS is defined by the planetary
motion of several levers with corresponding angular velocities ω1, ω2, · · ·ωs. The position

of the point AS is determined by the sum of the vectors
→

A0 A1,
→

A1 A2, · · ·
→

AS−1 AS and can
be expressed as follows:

ω(ei t) = r · ei ω0 t + e1 · ei ω1 t + e2 · ei ω2 t + · · · = r · ei ω0 t +
S

∑
j=1

ej · ei ωj t (1)

Figure 1. Definition of the higher trochoid [7].

Here, e represents Euler’s number and i =
√
−1 denotes an imaginary unit. The first

radius r is defined as the main radius and the levers e1, e2, · · · es are used to describe the
eccentricities of the profile. Point AS is assumed to be the generating point. For simplicity,
eit has been replaced with ζ, yielding the following general form for higher trochoids:

ω(ζ) = r · ζω0 + e1 · ζω1 + e2 · ζω2 + · · · = r · ζω0 +
s

∑
j=1

ej · ζωj . (2)

If any e-lever shown in Figure 1 rotates on its own plane, an arbitrary point on the
corresponding plane can be selected as the pivot point for the next plane. The ‘extended’
or ‘shortened’ higher trochoidal curves can be generated using Equation (2), depending
on the distance between a selected point and its pivot point. Closed curves with periodic
symmetry are typically useful for technical applications. However, the ratios of the angular
velocities ωj are not freely selectable for such curves.

Higher trochoidal curves are classified into the following three families ([9]):

- Higher epitrochoids

Consider the following conditions:

- angular velocities ωj act in the same (positive) direction and
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- r > 0, ω1 = 1 + n, ω2 = 1 + 2n, · · ·ωs = 1 + 2s · n, where n ≥ 1 is an arbitrary
integer.

Equation (2) leads to the following relationship:

ω(ζ) = r · ζ + e1 · ζn+1 + e2 · ζ2n+1 + · · ·+ es · ζs·n+1 = r · ζ + ∑s
j=1 ej · ζ jn+1. (3)

Equation (3) describes the higher epitrochoids of the nth order.

- Higher hypotrochoids

Consider the following conditions:

- angular velocities ωj act in the same (negative) direction and
- r > 0, ω−1 = 1− n, ω−2 = 1− 2n, · · ·ω−s = 1− 2s · n, where n ≥ 3 is an arbitrary

integer.

Equation (2) leads to the following relationship:

ω(ζ) = r · ζ + e−1 · ζ1−n + e−2 · ζ1−2n + · · ·+ e−s · ζ1−s·n = r · ζ + ∑s
j=1 e−j · ζ1−jn. (4)

Equation (4) describes the higher hypotrochoids of the nth order.

- Higher hybrid (mixed) trochoid

Considering the following conditions:

- angular velocities ωj act in positive or negative directions and
- r > 0, ω−1 = 1− n, ω−2 = 1− 2n, · · ·ω−s = 1− 2s · n as well as ω1 = 1 + n,
ω2 = 1 + 2n, · · ·ωs = 1 + 2s · n, where n ≥ 3 is an arbitrary integer.

Equation (2) leads to the following relationship, which describes higher hybrid (mixed)
trochoids:

ω(ζ) = e−s · ζ1−s·n + · · ·+ e−2 · ζ1−2n + e−1 · ζ1−n + r · ζ + e1 · ζn+1 + e2·
ζ2n+1 + · · ·+ es · ζs·n+1 = r · ζ + ∑s

j=1
(
e−j · ζ1−jn + ej · ζ jn+1). (5)

This trochoid has an order of 2 · s− 1. In essence, Equation (5) is the sum of Equations
(3) and (4), where the term r · ζ is considered only once.

For all three classes of curves, n describes the periodicity of the trochoid; therefore, it
also represents the number of sides of the profile whose boundary contour is described by
the corresponding equation.

Hybrid trochoidal profiles were also presented in [9], where two real parameter
functions were used to describe the geometry. Using the above methodology, the contour
geometry can be determined via a single ‘complex’ equation, simplifying the investigations
of a profile’s geometric and mechanical properties. If the function ω(ζ) conformably
maps the boundary of a unit circle to the profile contour, the complex formulation should
facilitate the investigation of the mechanical stresses in the profiles [6,10]. In [11,12], such
formulations were used to solve the torsion problem for prismatic profile shafts.

Special features of higher hybrid (M) profiles
This study deals with the general description of hybrid (M) profiles based on Equation (5).

By changing the periodicity n and the number of e values and their sign, innumerable
profile contours can be obtained that can be adapted to any technical application.

Figure 2 presents examples of M-profiles, where m represents the order of the profile.
A change in the e values may produce concave, flat, or convex flanks while the general
profile character remains unchanged.
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Figure 2. Examples of the complex hybrid trochoid (M-profiles) with additional eccentricities, where
m represents the order and n represents the periodicity of the profile.

3. Geometric Properties of M-Profiles

According to the contour ω(ζ) based on Equation (5), the geometric properties of
the profile, that is, the profile area, radii of the head circle (ra) and foot circle (rf), the
contour curvatures, ρ, and the tooth height h can be determined. These variables determine
the influences on the construction-space requirements and the profile form/friction-fit
properties for application as a shaft–hub connection.

Figure 3 shows an example of the geometry sizes for an M-profile with eight teeth. The
profile geometry can be changed depending on the eccentricities and adapted to predefined
geometric conditions.

Figure 3. Geometry of the M-T04 family for n = 8 (exemplary) [1].
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3.1. Area

The area enclosed by the contour ω(ζ) can be determined as follows [8]:

A = 1
2

∫ 2π
0 Im

[
ω(ζ) · .

ω(ζ)
]
dt or :

A = 1
2

∫ 2π
0 Im

[
i ·ω

(
e−it) · dω(eit)

deit · eit
]

dt,
(6)

where Im[ ] indicates the imaginary part of the function, which is presented in square
brackets.

3.2. Radii of Head Circle (ra) and Foot Circle (rf)

By substituting ζ = eit into Equation (5), the following relationship is obtained:

ω
(
eit) = e−s · e(1−s·n)it + · · ·+ e−2 · e(1−2n)it + e−1 · e(1−n)it + r · eit + e1 · e(1+n)it+

e2e(1+2n)it + · · ·+ es · e(1+s·n)it = r · eit +
s
∑

j=1

(
e−j · e(1−j·n)it + ej · e(1+j·n)it

)
(7)

Equation (7) describes the profile contour as a ‘complex’ function of the parameter
angle t. If t = 0 is inserted into Equation (6), the radius of the head circle ra is determined as
follows:

ra =
∣∣ω(eit)∣∣

t=0
=
∣∣∣e−s · ei(1−s·n)t + · · ·+ e−1 · ei(1−n)t + r · eit + e1 · ei(1+n)t + · · ·+ esei(1+s·n)t

∣∣∣
t=0

,

that is,
ra = r + ∑s

j=1

(
ej + e−j

)
. (8)

The radius of the foot circle r f can be determined by substituting t = π
n into Equation (7):

r f = ω
(
eit)∣∣

t= π
n
= e−s · ei (1−s·n)π

n + · · ·+ e−1 · ei (1−n)π
n + r · ei π

n + e1 · ei (1+n)π
n + · · ·+ es

ei (1+s·n)π
n ,

that is,

r f = r +
s

∑
j=1

(−1)j(e−j + ej
)
. (9)

3.3. Tooth Height

Similar to the terminology of gear technology, the tooth height h can be defined for
M-profiles. It is defined as the sum of the addendum ha and dedendum h f , as follows (see
also Figure 3):

h = ha + h f = ra − r f , (10)

where ha = ra − r and h f = r− r f are applied.

3.4. Radius of Curvature

The radius of curvature can then be determined from the elementary differential
geometry in complex form as follows [8]:

ρ = 2i · (
.

ω · .
ω)

3
2

.
ω · ..

ω− .
ω · ..

ω
=

∣∣ .
ω
∣∣3

Im(
.

ω · ..
ω)

. (11)
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The following relations hold for the functions
.

ω and
..
ω:

.
ω = − i

ζ ω
′(ζ) i

ζ

′
( 1

ζ )

..
ω = − 1

ζ

(
ω′′
(

1
ζ

)
1
ζ + ω′

(
1
ζ

)) (
with ζ = eit). (12)

The radii of curvature at the contour head and foot areas (ρa and ρ f , respectively) are
important for profile manufacturing and can be determined from Equation (10) with t = 0
and t = π/n, respectively.

4. M-Profiles with Four Eccentricities [1,2]

This effort aimed to combine the advantages of P3G profiles of DIN 32711 [3] (low
form/notch coefficient) with those of the splined shaft profiles of DIN 5486 [4] (high form
fit) in one profile. The M-profile contours were extensively investigated and optimised
in [1] with regard to torsional loading. To keep the scope of the investigations manageable,
profile families are developed with four eccentricities while maintaining the adaptability of
the contour to practical applications.

The following contour description applies to an M-profile with s = 2 (or 4 eccentricities):

ω
(
eit) = r · eit + ∑2

j=1

(
e−j · e(1−j·n)it + ej · e(1+j·n)it

)
, thatis,

ω(ζ) = e−2 · ζ1−2n + e−1 · ζ1−n + r · ζ + e1 · ζ1+n + e2 · ζ1+2n.
(13)

Area
Accordingly, Equation (6) gives the following relationship for the area of the profile

cross-section:

A = π
[
r2 − (2n− 1)e2

−2 − n
(

e2
−1 − e2

1 − 2e2
2

)
+ e2
−1 + e2

1 + e2
2

]
. (14)

Head circle
In many practical applications, the head circle determines the installation space of

the profile. The radius of the head circle can be determined from the contour equation
(Equation (13)) for the contour head (at t = 0) as follows:

ra =
∣∣ω(eit)∣∣

t=0 =
∣∣∣e−2 · ei(1−2n)t + e−1 · ei(1−n)t + r · eit + e1 · ei(1+n)t + e2 · ei(1+2n)t

∣∣∣
t=0

ra = r + e1 + e2 + e−1 + e−2.
(15)

Foot circle
As another characteristic, the foot-circle radius can be determined from Equation (13)

with t = π/2, as follows:

r f =
∣∣ω(eit)∣∣

t= π
n
=
∣∣∣e−2 · ei (1−2n)π

n + e−1 · ei (1−n)π
n + r · ei π

n + e1 · ei (1+n)π
n + e2 · ei (1+2n)π

n

∣∣∣
r f = r− e1 + e2 − e−1 + e−2.

(16)

Tooth height
The tooth height is calculated as the difference between the radius of the head circle

and that of the foot circle:
h = ra − r f = 2(e1 + e−1). (17)

The addendum and the dedendum are determined as follows:

ha = ra − r = e1 + e2 + e−1 + e−2 (18)

h f = r− r f = e1 − e2 + e−1 − e−2. (19)

As indicated by Equation (17), the tooth height h depends only on e1 and e−1. Accord-
ing to Equations (18) and (19), the corresponding proportions ha and h f also depend on e2
and e−2.
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Radius of curvature
The radii of curvature for the head and foot areas are determined using Equation (11)

as follows:

ρa = −
(r + e2 − e−1 + e−2 + 2e2n + e−1n− 2e−2n− e1(n + 1))2

r− e−1 + e−2 + 2e−1n− 4e−2n− e−1n2 + 4e−2n2 − e1(n + 1)2 + e2(2n + 1)2 (20)

ρ f =
(r + e1 + e2 + e−1 + e−2 + e1n + 2e2n− e−1n− 2e−2n)2

r + e−1 + e−2 − 2e−1n− 4e−2n + e−1n2 + 4e−2n2 + e1(1 + n)2 + e2(2n + 1)2 . (21)

ρa plays an important role in selecting a suitable manufacturing method and can be
adjusted by considering the eccentricity values in Equation (12). The concavity of the profile
flank (and consequently the form-fit degree of the profile) can be determined using ρ f in
Equation (21).

M-T04 Profiles

In [1], the four simplified eccentricities e−2, e−1, e1, and e2 were defined as functions of
a basic or main eccentricity e0 to narrow the range of variants. The general form of Equation
(13) was used as a basis, and extensive investigations were performed on the load-bearing
capacities of profiles with a hub for torsional loading [1,13,14]. The eccentricities e−2, e−1, e1,
and e2 are expressed as follows:

e−2 = −2n + 1
8

e0, e−1 =
n + 1

2
e0, e1 = (n− 1)e0, e2 =

2n− 1
8

e0. (22)

This results in the following contour description for the M-T04 profile family:

ω(ζ) = −2n + 1
8

e0 · ζ1−2n +
n + 1

2
e0 · ζ1−n + r · ζ +(n− 1)e0 · ζ1+n +

2n− 1
8

e0 · ζ1+2n (23)

The corresponding parametric equations can be obtained as follows:

x =
(

r + e
(

3n−1
2 cos(nt)− n

4 cos(2nt)
))

cos(t)− e
( n−3

2 sin(nt) + n
2 sin(2nt)

)
sin(t)

y =
(

r + e
(

3n−1
2 cos(nt)− n

4 cos(2nt)
))

sin(t) + e
( n−3

2 sin(nt) + n
2 sin(2nt)

)
cos(t)

(24)

An analytical approach for resolving the torsion issue using conformal mappings was
comprehensively presented in [1]. Figure 4 shows the testbench for the torsional load (left)
and the cracking due to torsional loading (right) for the M-04-Profile studied in [1].

Figure 4. Testbench for the torsional load (left) and the cracking due to torsional loading (right) [1].

Geometric properties of M-T04 profiles
From Equation (14), the area enclosed by the M-T04 contour can be easily derived for

any number of sides n, and the corresponding main eccentricity e0:

A = πr2 +
π

32
e2

0

(
24n3 − 44n2 − 24n + 41

)
. (25)
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Additionally, Equations (15) and (16) can be used to calculate the radii of the head and
foot circles as follows:

ra = r +
s

∑
j=1

(
ej + e−j

)
= r +

3
4

e0 (2n− 1) (26)

r f = r + ∑s
j=1(−1)j(e−j + ej

)
= r− 1

4
e0(6n− 1). (27)

The tooth height h and its distribution can be determined from the parameter equations
as functions of n and

h = e0(3n− 1), ha =
3e0

4
(2n− 1), h f =

e0

4
(6n− 1). (28)

Additionally, the radii of the contour head and foot can be determined as follows:

ρa =

(
4r + 6e0n2 − 3e0

)2

16r + 4e0(6n3 + 6n2 − 6n− 3)
(29)

ρ f =

(
4r + 2en2 + e0

)2

16r− 4e0(6n3 − 2n2 − 6n− 1)
. (30)

5. Bending Stresses in Profiled Shaft
5.1. General Theory: Pure Bending

For prismatic beams with an arbitrary cross-section, the elementary approach can
be used to solve for pure bending. Figure 5a schematically represents a prismatic beam
subjected to a bending load with a noncircular cross-section and five teeth.

Figure 5. (a) Prismatic beam with a noncircular cross-section under pure bending; (b) coordinate
system used to describe bending stresses.
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Bending stress
Figure 5b presents the coordinate system used to describe the stresses in this study. The

z-axis was set along the length of the shaft, and the x-axis was set in the vertical direction.
The shaft was fixed to the left. For convenience, the coordinate origin was placed at the
centre of gravity of the left profile face. To solve this problem, the following elementary
approach from the literature is used, where the equilibrium and compatibility conditions
for the elastic bodies are satisfied [6]:

σz = a · x, σx = σy = τxy = τzx = τzy = 0. (31)

It is assumed that the plane cross sections remain planar upon loading. The factor a in
Equation (31) represents a constant value determined by the equilibrium of the bending
stresses. The resulting moment of the stresses acting on the right side (or on any cross-
section) remains in equilibrium with the bending load with respect to the y-axis:

Mb = −
x

S
σz · xdxdy. (32)

Substituting σz from Equation (31) into (32) yields the following relationship, where Iy
represents the moment of inertia of the profile section with respect to the y-axis:

Mb = −a
x

S
x2dxdy = −a · Iy. (33)

Therefore, the following relationship is valid:

a = −Mb
Iy

or σz = −
Mb
Iy
· x. (34)

Thus, the solution for the stresses can be obtained as follows:

σx = σy = τxy = τyz = τxz = 0, σz = −
Mb
Iy
· x. (35)

Deflection
Displacements are determined using Hooke’s law and the corresponding relation

between displacements and strain as follows [6,10]:

ux = Mb
2 · E · Iy

·
[
z2 + ν ·

(
y2 − x2)]

uy = −Mb · ν
E · Iy

· (xy)

uz = − Mb
E·Iy
· (xz).

(36a)

The deflection of the neutral axis is determined from ux for x = y = 0, as follows:

δx =
Mb

2 · E · Iy
· z2 (36b)

δx(z) =
Mb

2 · E · Iy
· z2. (36c)

Bending moment of inertia
Although the moments of inertia usually involve a double integral over the profile

cross-section, this is reduced to a simple curvilinear integral over the profile contour using
Green’s theorem, as follows [10]:

Ix = − 1
3

∫
γ y3dx

Iy = 1
3

∫
γ x3dy

Ixy = 1
2

∫
γ x2ydy.

(37)
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The corresponding contour description based on Equation (13) is also advantageous.
Cartesian coordinates can be easily obtained via elementary calculations using the complex
functions, as follows (see [15]):

x = ω(λ)+ω(λ)
2 ,

y = ω(λ)−ω(λ)
2·i

(38)

By substituting Equation (38) into the definitions of the moments of inertia (Equation
(37)), they are determined as follows, where λ = eit holds.

Ix = − i
48

∫
γ

(
ω(λ)−ω(λ)

)3
d
(

ω(λ) + ω(λ)
)

Iy = i
48

∫
γ

(
ω(λ) + ω(λ)

)3
d
(

ω(λ)−ω(λ)
)

Ixy = − 1
32

∫
γ

(
ω(λ) + ω(λ)

)2(
ω(λ)−ω(λ)

)
d
(

ω(λ)−ω(λ)
) (39)

Equation (39) facilitates the determination of the moments of inertia when ω(ζ) is
available for the profile contour.

Rotational bending
Because a prismatic bar has technical applications as a rotating profile shaft, the

bending moment of inertia should also be determined for rotated coordinates. Figure 6
schematically represents an M-04 profile with six teeth in Cartesian coordinates.

Figure 6. Rotated coordinate system for the profile cross-section.

The coordinates rotated by angles φ are denoted as ξ and η. Owing to the tensorial
property of moments of inertia, the following relationships are obtained for the rotated
coordinate system using Mohr’s circle (see [16]):

Iξ =
Ix+Iy

2 +
Ix−Iy

2 cos(2φ)− Ixy sin(2φ)

Iη =
Ix+Iy

2 − Ix−Iy
2 cos(2φ) + Ixy sin(2φ)

Iξη =
Ix−Iy

2 sin(2φ) + Ixy cos(2φ).

(40)

The moments of inertia remain invariant owing to the periodic symmetry of the cross-
section of the M-contours presented in this paper based on Equation (13). Therefore, the
following relationships are valid from Equation (39):

Ix = Iy and Ixy = 0. (41)



Appl. Mech. 2022, 3 1073

This property is advantageous when Equation (39) is used to determine the moments
of inertia for the rotated cross-section. By substituting the values from Equation (38) into
Equation (37) for an arbitrary rotation angle φ, the following relationships are obtained:

Iξ = Iη

(
= Ix = Iy

)
Iξη = Ixy = 0.

(42)

The polar moment of inertia can be determined as follows:

Ip = 2 · Ix = 2 · Iy. (43)

5.2. General Solution for M-T04 Profiles

Moments of inertia
By substituting the eccentricities from Equation (23) into Equation (39), the following

equations are obtained for the moments of inertia for any number of flanks n and an
arbitrary main eccentricity e0:

Ix = Iy = π
4

[
r4 + 1

16 e2
0
(
24n3 + 28n2 − 72n + 51

)
r2 + 3

8 e3
0
(
6n4 − 3n3 − 7n2 + 3n1

)
r

+ 3
2048 e4

0
(
768n5 − 2096n4 + 1440n3 + 296n2 − 2016n + 1473

)]
,

Ixy = 0.

(44)

Then, according to Equation (43), the following relationship for the polar moment of
inertia is valid:

Ip = π
2

[
r4 + 1

16 e2
0
(
24n3 + 28n2 − 72n + 51

)
r2 + 3

8 e3
0
(
6n4 − 3n3 − 7n2 + 3n + 1

)
r+

3
2048 e4

0
(
768n5 − 2096n4 + 1440n3 + 296n2 − 2016n + 1473

)]
.

(45)

Therefore, the bending stress and deformations can be determined using Equations
(35) and (36), respectively.

Bending stress
To obtain a general solution for the bending stress σz based on (35), lever x should be

converted to the rotated coordinate system:

ξ = y cos(φ)− x sin(φ), (46)

where φ represents the rotation angle. If the values of x and y from Equation (24) are substi-
tuted into Equation (46), the following relationship is obtained for the rotated coordinate ξ
on the profile contour (0 ≤ t ≤ 2π):

ξ(φ, t) =
2e0(n− 3 + 2n cos(nt)) cos(t− φ) sin(nt) + (4r + 2e0(3n− 1) cos(nt)− e0 cos(2nt)) sin(t− φ)

4
. (47)

The distribution of bending stress on the profile contour can be determined using the
following equation:

σz(φ, t) = −Mb
Iη
· ξ(φ, t). (48)

By substituting ξ from Equation (47) and Iy from Equation (44) into Equation (48), the
distribution of the bending stress on the profile contour can be determined.

5.3. M-04 Profile from [1]

As an example, the profile experimentally investigated in [1] for torsional loading (see
Figure 4) was used as a basis to investigate the bending behaviour. The corresponding
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geometric properties are n = 6, r = 17.44 mm, and e0 = 0.3104 mm (Figure 7). Equation
(23) provides the following relationship for the contour of this profile:

ω(ζ) = −0.504
ζ11 +

1.086
ζ5 + 17.44ζ + 1.552ζ7 + 0.427ζ13. (49)

Figure 7. Investigated M-T04 profiles in [1].

The bending moment of inertia about the x- or y-axis of Ix = Iy = 82113 mm3 with
Ixy = 0 is then calculated using (44). The solution of the bending stress for the profile
contour (0 ≤ t ≤ 2π) in the rotated coordinate system is obtained using (48) as follows:

σz =
Mb

82113
ξ(φ, t), (50)

with

ξ(φ, t) = r sin(t− φ) + 1
8 e0(40 sin(7t− φ) + 11 sin(13t− φ)− 28 sin(5t + φ)+

13 sin(11t + φ)).
(51)

By substituting Equation (52) into Equation (51), the following relationship can be
obtained for the distribution of the bending stress on the lateral surface of the profiled shaft
for an arbitrary rotation angle φ:

σb(t) =
17.44Mb

82113 · [sin(t− φ) + 0.089 sin(7t− φ) + 0.0245 sin(13t− φ)−
0.0623 sin(5t + φ) + 0.02892 sin(11t + φ)].

(52)

In addition, numerical investigations were carried out using FEA to compare with
Equation (52). The MSC-Marc programme system was used. Figure 8 shows the mesh
structure and the corresponding boundary conditions. The profiled shaft is fixed on the
left side. The bending moment is transferred to the shaft’s right side via a reference node
using REB2. The FE mesh contains 185,280 hexahedral elements with full integration (type
7 according to the Marc Element Library [17]) and 202,258 nodes. The FE meshes were
generated with the help of software written in Python language at the Chair of Machine
Elements at the West Saxon University of Applied Sciences in Zwickau. The FE meshes were
then transferred to the MSC-Marc program system and integrated into the pre-processing.
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Figure 8. FE mesh and boundary conditions for the M-T04 profile.

The stress distribution is determined for two angles of rotation (φ = 0 and φ = π/2)
using Equation (52) and compared with the results of the finite-element (FE) analyses in
Figure 9, where Mb = 500Nm. As shown, the results agree well.

Figure 9. Distribution of the bending stresses on the M-T04 profile for two rotation angles: FEM
results and analytical solution based on Equation (52).

Figure 10 presents the bending stresses on the profile contour for different rotation
angles, which were determined using Equation (52). As expected, the maximum stress
occurred at φ = π/2 (or φ = π/6) on the profile head.

Figure 10. Distribution of the bending stresses on the M-T04 profile for several rotation angles
according to Equation (52).
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5.4. Modified M-04 Profile Based on [2]

In another transfer project with industry [2], the M-04 profile was modified for practical
application as a shaft–hub connection in a transmission system. The geometric properties
of the modified contour were n = 6, r = 18.832 mm, and e0 = 0.1416 mm (Figure 11).

Figure 11. Modified M-T04 profile investigated in [2].

According to Equation (23), the contour of this profile is expressed as follows:

ω(ζ) = −0.231
ζ11 +

0.497
ζ5 + 18.832ζ + 0.71ζ7 + 0.195ζ13. (53)

From (44), the bending moment of inertia is determined as Ix = Iy = 100920 mm3 and
Ixy = 0 mm3.

The solution for the bending stress for the profile contour (0 ≤ t ≤ 2π) in a rotated
coordinate system is obtained using (48) as follows:

σz =
Mb

100920
ξ(φ, t). (54)

By substituting ξ from Equation (51) into Equation (54), the following relationship can
be obtained for the distribution of the bending stress on the lateral surface of the profiled
shaft for an arbitrary rotation angle φ:

σb(t) =
18.832Mb

100820 · [sin(t− φ) + 0.0376 sin(7t− φ) + 0.0103 sin(13t− φ)−
0.0263 sin(5t + φ) + 0.0122 sin(11t + φ)].

(55)

The distribution of the bending stress was determined for two angles of rotation
(φ = 0 and φ = π/2) using Equation (55) and compared with the results of the FE analyses,
as shown in Figure 12, where Mb = 500 Nm. Good agreement between the results was
observed.

Figure 12. Distribution of the bending stresses on the M-T04 profile for two rotation angles: FEM
results and analytical solution based on Equation (55).
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5.5. Experimental Investigations

In addition to analytical and numerical solutions, experimental measurements were
performed using strain gauges (Figure 13 left). A comparison of the experimental results
with the solution obtained using Equation (36b) is presented in Figure 13 right; as shown,
good agreement was observed.

Figure 13. Testbench for the bending load, with a strain-gauge application (left); comparison of the
analytical solution of Equation (55) with the experimental data (right) [2].

5.6. Deflection

The deflection can be easily determined from Equation (36a) as a function of the axial
coordinate:

The shaft deflection was calculated for both M-04 [1] and the modified profile [2] for a
length of l = 140 mm, with Mt = 500 Nm and an elastic modulus of E = 210000 N/mm2

for steel. Figure 14 presents the deflection for both shaft profiles and a comparison with the
numerical (FE analysis) results; as shown, good agreement was observed.

Figure 14. Shaft deflection of the M-04 [1] (left) and the modified profile [2] (right): comparison
between the FE analysis results and the results based on Equation (36c).

6. Conclusions

The geometric characteristics of the higher trochoids were systematically discussed in
the first part of this paper. The advantages of such profiles, known as the M-T04 profile
family, were represented for use as shaft–hub connections.

Because of a practical viewpoint, the geometrical features, such as head circle, root
circle, tooth height, etc., were described analogously to the standardised tooth profiles for
shaft-hub connections. In contrast to the standard tooth profiles, the higher trochoids have
mathematically continuous contours.

The next part of the paper outlined a general theory of bending-loaded profile shafts. A
general solution of the rotating bending stress and deformations for pure bending (without
shear force) was presented. By properly formulating the geometric-mechanical relations of
the trochoidal curves with the help of complex functions, closed solutions for the bending
stresses and the elastic deformations in such profiles were derived. The obtained equations
allow a quick design of the profiled shaft with the help of a simple pocket calculator
without expensive FE analyses. The solution was directly applied to two M-04 profiles. The
analytical results agreed very well with numerical and experimental findings.
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Nomenclature

Formula symbols
A mm2 Area of profile cross-section
e mm Profile eccentricity
egrenz mm Profile overlap eccentricity limit
E MPa Young’s modulus
n - Profile periodicity (number of sides)
Ip mm4 Polar moment of inertia
Ix, Iy, Ixy mm4 Surface moments of inertia in a Cartesian coordinate system
Iξ , Iη, Iξη mm4 Surface moments of inertia in a rotated coordinate system
l mm Length of profiled shaft
Mb Nm Bending moment
r mm Nominal or mean radius
t - Profile parameter angle
ux, uy, uz mm Displacement components
x, y, z mm Cartesian coordinates
Greek formula symbols:
ε = e0/r - Relative eccentricity
φ - Rotation angle of a coordinate system
λ = eiθ - Physical plane unit circle
θ - Polar angle
σb, σz MPa Bending stress (z-component of stress vector)
ω(ζ) - Completed mapping function
ω0(ζ) - Contour edge mapping function
ζ - Complex variable in model plane
ξ, η - Coordinates in rotated system
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