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Multiple Spatially Uncertain Material Parameters
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harri.hakula@aalto.fi

Abstract: Engineering structures are often assembled from parts with different materials. When uncer-
tainty quantification techniques are applied, the curse of dimensionality increases the computational
complexity. Here, a stochastic Galerkin method for planar elasticity allowing for multiple regions
with independent uncertain materials is introduced. The method allows for efficient solution of linear
systems both in fully assembled and matrix-free formulations. The selection of the stochastic basis
polynomials is performed using a priori knowledge of the decay of the random fields. The statistical
quantities of interest are the expected solution and variance, both of which can be computed efficiently
after the Galerkin system has been solved. Analysis of the results indicates that the proposed method
is highly efficient in terms of both computational resource requirements and discretization of the
stochastic dimensions. The results were verified with Monte Carlo and quasi-Monte Carlo methods.
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1. Introduction

In engineering, structures made of multiple different materials are common. In this
paper, the focus is on cases where the materials have uncertainties, that is, where they
are random. The standard approach is to use an appropriate series representation such
as Karhunen–Loève for inclusion of probabilistic variables (fields) into standard partial
differential equations (PDEs). The resulting systems can then be solved either intrusively
by designing specific solvers, or non-intrusively utilizing existing software frameworks.

Stochastic finite elements have a long history. The classic book by Ghanem and
Spanos has been reprinted many times over the past decade [1]. Schenk and Shueller have
interesting historical perspectives as well [2]. Following the seminal paper by Babuska et al.
[3], where it was shown that the convergence rates are not restricted to those of Monte Carlo
methods, there has been an explosion of publications in related topics. Uncertainties can
occur in both materials and in loading and domain, which is to say, wherever manufacturing
imperfections can arise in engineering. Numerical solution methods have been adjusted to
handle the kind of systems that result from discretized stochastic PDEs. The Acta Numerica
article by Schwab and Gittelson is an excellent overview [4], as is Xiu’s book [5]. Two
relatively recent and accessible textbooks are those by Sullivan [6] and Soize [7].

Here, the focus is on a linear elasticity problem in which the computational do-
main is divided into subdomains, each with a random material parameter, namely, the
Young’s modulus. The main modelling contribution of this paper is the following ma-
terial model. It is assumed that each subdomain represents a manufactured part; therefore
the correlations between different parts are ignored in the aggregate or global material model.
The global material parameter is considered to be in tensor product form. Instead of trying to ac-
commodate multiple random materials simultaneously, one could either try to homogenise [8]
or alternatively to propagate uncertainties from different characteristic length scales to a final
global scale [9,10]. The idea of representative volumes should be mentioned here as well [11].

There are many solution strategies for solving the resulting stochastic PDEs. These so-
lution strategies can be broadly divided into intrusive and non-intrusive strategies. The main
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contribution to computational issues in this study lies in showing that the material model
mentioned above can be effectively implemented within the standard stochastic Galerkin
finite element method (sGFEM) framework, which is an intrusive approach. Currently,
non-intrusive methods are used more widely. The main advantage of non-intrusive ap-
proaches is their ability to utilize the existing software infrastructure. The random input is
evaluated at certain quadrature points and the underlying problem is then solved using
those realizations of the input data. This collection of solutions can then be used to compute
higher moments, such as variance, or to interpolate between the quadrature points. The
gold standard is the Monte Carlo method and its many variations, including multi-level
methods (see the much-cited work by Scheichl et al. [12]), and quasi-Monte Carlo, which
has received a great deal of attention due to its theoretically better convergence properties
(see the excellent work by Kuo and co-authors [13–15]). Collocation methods on sparse
grids form another class of non-intrusive methods. Here, the Acta Numerica article by
Bungartz and Griebel is the basic reference [16]. There has been much interest in fully
adaptive schemes in collocation; see for example the recent paper by Lang et al. [17].

The deterministic part of the problem is discretized with the hp-version of the finite
element method. This choice is motivated by the desire to minimize the number of degrees
of freedom and prepare for future projects, such as those involving thin structures, where
in order to avoid numerical locking the high-order methods are the preferred option. It is
simultaneously both an advantage and disadvantage of sGFEM that one linear system has
to be solved. In order to control the number of degrees of freedom, a priori selection of
the stochastic basis polynomials is important. One heuristic approach originally proposed
by Andreev [18] has been shown to perform remarkably well within this context. As
planar elasticity leads to positive definite systems, conjugate gradients are a natural choice
for iteration, provided that a suitable preconditioner can be constructed. Remarkably, a
straightforward block-diagonal preconditioner can function extremely well. Furthermore,
in the case of multiple random fields there exists an immediate matrix-free variant of
the solution method. Similar problems have been considered by other authors as well,
both from the point of view of preconditioning and of alternative formulations of the
elasticity equations. Klawonn has considered the FETI domain-decomposition method in
the hp-context [19], whereas recently Eigel and Gruhlke have successfully used FETI for
the kind of problems discussed here [? ]. Preconditioning of elasticity problems within
the mixed FEM formulation has been discussed by Khan et al. in a very nice paper [21].
As already mentioned, the a priori selection of the basis polynomials is emphasised here.
However, there exist adaptive schemes for simpler material models as well. In particular,
the work of Bespalov is very interesting, as these methods can potentially be utilized in the
hp-context [22].

The model configuration used here is shown in Figure 1. Using symmetry, the original
3D problem can be dimensionally reduced to a planar elasticity problem. In the numerical
examples below, cases with either three (indicated with (i, ·), i = 1, 2, 3) or eight mate-
rials are considered. Even though the problem setting is idealised, it is clear that similar
configurations arise within the study of composite-type or sandwich-type structures, as
well as multi-panelled designs such as pressure vessels. In the numerical experiments, it is
assumed that while the expected value of the material parameter is constant, realizations
of the material parameters may be discontinuous over regional boundaries. Problems with
strong jumps between material parameters are an active area of research. A very interesting
paper by Heinlein et al. discusses such problems within the kind of domain decomposition
framework which may well be suitable in the context of this paper as well [23].

The rest of the paper is structured as follows. First, Navier’s elasticity equations are dis-
cussed, including the corresponding stochastic formulation. Next, the stochastic Galerkin
method is reviewed in compact form along with definitions of all key elements needed.
Readers who are familiar with the topics mentioned above can safely move directly
to the description of the selection of the chaos polynomials and the tightly integrated
iterative solver. The numerical experiments cover two configurations of random material
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fields, and a thorough analysis of the results is presented. Our conclusions are drawn in
the final section.
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Figure 1. Model problem configuration. The computational domain has three layers and eight
regions. The traction loading that acts on the inner boundary segment is indicated with arrows. The
boundary at x = 0 is fully clamped, while all other boundaries are free. (a) CAD model of the domain;
(b) computational domain.

2. Navier’s Equations of Elasticity

Here, Navier’s equations of elasticity are chosen to model the system of interest. One
of the standard reference textbooks is Slaughter [24]. Let D be a domain representing a
deformable medium subject to a body force f and a surface traction g. The 2D model
problem is then to find the displacement field u = (u1, u2) and the symmetric stress tensor
σ = (σij)

2
i,j=1 such that

σ = λ div(u)I + 2µε(u), in D

−div(σ) = f, in D

u = 0, on ∂DD

σ · n = g, on ∂DN

(1)

where ∂D = ∂DD ∪ ∂DN is a partitioned boundary of D. The Lamé constants are

λ =
E ν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

, (2)

with E and ν being Young’s modulus and Poisson’s ratio, respectively. Further, I is the
identity tensor, n denotes the outward unit normal to ∂DN , and the strain tensor is

ε(u) =
1
2
(∇u +∇uT). (3)

The vector-valued tensor divergence is

div(σ) =

(
2

∑
j=1

∂σij

∂xj

)2

i=1

. (4)
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This formulation assumes a constitutive relation corresponding to linear isotropic
elasticity with stresses and strains related by Hooke’s generalized law:

σv =

 σ11
σ22
σ12

 = D(λ, µ)

 ε11
ε22
ε12

 = D(λ, µ)εv. (5)

2.1. Weak Formulation

The weak formulation is defined in the standard manner. Begin with a function space
VD = {v : v ∈ H1(D), v|∂DD = 0} and state (Find u ∈ VD ×VD) such that

a(u, v) = L(u), ∀v ∈ VD ×VD, (6)

where the bilinear form
a(u, v) =

∫
D

σ(u) : ε(v) dx (7)

is the integrated tensor contraction

σ : ε =
2

∑
i,j=1

σijεij, (8)

and L(·) denotes the linear functional

L(v) = (f, v)D + (g, v)∂DN =
∫

D
f · v dx +

∫
∂DN

g · v ds. (9)

As usual, the kinematic relation and the constitutive matrix

εv(u) =


∂

∂x1
0

0 ∂
∂x2

∂
∂x2

∂
∂x1

[ u1
u2

]
, D(λ, µ) =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

 (10)

respectively, are specified for the purpose of rewriting the bilinear form as

a(u, v) =
∫

D
εv(u)TD(λ, µ)εv(v) dx. (11)

2.2. Stochastic Formulation

A stochastic extension of Navier’s equations of elasticity follows by application of
basic principles. Even though only the case of uncertain material parameters is con-
sidered in the experiments, the presentation here is for the full stochastic formulation.
Letting (Ω, Γ, P) denote a probability space, where Ω is a space of outcomes, Γ ⊂ 2Ω is a
sigma-algebra of events, and P : Ω→ [0, 1] is a probability measure on Ω, respectively, the
uncertainties in the domain and material parameters of the physical problem are modelled
assuming that there exists an explicit dependence of these quantities on the stochastic
variable ω ∈ Ω via a priori known mappings ω 7→ Dω, ω 7→ Eω, ω 7→ fω and that
ω 7→ gω.

The stochastic problem can then be stated as follows: find the displacement field
uω : Dω → R2 and stress tensor σω : Dω → R2×2 such that

σω = λω div(uω)I + 2µωε(uω), in Dω

−div(σω) = fω, in Dω

uω = 0, on ∂DDω

σω · n = gω, on ∂Dω
N

(12)
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where for P-almost every ω ∈ Ω. Here, the stochastic dependence ω 7→ Eω is propagated
into the Lamé constants λω and µω via Equation (2).

Analogously to the deterministic case, the stochastic system (12) can be expressed in
weak form. Stochastic extensions for forms (7) and (9) can be defined by setting

a(ω; u, v) =
∫

Dω
σω(u) : ε(v) dx (13)

and
L(ω; v) = (fω, v)Dω + (gω, v)∂Dω

N
. (14)

The weak form of the stochastic problem then reads as follows: find uω ∈ VDω ×VDω

such that
a(ω; uω, v) = L(ω; uω) ∀v ∈ VDω ×VDω (15)

where for P-almost every ω ∈ Ω.

3. Galerkin Method

The system’s stochastic dependence arises from the random material parameter, that
is, from the Young’s modulus, Eω. The Karhunen–Loève expansion is used to express
this random field with respect to a countable set of random variables and spatial shape
functions. Another possibility would be to first choose a suitable spatial basis and then
estimate the corresponding polynomial chaos coefficients from available data; see [25,26].

3.1. Deterministic Part: hp-Version

The finite element method (FEM) is the standard numerical method for solving el-
liptic partial differential equations. Because FEM is an energy minimization method it is
eminently suitable for linear elasticity problems. The hp-FEM variant is the most efficient
one [27,28]. With proper geometric grading of the meshes (see Figure 2a) and uniform
polynomial order, exponential convergence can be achieved even in problems with strong
corner singularities.
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Counts

Nodes 103
Edges 182
Quadrilaterals 80
d.o.f. 2738

|ΛA1 | 1280
N1 3, 504, 640
|ΛATD | 30, 250
NTD 82, 824, 500

|ΛA2 | 6561
N2 17, 964, 018

(b)

Figure 2. Graded mesh used in all simulations. N1 and N2 refer to the dimensions of the linear
systems of the two configurations, respectively, and NTD is the dimension of the first case with the
total degree selected and isoTD(·, K = 2). (a) Geometrically graded mesh used in all simulations and
(b) discretization data. Sizes of the mesh components and stochastic basis used at deterministic p = 4.

The idea behind the p-version is to associate degrees of freedom with topological
entities of the mesh, in contrast to the classical h-version, where the association is with
mesh nodes only. When both strategies are combined, the result is the hp-version. The shape
functions are based on suitable polynomials, which are integrated Legendre polynomials
here, and their supports reflect the related topological entity—nodes, edges, and the interior
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of the elements. The nodal shape functions induce a partition of unity. Moreover, due
to the construction of shape functions, it is natural to have large elements in the mesh
without any significant increase in the discretization error. The number of elements can
be kept relatively low, as additional refinement can always be added via the elementwise
polynomial degrees.

3.2. Probability Preliminaries

Let (Ω,F , P) be a probability space, Ω the set of outcomes, F a σ-algebra of events,
and P a probability measure defined on Ω. The space of square integrable random variables
on Ω is denoted by L2

P(Ω). Furthermore, for a Hilbert spaceH, the related Bochner space
is defined as

L2
P(Ω;H) :=

{
u : Ω→ H

∣∣∣ ∫
Ω
||u(ω)||2HdP(ω) < ∞

}
. (16)

In the case that H is a separable Hilbert space, this admits the decomposition
L2

P(Ω;H) ' L2
P(Ω)⊗H.

A standard approach is to transform a problem such as (15) into a parametric deter-
ministic form by first assuming the family {ym}m≥1 : Ω → R to be mutually independent
with ranges Γm and associating each ym with a complete probability space (Ωm, Σm, Pm),
where the probability measure Pm admits a probability density function ρm : Γm → [0, ∞)
such that

dPm(ω) = ρm(ym)dym, ym ∈ Γm (17)

and the σ-algebra Σm is assumed to be a subset of the Borel sets of Γm. Finally, it is assumed
that the stochastic input data are finite.

For every application of the stochastic Galerkin method, a basis is needed for the
space L2

P(Ω). The generalised polynomial chaos is introduced for this purpose.
This provides a basis consisting of orthogonal polynomials of the input random variables.
Orthogonal polynomials for various probability distributions can be constructed, and the
use of these as the basis has been observed to yield optimal rates of convergence [29,30].

3.3. Karhunen–Loève Expansion

The idea behind Karhunen–Loève expansion is to represent the underlying random
field as a linear combination of the eigenfunctions of the associated covariance operator.
The distinguishing feature of Karhunen–Loève expansion compared to other linear expan-
sions is that it minimizes the mean square truncation error [1].

Rewriting the random field Eω with respect to a basis defined by the eigenfunctions of
the covariance operator, the following Karhunen–Loève expansion is obtained:

Eω = E(ω, x) = E0(x) +
∞

∑
m=1

√
µmψm(x)φm(ω), (18)

where E0(x) denotes the expected value of the Young’s modulus. Moreover, the coefficients
µm and the stochastic fluctuations ψm(x) are the eigenvalues and vectors of the underlying
covariance function. The sequence µm =

√
µm, m = 1, . . . is assumed to have a decay rate ζ.

The random variables {φm}∞
m=1 are centered and orthogonal, however, they are not

necessarily independent. Solutions to this issue include the Rosenblatt transformation [31]
and introducing suitable auxiliary probability density functions, as suggested in [3]. In the
numerical experiments below it is assumed that the random field E(ω, x) is expressed with
respect to a set of mutually independent uniformly distributed random variables.

Bounds for the decay of the eigenvalues and eigenfunctions of the Karhunen–Loève
expansion are provided in [32].

3.4. Legendre Chaos

The aim here is to express the solution to our problem in a basis of orthogonal poly-
nomials of the input random variables. Therefore, the choice of these basis polynomials
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depends on the probability distribution of the random variables appearing in the spectral
expansion (18). Here, only uniformly distributed random variables are considered, leading
to the choice of tensorised Legendre polynomials.

Let y = (y1, y2, . . .) be a vector of mutually independent random variables with a
constant probability density. After possible rescaling of each of the random variables,
{ym}∞

m=1 is uniformly distributed in the interval [−1, 1]. The stochastic space is then
Γ = [−1, 1]∞ with the underlying uniform product probability measure ν. The expected
value or mean of a random variable v is thus provided by E[v] =

∫
Γ v(y) dν(y), and the

variance is Var[v] = E[(v−E[v])2]. The set (N∞
0 )c is the set of all multi-indices with finite

support, i.e., (N∞
0 )c := {α ∈ N∞

0 | # supp(α) < ∞}, where supp(α) = {m ∈ N | αm 6= 0};
moreover, |α| = ∑m∈supp(α) |αm|.

Two concepts, multivariate polynomials and expansion coefficients, are central.

Definition 1 (Multivariate polynomial). Let α ∈ (N∞
0 )c. The multivariate polynomial Λα(y),

called the “chaos polynomial”, is defined as

Λα(y) =
∞

∏
m=1

φαm(ym) = ∏
m∈supp α

φαm(ym) (19)

where {φm}m≥0 is a suitably normalized (univariate) polynomial sequence with φ0 ≡ 1.

For any given multi-index α ∈ (N∞
0 )c, there exists a corresponding multivariate Legen-

dre polynomial Λα(y) := ∏m∈supp α Lαm(ym), where Lp(x) denotes the univariate Legendre
polynomial of degree p. Normalization E[Λ2

α] = 1 for all α ∈ (N∞
0 )c is assumed implicitly;

in other words, the univariate Legendre polynomials are scaled to be orthonormal with
respect to the inner product 1

2 (·, ·)L2([−1,1]).
The system {Λα(y) | α ∈ (N∞

0 )c} forms an orthonormal basis of L2
ν(Γ) [30].

Therefore, any square integrable random variable v can be written in series form (the
polynomial chaos expansion of the random variable v):

v(y) = ∑
α∈(N∞

0 )c

vαΛα(y) (20)

with convergence in L2
ν(Γ).

Definition 2 (Legendre Coefficient). The Legendre coefficients (or expansion coefficients) are
provided by

vα =
∫

Γ
v(y)Λα(y) dν(y) = E[vΛα]. (21)

The Legendre coefficients are defined on the deterministic discretization, that is, the
finite element mesh. Therefore, it follows that the individual coefficients can be analysed as
any standard finite element solutions.

As the definition above is abstract, any practical application has to include a strategy
for truncating the polynomial chaos. In the case of a single random variable, a surprisingly
efficient strategy introduced by Andreev can be employed for a priori filtering of the chaos.
For the case of multiple materials, for example, the tensor product of the individual filtered
bases is used.
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3.5. Discretized System

Using (11) with D(λ, µ) = E D(λ, µ) and the definitions above, the parametric deter-
ministic weak formulation becomes∫

Γ

∫
D

E(y, x)εv(u(y, x))TD(λ, µ)εv(v(y, x)) ρ(y)dxdy =∫
Γ

∫
D

f(x)v(y, x)ρ(y)dxdy +
∫

Γ

∫
∂DN

g(x)v(y, x)ρ(y)dsdy (22)

for all v ∈ Lν(Γ, H1
0(D) × H1

0(D)), where y := (y1, y2, . . .) ∈ Γ := Γ1 × Γ2 × . . . and
ρ(y)dy := ∏m≥1 ρm(ym)dym. The unique solvability of (22) follows from the
Lax–Milgram lemma.

After discretization and truncation after M̃ terms, the weak formulation reduces to
the following linear system of equations:(

G0 ⊗ A0 +
M̃

∑
m=1

Gm ⊗ Am

)
u = s0 ⊗ f0 + s0 ⊗ g0, (23)

where

A0 = a(u, v), Am =
∫

D

√
µmψm(x)εv(u)TD(λ, µ)εv(v) dx, m = 1, . . . , M̃, (24)

are standard finite element (FEM) matrices, f0 and g0 are standard load vectors correspond-
ing to respective forces, {Gm}M̃

m=0 are stochastic moment matrices, and s0 is a stochastic
load vector; see [32] for details.

The stochastic load vector is provided by

[
s0
]

α
:=
∫

Γ
Λα(y)ρ(y)dy (25)

and the elements of the stochastic moment matrices are[
G0
]

α,β :=
∫

Γ
Λα(y)Λβ(y)ρ(y)dy and[

Gm
]

α,β :=
∫

Γ
ymΛα(y)Λβ(y)ρ(y)dy, m = 1, . . . , M̃,

(26)

where α, β ∈ A ⊂ (N∞
0 )c. It is known that the stochastic moment matrices {Gm}M̃

m=1 exhibit
a nontrivial sparsity pattern [32]; in addition, G0 is a diagonal matrix.

3.6. Response Statistics

The calculation of statistical moments from the polynomial chaos representation is
straightforward. Suppose that the polynomial chaos expansion of a random variable v is
approximated by

vA(ξ) = ∑
α∈A

vαΛα(ξ) (27)

for some multi-index set A ⊂ (N∞
0 )c.

E[vA] = E
[

∑
α∈A

vαΛα

]
= v0 (28)

and the variance

Var[vA] = E

((∑
α∈A

vαΛα

)
− v0

)2
 =

(
∑

α∈A
v2

α

)
− v2

0. (29)
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4. Selection of Chaos Polynomials

In the battle with the Curse of Dimensionality, it is necessary to select a truncation
scheme for the polynomial chaos. Selecting the optimal index set a priori in the sGFEM
setting remains an active research question; for foundations see, e.g., [18,33,34] and the
references therein for more information.

4.1. Standard Truncation Schemes

Standard choices for the index set A are the isoTP and isoTD index sets.

Definition 3 (Isotropic tensor product index set). Let N ∈ N and K ∈ N0. The isoTP index
set is provided by

isoTP(N, K) =
{

α ∈ (N∞
0 )c | max

n=1,...,N
αn ≤ K; αn = 0, n > N

}
. (30)

Definition 4 (Isotropic total degree index set). Let N ∈ N and K ∈ N0. The isoTD index set is
defined as

isoTD(N, K) =

{
α ∈ (N∞

0 )c |
N

∑
n=1

αn ≤ K; αn = 0, n > N

}
. (31)

The isotropic index sets are often preferred due to their ease of construction. However,
the cardinalities of the isoTP and isoTD index sets are (K + 1)N and (N+K

K ), respectively,
and hence the isotropic index sets grow rapidly when either N or K is increased. Therefore,
as the isoTD index set grows slower than the isoTP index set, the isoTD index set is often
preferred over the isoTP index set.

4.2. Andreev’s Selection Algorithm

In the context of Galerkin methods, Algorithm 1 originally by Andreev [18] has proven
to be very efficient. The idea is to compute a priori weight estimates of the multi-indices
satisfying a tolerance criterion.

The algorithm requires two auxiliary concepts. Let c0 be the collection of strictly
decreasing sequences of positive real numbers bounded above by one and tending to zero:

c0 = {µ = (µ1, µ2, . . .) ∈ RN
+ | lim

m→∞
µm = 0 and 1 > µ1 ≥ µ2 ≥ . . .}. (32)

Furthermore, each multi-index α ∈ A can be stored in the sparse format

SPARSE(α, µα) ≡ ({(m, αm)|αm 6= 0}, µα) (33)

as a sorted set of pairs (ordered by the first component) and a real number.
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Algorithm 1 Andreev’s Selection [18].
Given ε > 0, µ ∈ c0, set α0 = (0, 0, . . .).
• Compute A ← {SPARSE(α0, 1)} ∪ ENUMERATE(α0, 1, 1)
• Function ENUMERATE(α, m, εα) with local variables α, m and εα returns a set α ⊂ A

– Let α = ∅
– emphIf µmεα < ε return α
– For n = 0, 1, . . .

* Set α← α ∪ ENUMERATE(α, m + 1, εα)

* Set αm ← αm + 1 and εα ← µmεα

* If εα < ε return α

* Set α← α ∪ {SPARSE(α, εα)}
• Return A

The following examples illustrate how the selection is performed. The notation Lb
a

indicates a normalised Legendre polynomial with degree a in stochastic dimension b.
Notice that in the first example, if the process is repeated with the given decay rate and
lower tolerance, the first 16 polynomials would appear in the same order.

Example 1. Let the decay rate ζ = 2 with coefficients µm = 1/(m + 1)ζ . Setting tolerance
ε = 1/100, the selection algorithm produces a set

ΛA =
{

1, L1
1, L2

1, L3
1, L1

2, L4
1, L5

1, L1
1L2

1, L6
1, L7

1, L1
1L3

1, L1
3, L8

1, L2
2, L9

1, L1
1L4

1

}
. (34)

The stochastic dimension is 9, |Λ| = 16.

Example 2. Let the decay rate ζ = 3 with coefficients µm = 1/(m + 1)ζ . Setting tolerance
ε = 1/100, the selection algorithm produces a set

ΛA =
{

1, L1
1, L2

1, L3
1, L1

2

}
. (35)

The stochastic dimension is 3, |Λ| = 5.
The sum of all moment matrices ∑i Gi is

1 1√
3

1√
3

1√
3

0
1√
3

1 0 0 2√
15

1√
3

0 1 0 0
1√
3

0 0 1 0

0 2√
15

0 0 1


. (36)

The selection algorithm is performed independently on all random variables and
the full basis is taken to be a Kronecker product of the individual bases. The correspond-
ing stochastic moment matrices are simply Kronecker products of the individual ones,
and naturally inherit their overall structure; of course, the products are much sparser.
However, the matrix representation of the discretized system does not change. This is in
fact the key reason why implementing the proposed model is relatively straightforward if
an existing Galerkin solver is available.

5. Iterative Solver Formulation

The curse of dimensionality leads to large linear systems in the context discussed
here. It is natural to consider iterative methods, and indeed the systems of type (23) lend
themselves naturally to such methods. There are two inherent advantages: the action of
the operator (matrix-vector multiply) can be written in a matrix-free fashion, and more
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importantly, the block-diagonal preconditioner of the form P = I ⊗ A0 is highly effective
[35].

In practice, the implementation of the preconditioned conjugate gradients is straight-
forward. Although the linear systems (23) are inherently sparse, by judiciously folding and
unfolding the temporary vectors and matrices, respectively, many computations can in fact
be computed using full matrix–matrix or BLAS3 routines. One such implementation is
outlined in Algorithms 2–4.

Algorithm 2 Preconditioner: M(·).
Given Matrix A0, vector b,
• Solve A0 X = Folded column-wise b
• Return X

Algorithm 3 Matrix-Vector Multiply: A(·).
Given matrices Ai, Gi, i = 1, . . ., and vector x. G0 is assumed to be an identity matrix.
• U := Folded column-wise x
• V := A0 U + ∑i Gi UT AT

i
• Return V

Algorithm 4 Conjugate Gradient Method [36].
Given matrix-vector multiply: A(·), and preconditioner: M(·).
• Compute r0 := b− A(x0), z0 := M(r0), p0 := z0,
• For j = 0, 1, . . . , until convergence

– αj := (rj, rj)/(A(pj), pj)

– xj+1 := xj + αj pj

– rj+1 := rj − αj A(pj)

– zj+1 := M(rj+1)

– β j := (zj+1, rj+1)/(zj, rj)

– pj+1 := zj+1 + β j pj

• Return x

In the preconditioner one could opt for full factorization of the A0, since the efficiency
gains are derived from repeated solves of the same system with multiple right-hand-sides.

In the matrix-vector multiply, the action of the matrix Gi can be broken down to a se-
quence of Kronecker products if there are multiple random fields involved. Technically, the
index i can be taken as a multi-index indicating the respective mass matrices participating
in the action. Similarly, the matrices Ai could be integrated on demand rather than prior to
the start of the solution process. Deciding on the proper course of action depends on the
available computational resources and time constraints, of course.

As is well known, Krylov methods cannot be reliably accelerated using initial solutions.
However, selection of a proper convergence criterion can always be considered.
For systems with millions of degrees of freedom, the tolerance in the norm of the residual
has to be chosen carefully. In fact, it might be more meaningful to use a physical quantity
of interest such as convergence in the energy of the expected solution or the variance of the
components.

6. Numerical Experiments

In the numerical experiments, two configurations are considered: (a) three regions and
(b) eight regions. The regions are indicated in Figure 1 above. In all cases, the covariance
functions are implicit; in other words, the KL-expansions are synthetic with the easier analysis
and reproducibility of the results in mind. The expected value of the random variable parameter,
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the Young’s modulus, is constant in all regions. This choice was made to focus on the variance.
In a more realistic scenario, there would be jumps in the expected values as well, although then
the effect of the uncertainty would be more difficult to quantify precisely.

The material constants adopted for all simulations were as follows: E0 = 2.069× 1011

MPa, ν = 1/3. The actual value of E0 is superfluous, as everything has been scaled in order
for the effective Young’s modulus to be Eω = E(ω, x) = E0(x)(1 + ∑∞

m=1 µmψm(x)φm(ω)),
and hence everything is computed as if E0(x) = 1. As all reported results are relative in
nature, this convenience choice does not affect our conclusions in any way. The stochastic
fluctuations are defined for the indexed regions simply as ψm(x, y) = cos(mx) for odd
layers or regions and ψm(x, y) = sin(my) for even layers or regions, where the coordinates
(x, y) are used instead of (x1, x2). As in Examples 1 and 2 for the decay rate ζ, the coefficients
are taken to be µm = 1/(m + 1)ζ . The loading is a unit traction g action on one section of
the boundary (see Figure 1), and there is no body force, that is, f = 0.

In both configurations, the deterministic part of the computational domain and its
discretization is kept constant; the geometrically graded mesh is shown in Figure 2a.
The polynomial order is constant p = 4. In both cases, the loading is unit traction force
acting on u2 along the horizontal segment at y = 4/3.

In the analysis of the results, two aspects of the method are highlighted: visualization of
the higher moments (variance) and indirect quality assessment of the chosen stochastic basis.
The latter is based on convergence analysis of the Legendre coefficients in various norms.
Note that no attempt to conduct a convergence study with balanced errors in the deterministic
and stochastic parts is made; the focus is solely on the a priori selection of the basis.

As the linear systems become very large, it is of interest to assess the efficiency of the
selected basis polynomials. Given the tensor construction, the basis polynomials can be
ranked by the properties of their Legendre coefficients. Three norms or norm-like quantities
of interest are considered here: L2-norm, H1

0 -seminorm, and "pseudoenergy" ‖ · ‖A0 , where
‖u‖A0 =

√
uT A0u. The norms are computed component-wise, whereas the pseudoenergy

is taken for the whole Legendre coefficient.

6.1. Case 1: Three Regions

The first configuration has three layers of regions, with the following decay rates:
ζ1 = ζ3 = 2, ζ2 = 3, εi = 1/100, i = 1, 2, 3. Using the data in Examples 1 and 2, in the
tensor product form the effective stochastic dimension is 10× 4× 10 = 400 including the
constant or deterministic dimension, and the number of multi-indices is 1280 (see Figure 2).
The expected solution and variance are shown in Figures 3 and 4 above. The computed
norms of the quantities of interest are provided in Table 1. For realizations of the Young’s
modulus, see Figure 5. In Figure 6, convergence of the pseudoenergies of the Legendre
coefficients has been illustrated in three ways: in log–log scale unsorted or in order, then
sorted by magnitude, and finally in log scale sorted by magnitude. In the log-scale plot the
algebraic, exponential, and super exponential regions can be identified. Due to transition
phases, accurate determination of respective intervals is difficult. The algebraic region sets
the bound for the asymptotic convergence rate and is naturally the most important. The
super exponential region contains basis polynomials that do not contribute to the overall
solution, and could be removed from the basis in the refined solution. It is an indication
of the effectiveness of the selection algorithm that even with the naive tensor product
structure of the global basis, only a small fraction of the selected modes have negligible
contributions.
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Table 1. Computed quantities of interest. As expected, the norms of the expected solutions differ
only marginally, whereas the difference in variance reflects the different underlying models of
material uncertainty.

Case Component ‖Var(·)‖2 ‖E(·)‖2 ‖E(·)‖1
0

1 u1 0.0155271 0.377051 2.92399
u2 0.161968 1.30773 3.50161

1 (TD) u1 0.0156688 0.377103 2.92443
u2 0.163275 1.30790 3.50212

2 u1 0.102814 0.433761 3.3545
u2 1.00627 1.49574 4.0166

(a) (b)

Figure 3. Three layers of uncertain materials. Examples of expected solutions. Temperature scale
with zero level at the boundary x = 0. (a) E(u1) ∈ [−1.80, 0.83], (b) E(u2) ∈ [−4.85, 0]. Decay rates:
ζ1 = ζ3 = 2, ζ2 = 3, εi = 1/100, i = 1, 2, 3.

(a) (b)

Figure 4. Three layers of uncertain materials. Examples of computed variance. Temperature scale
with zero level at the boundary x = 0. (a) Var(u1) ∈ [0, 0.11], (b) Var(u2) ∈ [0, 0.83]. Decay rates:
ζ1 = ζ3 = 2, ζ2 = 3, εi = 1/100, i = 1, 2, 3.
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(a) (b)

Figure 5. Three regions. Realizations of the Young’s modulus in different configurations.
The region with index 1 is set to zero for visualization purposes only. (a) Dimension index i = {1, 3, 4},
(b) Dimension index i = {4, 2, 3}.
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Figure 6. Three regions of uncertain materials. Convergence of the Legendre coefficients
in pseudoenergy. In the log-scale plot, the algebraic, exponential, and super exponential regions can
be identified. Due to transition phases, accurate determination of respective intervals is difficult. (a)
Unsorted; observed pseudoenergy per stochastic basis polynomial (loglog). (b) Sorted; observed
pseudoenergy per stochastic basis polynomial sorted by magnitude (loglog). (c) Sorted; observed
pseudoenergy per stochastic basis polynomial sorted by magnitude in log-scale.

As mentioned above, visualization of the Legendre modes is straightforward.
In Figures 7 and 8, the extremal modes as measured with the pseudoenergy are shown.
Interestingly, in Figure 7a there appears to be strong interaction of the mode with the
corner singularity. One of the questions for further studies will be to investigate the rela-
tionship between the graded mesh and the Legendre coefficients.

(a) (b)

Figure 7. Three regions of uncertain materials. Visualization of the Legendre coefficients of the
stochastic modes with the highest pseudoenergies, λ2 = L1

1L6
1. Here, λ2 indicates that the mode was

selected as the 2nd; (a) λ2(u1) and (b) λ2(u2).
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(a) (b)

Figure 8. Three regions of uncertain materials. Visualization of the Legendre coefficients of the
stochastic modes with the smallest pseudoenergies, λ1103 = (L1

1)
2(L1

2)(L4
1)

2. Here, λ1103 indicates
that the mode was selected as the 1103th; (a) λ1103(u1) and (b) λ1103(u2).

6.2. Case 2: Eight Regions

The second configuration has eight regions, with the following decay rates: ζi = 2,
εi = 1/10, i = 1, . . . , 8. For the realizations of the Young’s modulus, see Figure 9.

(a) (b)

Figure 9. Eight regions. Realizations of the Young’s modulus in different configurations. The region
with index 1 is set to zero for visualization purposes only. (a) Dimension index i = {1, 1, 1, 2, 2, 3, 3, 2},
(b) Dimension index i = {1, 2, 2, 2, 3, 2, 3, 2}.

As the expected solution is very similar to that of the previous configuration, only the
variance plots are shown in Figures 10 and 11. Note that the location of the maximal vari-
ance has shifted. This is not surprising, as the underlying model is different. Nevertheless,
this does indicate that the method itself is performing as expected. As for the previous case,
the computed norms of the quantities of interest are provided in Table 1.
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(a) (b)

Figure 10. Eight regions of uncertain materials. Unit traction force acting on u2 along the horizontal
segment at y = 4/3. Temperature scale with zero level at the boundary x = 0. (a) Var(u1) ∈ [0, 0.78]
and (b) Var(u2) ∈ [0, 5.40]. Decay rates: ζi = 2, εi = 1/10, i = 1, . . . , 8.
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Figure 11. Eight regions of uncertain materials. Contour plots of the variance of the vector field
components. The zero level is at x = 0 in both pictures. The plots are not directly comparable, as
‖Var(u1)‖2 = 0.1 < ‖Var(u2)‖2 = 1.0. (a) Var(u1) and (b) Var(u2).

The contour plots are useful in verifying the line projection plots of the variance in
Figure 12. As the underlying formulation is continuous, there are no jumps in the variance,
although the effects of the multiple regions can immediately be identified from the plots.
This kind of information is valuable when the sensitivity of the design with respect to
individual parts is estimated a priori.
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Figure 12. Eight regions of uncertain materials. Detail plots of the variance along cuts over the
deterministic computational domain. Although there are jumps in the realizations of the random
material field, the solution method is continuous. (a) Var(u1), (b) Var(u2), (c) Var(u1), (d) Var(u2).

6.3. Comparative Analysis

Even though both configurations share the same deterministic part, the random
material models are different, and hence direct comparison of the results is not well
motivated. The computed norms of quantities of interest in Table 1 indicate that the
expected solution is indeed not significantly influenced by the differences in the underlying
material models. For variance, the situation is of course different.

Interestingly, the asymptotic convergence rates of the Legendre coefficients shown
in Figure 13a–c do not differ greatly. The data fit well within the “best guess” asymp-
totic rates (with positive signs for convergence): L2(·) ∼ H1

0(·) ∼ 1/2 and ‖u‖A0 ∼ 1.
An additional test with Galerkin with a total degree (isoTD(·, K = 2)) truncation scheme is
included as well. In Figure 13d, the heuristic selection algorithm (Andreev) is compared
with the total degree one using the Legendre coefficients. Using the gap between the
respective graphs as a rough error measure, it can be concluded that while the heuristic is
not optimal, it is very good. It is worth remembering that Figure 6a indicates that it is not
simple to estimate the individual contributions of modes.

The asymptotic rate estimates are useful in two ways; within one configuration, it is
possible to estimate the computational resources for some guaranteed level of accuracy (or
confidence), while in the context of this study, ranking of problems (again by computational
complexity) is feasible.
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Figure 13. Convergence comparison between the two configurations: Computed quantity of interest
(sorted in magnitude) vs. the basis polynomials. For both norms, the rate is = 1/2, and for the
pseudoenergy = 1. The solid straight line is the estimated upper bound for Case 2, and the dashed
one for Case 1. Notice that the number of poorly performing bases is a small fraction of the total in
both cases. In (d), both solid curves represent Case 1, with the longer one corresponding to the total
degree selection. (a) L2(u1), (b) H1

0(u1), (c) ‖u‖A0 , (d) ‖u‖A0 .

6.3.1. Verification Study of Case 1

The results using the proposed approach were verified using both Monte Carlo
and quasi-Monte Carlo methods. In Figure 14 the convergence graphs of Monte Carlo
solutions and the Galerkin solutions using exactly the same sampled parameter val-
ues are shown. As can be seen, the error is comparable to the standard σ/

√
N esti-

mate, where the standard deviation is taken as that obtained using the Galerkin solution.
As there are no guarantees for pointwise convergence, it is useful to visualize the respec-
tive distributions of the quantities of interest in Figure 15. With high confidence, we can
conclude that the proposed method and the MC solution agree.

The QMC results have been computed using rule 32001-1024-1048576.3600 (one of
Kuo’s lattices [14]), with the average values per quadrature point taken over eight random
shifts. The obtained values are for N = 213 points ‖E(u1)‖2 = 0.337314 and ‖E(u1)‖2 =
1.30909, both of which are within the theoretical error bounds of ∼ 1/N.

(a) (b)

Figure 14. Convergence graph of absolute value of the error of the Monte Carlo (Black) and sampled
Galerkin (Red) solutions. The upper bound is the standard σ/

√
N, where σ is computed using Table 1.

(a) L2(u1): Monte Carlo convergence and (b) L2(u2): Monte Carlo convergence.
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Figure 15. Distributions of the quantities of interest of the Monte Carlo (Orange) and sampled
Galerkin (Blue) solutions. The agreement is excellent. The x-axis is the observed value and the y-axis
is the normalized pseudofrequency; the area under the graph is equal to one. (a) L2(u1): Monte Carlo
convergence and (b) L2(u2): Monte Carlo convergence.

6.3.2. Time and Space Complexity

On a modern Mac M1 Max with eight cores and 64GB of RAM, in the case with
eight regions integration of the system took one hour using straightforward parallel im-
plementation, while the linear solver took ten hours for seven iterations of the conjugate
gradient method. The residual tolerance for the solver was 1/10, 000, which for a system
with over 17 million degrees of freedom is quite tight. Convergence is very fast in terms of
steps due to the efficient preconditioning strategy; in fact, with tolerance of 1/100 the time
would have been halved. The solver was implemented with Mathematica [37,38].

While the integration phase required maximal memory capacity, the linear solver
had a relatively small footprint due to the matrix-free variant of the iteration used. More
detailed profiling of the iterative solver is beyond the scope of this study.

7. Conclusions

Solving problems with multiple spatially uncertain material parameters can be cast
into the standard stochastic Galerkin framework. As always, selection of the appropriate
basis for the Galerkin approximation is central. Here, a hybrid approach is introduced;
each individual region with a random material parameter has its own efficient stochastic
basis, yet the final global basis is taken to be a tensor product of these bases. Analysis of the
convergence of the expansion coefficients shows that this strategy is surprisingly efficient,
producing only a small fraction of basis polynomials with vanishingly small contributions
in the quantities of interest.

The solution of the linear systems has been performed with the standard conjugate
gradient method using a block-diagonal preconditioner adapted to the special struc-
ture of the system. Both the preconditioner and the matrix-vector product have natural
matrix-free formulations. The method is highly efficient in terms of the number of steps,
however, real time complexity depends on other aspects, including the convergence criteria.

The two sample configurations considered here are sufficiently different to lead to dif-
ferent variance in the solutions in both magnitude and spatial localization. This underlines
the usefulness of the post-processing techniques directly available within the stochastic
Galerkin methods.

This method appears to be very promising indeed. One of the intended immediate
future application areas is multi-panel structures such as assembled shell structures.
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