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Abstract: The yield strength of materials under plane strain deformation is often not characterized
experimentally due to difficulties that arise in interpreting the results of plane strain tensile tests. The
strain and stress fields in the gauge region of these tests are inhomogeneous, making it challenging
to extract the constitutive response from experimental measurements. Consequently, the plane
strain yield stress is instead predicted using phenomenological plasticity models calibrated using
uniaxial and biaxial tension data. To remove this uncertainty, a simple finite-element based inverse
technique is proposed to determine the arc of the associated yield locus from uniaxial-to-plane strain
tension using a constrained form of Vegter’s anisotropic yield criterion to analyze a notch tensile test.
The inverse problem is formulated under associated deviatoric plasticity and constrained such that
only a single parameter, the major principal yield stress under plane strain deformation, needs to
be identified from the finite-element simulations. The methodology was applied to two different
automotive steel grades, an ultra-high strength DP1180 and a DC04 mild steel. The predictive
accuracy of the constitutive models was then evaluated using an alternate notch geometry that
provides an intermediate stress state between uniaxial and plane strain tension. By performing notch
tensile tests in three sheet orientations, three arcs of the yield surface were obtained and employed to
calibrate the widely used Yld2000 yield function. The study shows that for DP1180, the normalized
plane strain yield stress was in the range of 1.10 to 1.14 whereas for DDQ steel, the normalized
plane strain yield stress was notably stronger, with values ranging from 1.22 to 1.27, depending on
the orientation. The proposed methodology allows for a wealth of anisotropic plasticity data to be
obtained from simple notch tests while ensuring the plane strain state is accurately characterized,
since it governs localization and fracture in many forming operations.

Keywords: plane strain loading; anisotropic yield function; constitutive response; dual-phase steel;
mild steel; inverse analysis; notch tension test

1. Introduction

Understanding the plastic response of materials under plane strain deformation is
critical to the design of sheet metal forming operations. Under tensile-dominant load-
ing conditions, deformation is homogeneous until the onset of necking, after which the
stress state transitions to plane strain tension, followed by fracture. The strains to initiate
localization and fracture are typically the lowest under plane strain tension, hence, this
mode of deformation is often considered as the most critical state in sheet metal forming
operations [1,2]. From an analytical perspective, the magnitude of the major stress in plane
strain tension is an extremum point on the yield surface that should be properly calibrated
to accurately predict the material response in forming and crash simulations. Despite
the importance of the plane strain state, this mode of deformation is often overlooked in
phenomenological plasticity, with the plane strain region not directly characterized and,
instead, predicted, based upon uniaxial and equal biaxial tensile data.
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The so-called “conventional approach” to the calibration of anisotropic constitutive
models using uniaxial and equal biaxial tensile data has been widely adopted because
reliable experimental constitutive data in plane strain tension is often not available. Among
the experimental techniques targeting plane strain characterization (such as notch tension,
elliptical bulge, cruciform, and plane strain compression tests), notched tensile tests are
the most popular, owing to their simplicity with numerous geometries proposed in the
literature [3–8]. Regardless of the geometry of the plane strain notch specimen, there are
unavoidable stress/strain gradients that develop across the gauge width of the specimens.
Deformation is plane strain tension near the center of the gauge area, and transitions to
uniaxial tension at the edge or notch root. The inevitable non-uniform deformation field
makes it challenging to directly extract the plane strain stress-strain response from the test
data. Approximations have been proposed to correct the stress-strain curves by introducing
scale factors that are typically derived based on finite-element analysis assuming the
quadratic von Mises criterion [5,7,8]. These isotropic scale factors are then applied to
anisotropic materials where the error due to the inconsistent modeling procedure depends
upon the degree of anisotropy of the material.

As discussed by Butcher and Abedini [9], it is typically assumed that the stress state
(or the principal stress ratio) is unknown in plane strain tension and must be derived from
a phenomenological yield criterion after the conventional calibration of its parameters.
Therefore, both the magnitudes of principal stresses under plane strain deformation and
their locations on the yield locus are taken as unknowns to be determined as a by-product
of the calibration using tensile and equal biaxial data. This approach holds for pressure-
dependent plasticity where the plane strain extrema are unknown, but not for associated
pressure-independent (deviatoric) plasticity, which is commonly adopted to describe the
anisotropic behavior of sheet metals. In associated deviatoric plasticity, a non-zero plastic
strain increment requires a non-zero deviatoric stress, and vice versa. In plane stress, this
corresponds to the principal stress ratio of σ2

σ1
= 0.5, such that the minor deviatoric stress is

zero, s2 = 0, for there to be no increment in the plastic strain or dε
p
2 = 0. This condition is not

automatically fulfilled in phenomenological anisotropic yield functions that are based on
linear transformations on the deviatoric stress tensor. Consequently, the authors proposed
the “generalized plane strain constraint” that should be enforced upon the principal normal
vectors in the calibration of yield criteria, such as the Barlat family of anisotropic yield
criteria [10–12]. Recently, Fast-Irvine et al. [13] strictly enforced the plane strain constraints
on the anisotropic Hosford yield function [14] and employed a cutting line approach for a
notch specimen using Digital Image Correlation (DIC) strain measurements to inversely
determine the yield exponent. Fast-Irvine et al. [13] demonstrated that only the major stress
in plane strain deformation needs to be identified and, consequently, the inverse problem
to calibrate the anisotropic yield function can be formulated in a deterministic manner.

Inverse finite-element analysis in conjunction with experiments to determine plas-
ticity model parameters have become more popular with advancements in full-field DIC
techniques. In this methodology, the experiment is simulated by iteratively updating the
material model parameters. The procedure is terminated when the difference between
model predictions and experimentally measured data (such as load-displacement, strain
field, temperature field, etc.) is minimized. This technique has been utilized in the literature
to primarily obtain the equivalent stress-strain or hardening response of materials to large
strains assuming the yield function parameters are known a priori [15–19]. Nonetheless,
the shape of the adopted yield surface can potentially have a strong impact on the re-
solved hardening curves (see, for instance, Ha et al. [18]) which introduces calibration
bias. The hardening response of a material is an intrinsic material property and, thus, the
inverse approach becomes problematic, especially if the plane strain yield strength was not
independently verified but predicted from the assumed yield function.

With recent advances in developing robust experimental techniques that use DIC
strain measurements to derive hardening behavior of materials to strain levels much higher
than uniform strain in a tensile test (Abedini et al. [20]), the focus of the inverse analysis



Appl. Mech. 2022, 3 907

can be directed towards obtaining the yield function shape, particularly at locations where
experimental data is not readily available, such as in the plane strain regions. Recently, the
authors proposed an inverse approach based on the Yld91 criterion [10] and a notch tensile
test to estimate yield strength of sheet metals in plane strain tension (Narayanan et al. [21]).
It was discussed by Narayanan et al. [21] that, due to the shape of the notch specimens,
a non-trivial in-plane plane shear stress may develop in the gauge region of the spec-
imen that can activate tensile loading in different orientations. While the approach of
Narayanan et al. [21] is promising, a more user-friendly methodology is required to con-
sider all material directions in the inverse analysis, which can be adopted by industry for
enhanced calibration of anisotropic yield surfaces.

The goal of the present study was to develop a straightforward deterministic approach
to determine the constitutive behavior of anisotropic sheet metals in plane strain using
notched tension tests and inverse finite-element modeling. To this end, a constrained
form of the anisotropic Vegter yield criterion [22] was employed. Unlike other advanced
anisotropic yield criteria, the parameters of the Vegter model are determined directly from
experiments, rather than through complex regression analysis. The major principal yield
stress under plane strain deformation can be treated as a variable to control the local shape
of the yield locus in the plane strain zone. The hardening response and R-value are obtained
from tensile tests and the inverse analysis is limited to the uniform tensile elongation
to avoid any artefacts arising from the hardening extrapolation or evolving R-values.
The inverse problem under associated deviatoric plasticity is developed in accordance
with mechanics of plane strain deformation and is fully constrained, such that only the
major principal yield stress in plane strain needs to be determined from correlation of the
measured and predicted force-displacement response from plane strain notch tension tests
and simulations. The technique was applied to two different automotive rolled steel sheets
with significant contrasts in their mechanical properties: an advanced high strength steel,
DP1180, and a deep-draw quality (DDQ) DC04 mild steel. To evaluate the transferability of
the yield function calibration, an alternate notch geometry was considered to provide an
intermediate stress state between uniaxial and plane strain. The advantage of the proposed
methodology is that, with only uniaxial tensile and plane strain notch tests, the entire arc
of the associated yield function from uniaxial to plane strain tension can be characterized.
Due to the widespread industrial use of the Barlat-family of yield criteria, the Yld2000 [11]
yield criterion was adopted as an alternate yield function and calibrated for both materials
using results of the inverse finite-element analysis with the Vegter model.

2. Materials and Experiments

Two different automotive steel sheets were studied: a high-strength dual-phase
DP1180 steel with a nominal thickness of 1.0 mm, and a 2.0 mm thick DC04 mild steel
with deep-draw quality (DDQ). Throughout the paper, the two materials are referred to
as DP1180 and DDQ, respectively. The two steels were characterized under various stress
states covering uniaxial tension stress-strain and R-values in seven (DP1180) or five (DDQ)
orientations, simple shear in three directions, and the equal biaxial R-value. All the tests
were performed at room temperature (23 ◦C) with a quasi-static strain rate of 0.001 s−1 with
at least 3–5 repeats performed per condition to ensure repeatability. A detailed description
of anisotropy characterization of DP1180 can be found in Abedini et al. [23] and the same
procedure was adopted to characterize the DDQ steel. This available database allowed
the present study to focus on anisotropy characterization under plane strain deformation.
Table 1 summarizes the experimental data for the two materials and Figure 1 depicts the
engineering stress-strain responses for representative repeats in the rolling or 0◦ (RD),
diagonal or 45◦ (DD), and transverse or 90◦ (TD) orientations obtained with a standard
tensile specimen.



Appl. Mech. 2022, 3 908

Table 1. Experimentally characterized R-values (R) and yield stresses in tension (σ) and shear (τ)
normalized with respect to tensile stress in the RD. The subscript indicates the orientation (in degrees)
of the major principal direction with respect to the rolling direction of the sheets. The values provided
in brackets present the standard deviations. The variable wp is the plastic work per unit volume that
was selected based on the tensile orientation with the lowest necking strain and was the plastic work
at the start of diffuse necking for DP1180, and half of the plastic work at diffuse necking for DDQ to
reduce potential distortional hardening effects.

Material DP1180 DDQ

wp [MJ/m3] 61.11 34.76

σ0/σ0 1.000 (0.006) 1.000 (0.006)

σ15/σ0 0.995 (0.003) -

σ22.5/σ0 - 1.024 (0.007)

σ30/σ0 0.996 (0.003) -

σ45/σ0 1.004 (0.007) 1.042 (0.008)

σ60/σ0 1.008 (0.008) -

σ67.5/σ0 - 1.019 (0.007)

σ75/σ0 1.013 (0.003) -

σ90/σ0 1.025 (0.007) 0.992 (0.008)

τ0/σ0 0.600 (0.005) 0.571 (0.010)

τ22.5/σ0 0.600 (0.008) 0.595 (0.021)

τ45/σ0 0.612 (0.005) 0.607 (0.009)

R0 0.82 (0.01) 2.09 (0.04)

R15 0.84 (0.01) -

R22.5 - 1.82 (0.03)

R30 0.90 (0.01) -

R45 0.95 (0.01) 1.55 (0.03)

R60 0.98 (0.01) -

R67.5 - 1.98 (0.04)

R75 1.00 (0.00) -

R90 0.98 (0.01) 2.46 (0.04)

Rb 0.94 (0.03) 0.85 (0.03)
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Figure 1. Engineering stress-strain response of (a) DP1180, and (b) DDQ steel sheets determined in
three orientations of RD, DD, and TD using a JIS No.5 standard tensile specimen at a strain rate of
0.001 s−1.
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Notch tensile tests were conducted in the present study by adopting the specimen
geometries shown in Figure 2a,b in three different directions with respect to the rolling
direction of the sheets (RD, DD, and TD). The sample geometry in Figure 2a is referred to
as the “plane strain notch” geometry and was selected since it has a simple design and can
facilitate achieving plane strain deformation in the center of the gauge region. In addition,
the small gauge width of the specimen induces strong in-plane stress and strain gradients
to promote fracture at the gauge center. A methodology to determine plane strain regions
of anisotropic yield criteria was developed based on this geometry. The so-called “NT20”
specimen geometry in Figure 2b was adopted from Roth and Mohr [24] and is considered
as an assessment test that can activate stress states between uniaxial and plane strain tension.
To report global deformation in terms of far-field strains, gauge lengths of 16 mm and
35 mm were selected for plane strain notch and NT20 specimens, respectively (depicted in
Figure 2a). Experiments were conducted using standard tensile frames with cross-head
velocities of 0.005 mm/s and 0.030 mm/s for the plane strain notch and NT20 specimens,
respectively. Figure 3 depicts the test setup and the notched specimens before and after
the experiments.
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For all the tests, full-field stereoscopic DIC techniques were employed to measure
strains. The DIC images were captured with a prescribed frequency such that a minimum
of 300 images were taken from the onset of deformation until fracture. The Vic-3D software
from Correlated Solutions, Inc. was used for DIC analysis. For consistency, a virtual strain
gauge length (VSG, with the definition given in Equation (1)) equal to the initial sheet
thickness was used for DIC analysis, with the corresponding parameters listed in Table 2.

VSG[mm] = (step size [pixel] × (filter size−1) + subset size[pixels]) × resolution [mm/pixel] (1)
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Table 2. DIC parameters used for strain measurements.

Test Material Test Direction
Image

Resolution
(mm/pixel)

Step Size
(pixel) Filter Size Subset Size

(pixel) VSG (mm)

Plane-Strain Notch
DP1180 RD, DD, TD 0.016 3 11 31 ~1.0

DDQ RD, DD, TD 0.016 6 15 31 ~2.0

NT20 Notch
DP1180 RD, DD, TD 0.019 3 9 27 ~1.0

DDQ RD, DD, TD 0.019 6 15 27 ~2.0
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3. Pressure-Independent Anisotropic Plasticity under Associated Flow Rule

This section reviews several notable deviatoric yield criteria available in the literature
and discusses the influence of the yield functions calibration on the plane strain regions.
Generally, the parameters of anisotropic yield criteria are determined from experimental
data. Conventional calibration of anisotropic yield functions has been primarily focused on
utilizing only uniaxial and equal biaxial tension tests [11,25–28]; see Figure 4 for the loca-
tions of various stress states on a yield locus. Recent studies recognized the importance of
the shear state in forming operations and employed results of shear tests as supplementary
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data points for calibration of advanced yield criteria [22,29,30]. Despite the importance
of the plane strain condition, this state of deformation is often neglected in yield surface
calibration and it is left to the phenomenological yield criterion to predict the magnitude of
the principal yield stresses, as well as the stress state (or the ratio of principal stresses) in
which plane strain deformation occurs. Before describing anisotropic yield functions in
detail, it is beneficial to briefly review the generalized plane strain constraints of Butcher
and Abedini [9] and experimental evidence supporting these constraints.
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Figure 4. Schematic of a yield locus displaying different stress states represented in the RD-TD
plane. The following abbreviations were used: UT = uniaxial tension, UC = uniaxial compression,
PST = plane strain tension, PSC = plane strain compression, EBT = equal biaxial tension, EBC = equal
biaxial compression, SH = shear.

3.1. Plane Strain Constraints

The importance of enforcing a new constraint on yield function calibration was first
discussed by Abedini et al. [30] where it was established that a non-zero hydrostatic stress
may develop if a calibration constraint is not enforced in the shear zone of anisotropic
yield functions (associated flow) or plastic potentials (non-associated flow). Later, Butcher
and Abedini [9] showed that the shear constraint is one case of a broader set of physically
necessary constraints in “generalized plane strain conditions” for pressure-insensitive
materials. This generalized state includes shear and plane strain loadings that possess a
principal strain with magnitude of zero for BCC and FCC materials. HCP alloys, such as
magnesium, were reported to not follow the plane strain constraints due to their complex
deformation mechanisms involving twinning, which is sensitive to the hydrostatic stress.

It was discussed by Butcher and Abedini [9] that under associated anisotropic plas-
ticity, the principal stress ratio at the plane strain extrema of deviatoric yield functions is
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fixed at σ2
σ1

= 0.5 corresponding to a vanishing intermediate deviatoric stress (s2 = 0). A
non-zero deviatoric stress is required to produce a plastic strain increment, and vice versa,
in deviatoric plasticity. In terms of deviatoric invariants, a vanishing deviatoric principal
stress also corresponds to a vanishing J3 which is commonly employed in fracture char-
acterization to identify plane strain states [31,32]. Unfortunately, there is a misconception
throughout the literature that σ2

σ1
= 0.5 only applies to von Mises plasticity. Phenomeno-

logical yield functions obtained by applying a linear transformation upon the deviatoric
stress were formulated, based upon isotropic yield functions, which remain convex under
the transformation. However, the influence of the transformation upon the normal direc-
tions is not constrained. Figure 5 demonstrates that enforcing the constraint of σ2

σ1
= 0.5

for the plane strain point results in s2 = 0, while the conventional calibration does not
satisfy this requirement. Applying a stress state in which s2 = 0 can produce a non-zero
plastic strain increment is admissible in pressure-dependent plasticity but not deviatoric
pressure-independent plasticity. It is further noted that these plane strain conditions are
always satisfied in the Barlat family of deviatoric yield functions in the specific case of
simple shear with major principal direction at 45◦ to the rolling direction by virtue of how
the linear transformations are applied. For simple shear at any other angle, the plane
strain constraints are not automatically satisfied and will produce thinning, despite it being
excluded from the applied deformation gradient.
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The existence of the plane strain constraint is supported by a wealth of experimental
data reported in the literature. Recently, Fast-Irvine et al. [13], compiled experimental
results from stress-controlled cruciform tests of various steel and aluminum alloys (labelled
as Mat 1 to Mat 22 in Figure 6) and illustrated that the plane strain deformation leading to
horizontal (β2 = 0◦) or vertical (β2 = 90◦) direction for the normal vector occurs when the
ratio of principal stresses occurs at, or close to, the theoretical stress ratio of 1/2 (β1 = 26.6◦

or 63.4◦).
It is emphasized that deviatoric plasticity is only a modeling assumption and that

materials may exhibit a measure of pressure dependency, particularly for low-carbon steel
grades, as recently reported by Kuwabara et al. [33]. A material with a flat yield function
like a Tresca also makes it difficult to resolve the plane strain location experimentally.
Nevertheless, in light of the experimental data, it appears unwise to allow the plane strain
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location to be completely unconstrained to fall anywhere between uniaxial and equal
biaxial tension. Adopting the plane strain constraint to serve as an anchor point in the yield
function calibration enables the development of a deterministic methodology to analyze
notched tensile tests with inverse finite-element analysis.
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(β2 = 90◦) with the in-plane loading angles of β1 = 26.6◦ and β1 = 63.4◦ corresponding to loading
along the RD and TD, respectively.

3.2. Vegter Yield Criterion

Vegter and van den Boogaard [22] proposed the so-called Vegter criterion as an
anisotropic plane stress yield criterion based on interpolation by second-order Bezier
curves to construct the yield surface from test data. The second-order Bezier function
is developed based on two reference stress points σi and σj, and a hinge point σh (see
Figure 7). The hinge point is the intersection of the tangents at the two reference stress
points. The yield locus is then locally determined by:

σ
Vegter
eq = σi + 2µ(σh − σi) + µ2(σi + σj − 2σh

)
, 0 ≤ µ ≤ 1 (2)

Since the Vegter yield surface is constructed based on interpolation of yield stresses,
the parameters of the model are determined directly from a set of experiments conducted
for a number of directions. For each direction, experimental data from four tests are
required to determine the reference points for construction of the yield loci: uniaxial tension,
equal biaxial tension, plane strain tension, and simple shear tests. The anisotropic Vegter
model has been implemented in LS-DYNA finite-element code as the material Type 136
(*MAT_CORUS_VEGTER) with seven parameters required to fully describe the second-
order Bezier curve in each direction (θ): normalized uniaxial yield stress ( σθ

σ0
) and R-value

(Rθ), normalized equal biaxial yield stress ( σb
σ0

) and equal biaxial R-value (Rb), normalized

major ( σPS
1
σ0

) and minor ( σPS
2
σ0

) yield stress in plane strain deformation and normalized shear
yield stress ( τθ

σ0
).

To adhere to the plane strain constraints described in Section 3.1, the following relation
should hold between the major and minor yield stress under plane strain deformation:

( σPS
2
σ0

) = 1
2 ( σPS

1
σ0

). Since the major and minor yield stresses are related, for simplicity the

normalized major principal stress, ( σPS
1
σ0

), is referred to as the “plane strain yield stress”
throughout the paper.
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3.3. Yld2000 Yield Criterion

The well-known non-quadratic anisotropic yield criteria of Yld2000 [11] was employed
in this study to act as an alternate yield surface. Detailed descriptions of the model can
be found in Barlat et al. [11]. The Yld2000 yield function is defined for 2-D plane stress
conditions and is written as:

σYld2000
eq =

(
φ′ + φ′′

2

)1/a

(3)

where φ′ and φ′ ′ are given by:
φ′ =

∣∣X′1 − X′2
∣∣a (4)

φ′′ = |2X′′ 2 + X′′ 1|a + |2X′′ 1 + X′′ 2|a (5)

in which Xi
′ and Xi

′ ′ are the principal values of the transformed stress tensors, X′ and X′ ′,
and are derived by:

X′ = L′ : σ (6)

X ′′ = L′′ : σ (7)

The linear stress transformation tensors are denoted by L′ and L′ ′, and can be written as:

L′ =

L′11 L′12 0
L′21 L′22 0

0 0 L′66

 (8)

L′′ =

L′′ 11 L′′ 12 0
L′′ 21 L′′ 22 0

0 0 L′′ 66

 (9)

and are defined as: 
L′11
L′12
L′21
L′22
L′66

 =


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1


α1

α2
α7

 (10)
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
L′′ 11
L′′ 12
L′′ 21
L′′ 22
L′′ 66

 =
1
9


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9




α3
α4
α5
α6
α8

 (11)

where αi are the eight anisotropy parameters of the model. In the case of isotropy, all the αi
values are set to one and the Yld2000 model is reduced to the isotropic Hosford [34] criterion.

3.4. Hardening Function

The modified Hockett-Sherby (Hockett and Sherby [35]) model of Noder and Butcher [36]
was adopted to describe the hardening behavior:

σ = B− (B− A)
[
exp

(
−C(εp

eq)
D
)]

+ E
√

ε
p
eq (12)

in which A, B, C, D, and E are the coefficients of the model that were determined based on
uniaxial tensile tests data up to the onset of diffuse necking. Table 3 lists the coefficients
of the model and Figure 8 compares the stress-strain curves derived from the modified
Hockett-Sherby model versus experiments in which a good agreement is evident for both
materials in different directions.

Table 3. Coefficients of the hardening model determined from a uniaxial tensile test data. The inverse
finite-element analysis was limited to local strains that were below the uniform elongation. The
uniform elongation was enforced in the calibration process via the Considère criterion.

Materials
Modified Hockett-Sherby Model Experiment

Uniform Elongation StrainA(MPa) B (MPa) C D E (MPa)

DP1180-RD 704.51 1104.65 91.91 0.88 689.05 0.071 ± 0.002
DP1180-DD 726.89 1127.60 75.11 0.87 598.47 0.066 ± 0.002
DP1180-TD 723.51 1157.59 89.18 0.88 594.46 0.065 ± 0.004
DDQ-RD 123.39 176.58 34.98 1.27 356.91 0.294 ± 0.001
DDQ-DD 136.43 191.04 55.83 1.43 354.49 0.272 ± 0.001
DDQ-TD 133.43 175.69 79.05 1.65 356.43 0.293 ± 0.004

It is necessary to emphasize that the hardening model is only considered until the
local major strain in any element reaches the uniform elongation strain to avoid plastic
instability and ensure the deformation is plane stress and consistent with principles of
using shell elements, as described in Section 4. This termination metric follows from the
Swift [37] criterion for the onset of diffuse necking in a power-law hardening material, in
which the material starts to neck when the major strain reaches the n-value in both uniaxial
and plane strain tension states. A critical feature of the proposed methodology is that only
the measured hardening response until the UTS is used, such that extrapolations of the
hardening model that may introduce bias into inverse methods are avoided. Moreover,
the tensile data for each orientation is used in the analysis of the notch test to avoid the
assumption of isotropic hardening. Distortional hardening, where the hardening behavior
changes with the stress state, was not considered. The yield function shape was assumed
to remain constant in the relatively proportional loading conditions considered in this
study. Future work will examine the inclusion of more advanced hardening models and
evolution of yield surface shape. It is also noted that the prediction of the material during
localization and fracture was excluded from the present study, the focus of which was on
characterization of the yield function during homogeneous deformation.
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was obtained with the modified Hockett-Sherby model that was strictly valid until the uniform
elongation strain.

3.5. Biaxial Yield Stress Estimation

Although the inverse analysis is focused on deformation between uniaxial-to-plane
strain tension, it is necessary to provide the equal biaxial yield stress of the materials to the
Vegter model. To provide a first-order estimate of the biaxial data, the correlations from
Abspoel et al. [38] can be employed for the normalized biaxial yield stress ( σb

σ0
):

(
σb
σ0

)
= σun.avg

[
σb_min

1 + fdirac
+

σb_max

1 + 1
fdirac

]
(13)

fdirac = e[adirac(Ravg−σb_trans)] (14)

in which σun.avg and Ravg are the in-plane averages of uniaxial yield stresses and R-values
(xavg = [x0 + 2 × 45 + x90]/4) and the remaining parameters of Equations (13) and (14) are:
σb_min = 0.97, σb_max = 1.14, σb_trans = 1.22, and adirac = 3.4. Using the relations above, the
normalized equal biaxial yield stresses for DP1180 and DDQ were estimated to be 1.024
and 1.147, respectively. The biaxial R-value, Rb, was determined using disc compression
tests for both steels; nevertheless, if this data is not available, correlations for Rb are also
provided by Abspoel et al. [38].



Appl. Mech. 2022, 3 917

4. Inverse Finite-Element Analysis of the Plane Strain Notch Test Using Vegter Model

The non-uniform stress state across the gauge width in notch tensile tests (see Figure 4)
makes it difficult to extract meaningful constitutive data directly from the test results. The
applied load recorded in the experiments has contributions from all elements in the gauge
area with each point subjected to a different stress state. In addition, the non-uniformity of
the strain field translates to each material point experiencing a different plastic deformation
or plastic work level. Finite-element analysis of the notch test can account for the local
stress and strain gradients in the test and resolve the non-uniform stress/strain field in
the gauge area. By constraining the material model to incorporate the measured R-value,
hardening response, plane strain constraint, and restricting deformation to strain levels
below the uniform elongation, the inverse finite-element analysis must only determine
the magnitude of plane strain yield stress through agreement with the measured force (or
nominal stress) versus displacement (or engineering strain) in the experiment. The Vegter
model enables incorporation of experimental data in different orientations in the inverse
analysis which can occur near the notch edges, as noted by Narayanan et al. [21].

The procedure for inverse finite-element analysis of plane strain notch tests is outlined
as follows:

(i) Select a direction of interest (for instance, RD, DD, or TD). The input hardening curve
provided to the model is associated with this direction. The analysis is repeated for
all directions of interest.

1. Use available experimental data from tensile tests, i.e., normalized yield stress and
R-values in different orientations, along with an initial estimate for the plane strain
yield stress, and supply these values to the Vegter model. For this step, the plane strain
yield stress of other directions can be assumed to be equal to the estimated plane strain
yield stress of the direction of interest or they can be selected to be proportional to the
normalized uniaxial yield stresses and be re-evaluated in step (iv). Shear yield stresses
are of secondary importance in the current notch analysis but should be supplied to
the model if the experimental data is available. In the absence of experimental results,
a reasonable guess, such as the yield stress of an isotropic von Mises material (with
normalized shear yield stress of 0.577), can be used.

(iii) Iteratively update the plane strain yield stress until a good agreement between ex-
perimental and numerical global response of the material is reached. Increasing the
plane strain yield stress leads to a stronger uniaxial-to-plane strain response and,
consequently, a higher load is resolved and vice versa.

(iv) Once all directions of interest are evaluated, re-run the model with the resolved plane
strain yield stresses for all directions, and, if necessary, make any final adjustments to
the plane strain yield stresses.

The outcome of the analysis will be the plane strain yield stresses for different direc-
tions. It should be noted that the calibrated Vegter model can act as a “master yield surface”
incorporating different stress states and orientations. Nevertheless, due to the widespread
industrial use of the Barlat-family of yield criteria, the results of the inverse analysis using
the Vegter model is utilized in Section 5.4 to calibrate the Yld2000 model.

This deterministic approach is only made possible due to the enforcement of the
plane strain constraint to keep the plane strain stress state fixed. Without the plane strain
constraint enforced, results of the inverse analysis would vary with the choice of anisotropic
yield function, since the stress state in plane strain deformation is taken as unknown. Of
particular relevance is the inverse analysis of notched tests by Suh et al. [39] using the
Hill79 [40] and Yld91 [10] models. The inverse analysis led to a different constitutive
response in plane strain for each yield criterion since the plane strain location on the yield
surfaces did not remain constant. Consequently, the local arc of each yield locus and plane
strain yield strength identified by Suh et al. [39] varied for each model to satisfy the global
force response. These pitfalls are avoided by exploiting the plane strain constraint to
identify the magnitude of the plane strain yield strength and the arc from uniaxial-to-plane
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strain tension. The NT20 notch tests can then be used to identify the accuracy of the
calibrated arc for both materials in Section 5.3.

Finite Element Model Parameters

Finite element models of the two notched specimens were created and analyzed with
the commercial finite-element code, LS-DYNA, using explicit time integration. Due to
symmetry, only half of the notch samples were modeled, as depicted in Figure 9. The
boundary conditions consisted of imposing a zero displacement in the direction perpen-
dicular to the axes of symmetry. Velocity-controlled boundary conditions (0.005 mm/s
cross-head velocity in the plane strain notch test and 0.030 mm/s cross-head velocity for
the NT20 notch specimen) were applied to the upper nodes to resemble the moving grip,
while the displacement of lower nodes was restricted to resemble the clamped condition of
the fixed grip.
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Figure 9. Discretized models of (a) plane strain notch and (b) NT20 notch specimens considering
symmetry with the symmetry axes depicted.

An average shell element size of ~0.20 mm was used in the gauge area. A mesh
sensitivity study demonstrated that the global response before the onset of localization
remained unaffected when smaller element sizes were employed. Recall that the inverse
analysis is terminated when the deformation level of an element reaches the uniform
elongation strain. The results of the mesh sensitivity analysis are detailed in Appendix A.
Shell element Type 16 in LS-DYNA (fully-integrated shell elements) was employed for
the simulations. The plane strain and NT20 notch models included 4953 and 2860 nodes,
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respectively. The total number of elements were 4822 and 2725 for the plane strain and
NT20 notch specimens, respectively.

5. Results and Discussion
5.1. Global Response of Plane Strain Notch Specimen

The inverse analysis consisted of varying the plane strain yield strength while keeping
the other critical plasticity properties (like uniaxial yield stress, R-values, hardening curve,
etc.) fixed with an objective to achieve good correlation between the global response of the
model and experiments. Figure 10a shows the engineering stress-strain response of notch
tensile tests for DP1180 in the RD. The far-field engineering strain, ∆L/L0, was calculated
with a L0 = 16.0 mm gauge length (see Figure 2a). The engineering stress was the measured
load divided by the initial cross-sectional area, F/A0. The results are shown up to the level
of engineering strain at which the edge element reached the uniform elongation strain from
the uniaxial tension tests. As shown in Figure 10b, increasing the plane strain yield stress
resulted in a higher extremum of the yield locus in the uniaxial-to-plane strain region and,
consequently, a larger engineering stress was predicted (Figure 10a). A plane strain yield
stress of ~1.10 provided good correlation between experimental and finite-element model
engineering stress-strain results for DP1180 in the RD.
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Figure 10. (a) Engineering stress-strain response of the DP1180 in the RD, (b) yield loci in the
tensile region demonstrated that increasing the plane strain yield stress had a direct impact on the
engineering stress-strain behavior of the material.

The same procedure was followed for the tests conducted in other directions for
the DP1180 (DD and TD), as well as the DDQ in the RD, DD, and TD, with the results
of the inverse analysis for all directions depicted in Figures 11 and 12, for DP1180 and
DDQ, respectively. For comparison, the yield locus of the isotropic von Mises criterion was
also plotted along with that of the Vegter at each direction. To quantify accuracy of the
predictions, the mean absolute error (MAE) was calculated using the following relation:

Error =
1
n

n

∑
i=1

∣∣∣xpredicted
i − xmeasured

i

∣∣∣ (15)

in which x is the quantity of interest (engineering stress in this case), and n is the number
of data points used to calculate the error. The ranges of engineering strain plotted in
Figures 11 and 12 were divided into 50 equally spaced points (n = 50), and the correspond-
ing Error values for engineering stress were calculated and reported in Table 4. It was
apparent that the Error was below 5.0 MPa for the different directions of the two materials.
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Figure 11. Engineering stress-strain response of plane strain notch tests extracted from models and
experiments along with the yield loci for DP1180 in (a) RD, (b) DD, and (c) TD. A gauge length of
16 mm was used to calculate far-field strains in the models and experiments.
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Figure 12. Engineering stress-strain response of plane strain notch tests extracted from models and
experiments along with the yield loci for DDQ in (a) RD, (b) DD, and (c) TD. A gauge length of 16 mm
was used to calculate far-field strains in the models and experiments.
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Table 4. Error (Equation (15)) in resolving measured engineering stress, major strain, and minor strain
for the plane strain notch tests.

Material-Direction Error (Eng. Stress)
[MPa] Error (Major Strain) Error (Minor Strain)

DP1180-RD 4.01 ± 1.28 0.0006 ± 0.0003 0.0007 ± 0.0006
DP1180-DD 4.17 ± 1.54 0.0015 ± 0.0009 0.0012 ± 0.0004
DP1180-TD 4.95 ± 1.95 0.0008 ± 0.0001 0.0006 ± 0.0002
DDQ-RD 2.49 ± 0.31 0.0026 ± 0.0003 0.0005 ± 0.0001
DDQ-DD 2.02 ± 0.57 0.0008 ± 0.0003 0.0007 ± 0.0001
DDQ-TD 2.38 ± 0.42 0.0016 ± 0.0005 0.0005 ± 0.0002

The identified values of the normalized plane strain yield strength are presented in
Table 5. The inverse analysis showed that for DP1180 with R-values of below unity, the
normalized plane strain yield stress was in the range of 1.10 to 1.14. In contrast, for DDQ
steel featuring significantly larger R-values, the plane strain yield strength was notably
stronger, with values ranging from 1.22 to 1.27, depending on the orientation. It appeared
that the plane strain yield strength and tensile R-values were directly related (increasing
the R-value leads to a larger plane strain yield stress) which was in general agreement with
the observations of Abspoel et al. [38] and Narayanan et al. [21]. However, the DDQ in TD
with the large R-value of 2.46 was a counter example for this trend, where the plane strain

yield stress ( σPS
1
σ0

= 1.25) was lower than that of the RD ( σPS
1
σ0

= 1.27) with the R-value of 2.09.

Table 5. Normalized plane strain yield strengths in different orientations derived from the inverse
analysis of notch tension tests.

Material-Direction Normalized Yield Strength Normalized Yield Strength
w.r.t RD

DP1180-RD 1.10 1.10
DP1180-DD 1.11 1.12
DP1180-TD 1.12 1.14
DDQ-RD 1.27 1.27
DDQ-DD 1.17 1.22
DDQ-TD 1.26 1.25

5.2. Local Response of the Plane Strain Notch Specimen

For simplicity, the developed inverse analysis is primarily focused on the global
behavior of the materials in terms of load-displacement or nominal stress-strain response.
Nevertheless, the methodology could be extended to incorporate local response of the
materials in regard to local strains measured by means of the DIC. This extension could
potentially assist with improving the local predictions at a cost of more complexity in
optimization of the parameters of anisotropic plasticity models. The present analysis
was based upon associated plasticity, so a significant difference between the global stress
response and local strains might be attributed to non-associated plasticity effects. Future
work is required to consider non-associated plasticity, as it increases the degrees of freedom
in the calibration procedure.

An investigation into local DIC strains measured with a point inspector at the center
of the gauge region of the plane strain notch specimen showed that the anisotropic Vegter
model was able to capture the local behavior of the two materials with good accuracy. As
evident from Figures 13 and 14, that illustrate the strain paths in terms of major (ε1) versus
minor (ε2) strains, the predicted strain paths were in excellent agreement with experiments,
except for the DDQ tests in the RD and TD where the predicted strain paths were slightly
tilted toward the drawing (left) side compared to the experiments. It was also apparent that
the strain state at the center of the specimen was close to plane strain tension with minor
strains notably smaller than the major strain ε2/ε1 ≈ 0. The magnitude of the minor strain



Appl. Mech. 2022, 3 923

remained lower than 0.004 for both materials. The MAE metric for quantifying the error
between the model predictions and measured values (Equation (15)) were also adopted for
the local values and the associated errors are reported in Table 4.
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Figure 13. Measured DIC strain paths at the center of the plane strain notch tests compared to model
predictions for DP1180 in (a) RD, (b) DD, and (c) TD.
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Figure 14. Measured DIC strain paths at the center of the plane strain notch tests compared to model
predictions for DDQ in (a) RD, (b) DD, and (c) TD.

5.3. Evaluation of the Yield Functions Using the NT20 Notch Test

To evaluate the predictive capabilities of the calibrated Vegter model, tensile tests
with the NT20 notch specimen were conducted in the three directions (RD, DD, TD) for
the two materials. The selected geometry activated stress states between uniaxial and
plane strain tension and served as an assessment test for the developed methodology.
Figures 15 and 16 compare the engineering stress-strain and local strains at the center of
the specimen of the models versus experiments for DP1180 and DDQ, respectively, and
Table 6 presents the prediction errors determined with Equation (15). For the DP1180,
the predicted responses compared favorably with the experiments, indicating that the
calibrated Vegter model was robust in reproducing the response of the material in uniaxial-
to-plane strain region. For DDQ, the engineering stress-strain responses from the model
were marginally underestimated, while the predicted strain paths were shifted toward the
draw side. Nevertheless, the overall performance of the model was reasonable for DDQ.
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Figure 15. Engineering stress-strain response and local strain paths extracted from NT20 models and
experiments for DP1180 in (a,b) RD, (c,d) DD, and (e,f) TD. A gauge length of 35 mm was used to
calculate far-field strains in the models and experiments and the local strain paths were extracted
from the center of the specimen.
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Figure 16. Engineering stress-strain response and local strain paths extracted from NT20 models
and experiments for DDQ in (a,b) RD, (c,d) DD, and (e,f) TD. A gauge length of 35 mm was used to
calculate far-field strains in the models and experiments and the local strain paths were extracted
from the center of the specimen.

Table 6. Error (Equation (15)) in resolving measured engineering stress, major strain, and minor strain
for the NT20 notch tests.

Material-Direction Error (Eng. Stress)
[MPa] Error (Major Strain) Error (Minor Strain)

DP1180-RD 7.22 ± 3.35 0.0053 ± 0.0007 0.0019 ± 0.0005
DP1180-DD 4.06 ± 2.10 0.0063 ± 0.0004 0.0053 ± 0.0004
DP1180-TD 6.23 ± 2.05 0.0071 ± 0.0005 0.0073 ± 0.0004
DDQ-RD 5.83 ± 1.92 0.0165 ± 0.0017 0.0158 ± 0.0016
DDQ-DD 3.36 ± 1.50 0.0161 ± 0.0014 0.0127 ± 0.0007
DDQ-TD 2.87 ± 1.94 0.0103 ± 0.0014 0.0097 ± 0.0013
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This analysis verified the predictions of the Vegter model in the uniaxial-to-plane
strain region. The model in its current form could be used for formability and fracture
applications. Alternatively, if desired, the resolved plane strain yield strength could be
used along with the standard characterization data of plasticity to calibrate other advanced
yield criteria, such as the Yld2000 model [11], as described in Section 5.4.

5.4. Calibration of an Alternate Yield Surface

The interpolative nature of the Vegter model enabled a straightforward calibration
process for the notch tension tests. The Vegter model enabled specific regions of the yield
surface to be adjusted. Although alternate models, such as the Yld2000 yield criterion
of Barlat et al. [11], could be used instead of Vegter, it is difficult to ensure that only a
specific region of the yield surface changes while keeping the remainder regions unchanged.
However, the Vegter model is not widely used by industry, in which closed-form yield
functions are preferred. Therefore, the calibrated Vegter model could, instead, be used to
calibrate the Yld2000 model once the inverse analysis was completed.

For each material, the following inputs were used to calibrate the Yld2000 yield function:

Stress anisotropy: Uniaxial tensile yield stress in different orientations with respect to
the RD (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦ for DP1180 and 0◦, 22.5◦, 45◦, 67.5◦, and 90◦

for DDQ), shear stress in three directions (0◦, 22.5◦, 45◦), and plane strain stress in three
directions (0◦, 45◦, 90◦) obtained from the inverse finite-element analysis. In addition,
yield stresses of five intermediate points equally spaced between uniaxial and plane strain
tension for the three directions (0◦, 45◦, 90◦) were derived from the Vegter model to guide
the calibration of the Yld2000 model to reproduce the determined uniaxial to plane strain
arcs. The estimations from Abspoel et al. [38] for equal biaxial yield stress (Section 3.5)
were also used in the calibration of the yield function.
Plastic anisotropy: Uniaxial tensile R-values in different directions (0◦, 15◦, 30◦, 45◦, 60◦,
75◦, and 90◦ for DP1180 and 0◦, 22.5◦, 45◦, 67.5◦, 90◦ for DDQ), equal biaxial R-value, and
the generalized plane strain constraint of Butcher and Abedini [9].

Table 7 presents the coefficients of the Yld2000 model for both materials and
Figures 17a and 18a display the yield loci of DP1180 and DDQ, respectively, where the data
points used for calibration are illustrated with red symbols. In addition, Figures 17b and 18b
depict the model predictions for normalized plane strain, shear, and tensile stresses and
R-values. For comparison, the results of the Vegter criterion are also plotted. Comparing
the two materials, calibration of the Yld2000 model was particularly more challenging for
the DDQ that featured significantly larger R-values compared to DP1180. Nevertheless, it
can be seen that for both materials the Yld2000 model exhibited good correlation with the
experimental results as well as the calibrated Vegter criterion in all stress states and orienta-
tions with an exception of normalized shear stresses that were better resolved by the Vegter
model. It is noted that the materials were assumed as orthotropic and tension-compression
symmetric, which is in line with the orthotropic-symmetric formulations of the Yld2000
and the Vegter criteria.

Table 7. Coefficients of the Yld2000 yield criterion for DP1180 and DDQ. A yield exponent of 6.0 was
utilized as suggested for BCC materials.

Coefficient DP1180 DDQ

α1 0.9684 1.0125
α2 0.9864 1.0752
α3 1.0303 0.7966
α4 0.9855 0.8816
α5 1.0066 0.9032
α6 0.9582 0.8092
α7 0.9943 0.9883
α8 1.0158 1.0213
a 6.0 6.0
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Figure 17. (a) The Yld2000 and Vegter yield loci and (b) normalized stresses and R-values predictions
for DP1180. Symbols indicate the data used for calibration.
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Figure 18. (a) The Yld2000 and Vegter yield loci and (b) normalized stresses and R-values predictions
for DDQ. Symbols indicate the data used for calibration.

6. Conclusions

Due to the lack of reliable plane strain constitutive data, the conventional calibration
of anisotropic yield functions is primarily based on using only uniaxial and biaxial tensile
data, and, consequently, calibration of the plane strain region of yield surfaces is neglected.
Thus, yield strength of anisotropic materials under plane strain deformation is typically
predicted by phenomenological yield criteria and left unverified. Given the critical role of
plane strain deformation in formability and fracture, the conventional calibration approach
may result in an incorrect plane strain yield strength and may adversely impact forming
and crashworthiness simulations. The present paper proposed a straightforward user-
friendly methodology to estimate the plane strain yield strength of materials by means
of inverse finite-element analysis of notch tension specimens. The methodology is based
on employing the Vegter criterion, restricted with the generalized plane strain constraints
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of Butcher and Abedini [9], to perform in accordance with the mechanics of plane strain
deformation. The following points were established by the present study:

• The inverse finite-element approach can take advantage of the non-uniformity in the
stress/strain field of notch specimens to calibrate the arc of the associated yield surface
from uniaxial to plane strain tension. The yield stress under plane strain deforma-
tion of the Vegter function was used as a control variable to match the global load-
displacement response of the model and experiments for DP1180 and DDQ sheets.

• Although the inverse analysis was primarily focused on global response of the ma-
terials in terms of engineering stress-strain curves, it was established that the local
response of the materials at the center of the gauge region was also predicted with
good accuracy.

• It was demonstrated that the calibrated Vegter yield function can precisely capture
local and global response of an alternate notch tensile geometry and the predictive
capability of the model was verified.

• Once the plane strain regions of the materials were characterized by the proposed
technique in different directions, the Yld2000 model was used as an alternate yield
criterion where the model was able to describe the response of the materials in a
wide range of stress states, including the plane strain regions resolved from the
inverse analysis.
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Appendix A. Mesh Sensitivity Analysis

A mesh sensitivity analysis was carried out to investigate the effect of element size,
type, formulation, and aspect ratio on the predicted global and local responses of the
simulations. As discussed by Inguez-Macedo et al. [41], it is critical to take into consid-
eration the effects of these parameters in the results of finite-element simulations. Since
the methodology developed in the present study was based on the plane strain notch
specimen, the mesh sensitivity analysis was performed for this geometry only. As not all
element types are applicable for anisotropic materials, an isotropic von Mises material
was assumed with properties of DDQ steel (thickness and hardening function) to evaluate
the mesh sensitivity in the plane strain notch simulation with solid and shell elements.
The DDQ material was selected for the mesh sensitivity analysis because it possesses the
largest uniform elongation and thickness to better demonstrate potential mesh effects and
through-thickness gradient effects between solid and shell elements.

Appendix A.1. Effect of Element Type

The effect of element type (shell versus solid) was examined using two models with
an element size of 0.20 mm with the solid model including five elements through the half
thickness of the sheet with an aspect ratio (AR) of unity, see Figure A1. Both solid and shell
elements were selected to be fully integrated (Type 16 and Type 2 in LS-DYNA for shells and
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solids, respectively). It can be seen that, while the model with shell elements localized early
and could not properly capture the post-uniform response, it was in excellent agreement
with the results of the solid model before the first element at the edge reached the uniform
strain (shown with a symbol in Figure A1). Recall that the proposed inverse analysis was
terminated at this point.
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Appendix A.2. Effect of Element Size

The influence of element size was considered using shell elements with three different
sizes of 0.10 mm, 0.20 mm, and 0.40 mm with an aspect ratio of unity and fully integrated
formulation (Type 16 in LS-DYNA), see Figure A2. The three element sizes demonstrated
similar engineering stress-strain responses before localization while the local response of
the coarser mesh (0.4 mm) was slightly deviated from those of finer meshes. The element
size of 0.20 mm appeared small enough to resolve global and local responses of the material
before localization.
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Appendix A.3. Effect of Element Aspect Ratio

The influence of element aspect ratio was assessed by using three deferent aspect ratios
of 0.5, 1.0, and 2.0, while keeping the element area fixed at approximately 0.2 × 0.2 mm2

(Figure A3). Fully integrated shell elements were utilized for these simulations. As shown
in Figure A3, the element aspect ratio did not affect the global and local responses before
the onset of localization. The aspect ratio of unity was employed for the finite-element
simulations presented in this paper.
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Figure A3. (a) Discretized models with shell elements of different aspect ratios, and (b) engineering
stress-strain curves, and (c) local strain paths at the center of gauge region obtained from the models.
The symbol shows the cut-off for the inverse analysis, based upon when the local element at the
notch edge reached the tensile uniform elongation.

Appendix A.4. Effect of Shell Element Formulation

Two different element formulations were evaluated for the plane stress shell elements:
Belytschko-Tsay and fully integrated shell elements corresponding to Types 2 and 16
in LS-DYNA, respectively. The fully integrated element is appropriate for applications
where through-thickness deformation is important. Despite the different formulations,
Figure A4 demonstrates that the divergence between the results of the models was marginal
before localization for the plane strain notch tests. The fully integrated Type 16 element
was adopted in this study as it is the common element formulation used in forming and
crash applications.
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Figure A4. (a) Engineering stress-strain curves, and (b) local strain paths at the center of gauge region
obtained from the models with shell elements and different formulations. The symbol shows the
cut-off for the inverse analysis, based upon when the local element at the notch edge reached the
tensile uniform elongation.
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In summary, the mesh sensitivity analysis in this section confirmed that the selected
mesh element size of 0.20 mm with fully integrated formulation and aspect ratio of unity
was appropriate for the proposed inverse analysis of plane strain notch tests until the onset
of diffuse localization.
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