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Abstract: The presented research work demonstrates an efficient methodology based on a microme-
chanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-
reinforced materials (CFRP) used for the construction of tubular structures. Although numerous
analytical and numerical micromechanical models have been developed to predict the mechanical
response of CFRPs, either they cannot accurately predict complex mechanical responses due to limits
on the input parameters or they are resource intensive. The generalized method of cells (GMC)
is capable of assessing more detailed strain fields in the vicinity of fiber–matrix interfaces since it
allows for a plethora of material and structural parameters to be defined while being computationally
effective. The GMC homogenization approach is successfully combined with the covariance matrix
adaptation evolution strategy (CMA–ES) to identify the effective elasticity tensor Cij of CFRP materi-
als. The accuracy and efficiency of the proposed methodology are validated by comparing predicted
effective properties with previously measured experimental data on CFRP cylindrical samples made
of 3501-6 epoxy matrix reinforced with AS4 carbon fibers. The proposed and validated method can
be successively used in both analyzing the mechanical responses of structures and designing new
optimized composite materials.

Keywords: micromechanics; generalized method of cells; optimization; carbon fiber reinforced
plastics cylinders; covariance matrix adaptation evolution strategy

1. Introduction

The use of polymer matrix composites (PMCs) provides significant benefits in the
design of advanced lightweight structural systems due to their high strength-to-density
ratios. The continuous demand for new, more sophisticated PMCs drives the research
on computationally efficient, multiscale design and analysis methodologies, which are
critical in the designing and developing of new composite materials for material scientists.
Methodologies based on micromechanics theories are fundamental in the modeling of
composite materials since in contrast to the macromechanical approach, they provide a
material’s mechanical responses to various loading scenarios by considering both the me-
chanical properties of its constituents and their geometrical arrangement. Thus, composite
properties can be determined, in any direction, for any fiber volume fraction or reinforce-
ment architecture, even if the composite has never been manufactured. Micromechanics
theories can therefore assist in designing the composite materials themselves as well as the
structures they comprise.

Numerous micromechanical models are applied for the estimation of the mechanical
response of a structure based on the fundamental properties or responses of its constituents.
These techniques can be categorized as simple analytical approximations or more compu-
tationally intense, fully numeric methods that require volume discretization. Analytical
methods are founded on the concepts of representative volume, average volume, stress and
strain, stress and strain concentration tensors, effective thermoelastic properties, and en-
ergy considerations. Probably the simplest analytical model is the Voigt–Reuss–Hill (VRH)
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approximation method [1–3]. However, the method, while universal and simple, does not
contain information on microgeometry [4]. One modeling approach that allows for de-
scribing the interactions between phases or between individual reinforcements is the mean
field approach (MFA). A large proportion of MFA descriptions are based on the pioneering
work of Eshelby [5] on inclusion and inhomogeneity problems. The simplest MFA is the
Mori–Tanaka (MT) theory [6], which encompasses the full physical range of phase–volume
fractions and allows for treating composites with high fiber volume fractions. Numerous
propositions exist in the literature for extending the applicability of mean field methods
to composites ([7–10]). These propositions are not always successful, especially when the
matrix phase has nonlinear responses, and certain engineering-motivated improvements
are required [11]. Another group of estimates for the thermomechanical behavior of in-
homogeneous materials is the generalized self-consisted scheme (GSCS), which assumes
that a single particle (inhomogeneity) surrounded by some matrix material is embedded in
an effective medium of unknown properties [12–16]. Although the GSCS has proved its
efficiency in numerous situations, it is still limited to lower stiffness ratios ([17,18]). Another
major modeling strategy is the periodic microfield approach (PMA), where the behavior is
analyzed of infinite (one-, two- or three-dimensional) periodic phase arrangements sub-
jected to far-field mechanical loads. The most common approach to studying the stress
and strain fields is the implementation of a repeating unit cell (RUC), which allows for the
description of microgeometry [19–22]. Although the RUC approach uses highly idealized
microgeometries, providing only limited information on the microscopic stress and strain
fields, these models pose relatively low computational requirements and can be used as
constitutive models for analyzing structures made of continuously reinforced composites.
The generalized method of cells (GMC) introduced by Paley and Aboudi [23,24] as an
extension of the method of cells (MOC) [19] is more flexible geometrically and allows
for the finer discretization of RUCs for fiber- and particle-reinforced composites. Fine-
grained geometrical descriptions can be obtained using extensive volume discretization
with numerical engineering methods, which allows for resolving the micro-stress and strain
fields at the length scale of the inhomogeneities. The most popular numerical schemes are
finite element methods (FEMs) [25–27] and boundary element methods [28,29]. The main
disadvantage of these methods is their requirement of significant computational expense
to discretize the microgeometry at a prescribed level of accuracy and solve the effective
behavior and the local fields.

Herein, a new material design methodology is presented for the assessment of the
elastic effective properties of a uniaxial composite material that effectively combines mi-
cromechanics theory with a model updating method. The novelty of this work derives
from both engineering and computational aspects. From an engineering point of view,
the study’s contribution lies on one hand in our in-depth analysis and assessment of the
micromechanics analytical theory in efficiently simulating the behavior of the unidirectional
CFRP materials used in cylindrical composite structures. On the other hand, the study’s
contribution to engineering knowledge also lies in our effective implementation of a novel
design methodology for the development of composite material models. This is achieved
by effectively combining micromechanics theory with a model updating method, through
the coupling of robust GMC to a state-of-the-art covariance matrix adaptation (CMA–ES)
optimization algorithm. Furthermore, the study’ novelty from a computational point of
view is the applicability of the CMA–ES optimization algorithm to finely tuning both the
properties of each material constituent and the geometrical arrangement of a composite
laminate component. Thus, the optimized results could be further confidently introduced
in subsequent finite-element analysis, introducing user-defined material properties.

This work is organized as follows. The micromechanical modeling methodology is
presented in Section 2, along with the GMC to CMA–ES coupling optimization strategy.
Section 3 presents the experimental data used in this work to validate the proposed method-
ology. Section 4 then extensively presents and discusses the results. Finally, Section 5
summarizes the conclusions.
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2. Methodology
2.1. Micromechanical Modeling

The micromechanical theory of the generalized method of cells (GMC) for continuous
or discontinuous fibrous composites was chosen to describe the mathematical links be-
tween stress and strain with various levels of idealization. The model was first introduced
by Paley and Aboudi [23] as a semi-analytical method, and Pindera and Bednarcyk [30]
computationally optimized the model. GMC is capable of modeling multiphase composites
including (1) inelastic thermomechanical response, (2) various fiber architectures, (3) porosi-
ties and damage, and (4) interfacial regions around inclusions. A repeating unit cell (RUC)
is the fundamental building block that allows for the construction of the composite as a
continuum in the case of double periodicity by being infinitely repeated in two Cartesian
coordinates. Representative examples of RUCs in the cases of continuously reinforced
composites (double periodicity) are depicted in Figure 1. RUCs can be further discretized
into an arbitrary number of rectangular subcells that allow for the acquisition of a more
representative geometry of the circular section of the fiber and the capturing of accurate
variations in local fields in the vicinity of the carbon fiber (Figure 2). Due to the use of
subcells, the method can be used to model composites with more than one phase, to define
boundary conditions between fibers and matrix, and finally to represent composites with
randomly distributed fibers.

Figure 1. Examples of repeated unit cells (RUCs) of doubly periodic fiber arrays in a 2–3 plan. (a) Rect-
angular pack with a large number of subcells capable of capturing the fiber geometry. (b) Diagonal
pack with the ability to model the interface between fibers and matrix by introducing an additional
material phase between fiber and matrix. (c) Rectangular pack with two different fibers. (d) RUC
with randomly distributed fibers.
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Figure 2. The geometry of a doubly periodic GMC repeating unit cell subdivided into n × m
rectangular subcells. The area of each subcell is lγ × hβ, where hγ and lβ are the height and length,

respectively, of subcell γ, β. The total area of the RUC is
m
∑

γ=1

n
∑

β=1
lγhβ = l h.

Any subcell corresponds to a continuous material the constitutive law of which is
given by

σγβ = Cγβ(εγβ − εI,γβ − εT,γβ
)

(1)

where σγβ, εγβ, εI,γβ and εT,γβ are the average stress, average total strain, average inelastic
strain and average thermal strain tensors, respectively, of the material that fills the subcell;
Cγβ is the stiffness tensor. The average strains and stress of the complete RUCs are
functions of the corresponding microscopic average values for each subcell and are defined
as follows:

ε =
1
lh

m

∑
γ=1

n

∑
β=1

lγhβ εγβ (2)

σ =
1
lh

m

∑
γ=1

n

∑
β=1

lγhβ σγβ (3)

The relationships between microscopic and macroscopic strains are established by the
imposition of the displacement and traction continuity conditions at the interfaces within
the unit cell as well as at the interfaces between neighboring unit cells, in conjunction
with the equilibrium conditions. Assuming the linear variation of displacements inside
the subcell, the stress and strains are considered constant, and the average strains in the
subcells εγβ are given in terms of the macroscopic strains ε in the form

εγβ = Aβγ ε + Dβγ (ε I
S +ε T

S ) (4)

where Aβγ and Dβγ are the appropriate concentration tensors and ε I
S and ε T

S are, respec-
tively, the microscopic inelastic and thermal strains in all subcells. Thus, the resulting
constitutive equation for infinitesimal strains is given by

σ = C∗(ε− εI − εT
)

(5)
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In the case of elastic behavior, the effective constitutive equation of a composite is

σ = C∗ε (6)

The average stress and strain vectors are represented by the following:

σ =
{

σ11 σ22 σ33 σ23 σ13 σ12
}

(7)

ε =
{

ε11 ε22 ε33 2ε23 2ε13 2ε12
}

(8)

The effective elastic stiffness tensor, C∗, of the multiphase composite is given in closed
form in terms of the elastic stiffness of the constituents:

C∗ =
1
hl

m

∑
γ=1

n

∑
β=1

hβlγC(βγ)A(βγ) (9)

The concentration tensor A(βγ) is estimated by the solution of a linear system with
6 × (m × n) algebraic equations for each RUC. An in-depth description of the method
and the definition of constants can be found in [23,31]. The main advantage of the GMC is
that in addition to its ability to homogenize the composite in order to create an effective
constitutive equation, it also provides an approximation of the local stress and strain fields
throughout the microstructure.

In the present application, GMC was interpreted to represent the response of carbon
fiber-reinforced plastic (CFRP). The material system is composed of AS4 carbon fibers and
high-strength epoxy resin 3501-6, which has a highly crosslinked structure that provides
stiffness and strength but also reduces its ductility and leads to brittle behavior. The
AS4/3501-6 material comes in the form of prepreg, which allows for the approximation
of its microstructure as periodic. Stress and strain fields in such periodic configurations
are investigated by a periodically repeating unit cell (RUC). Assuming for the AS4 fiber
an elastic-only response and that the strong direction is aligned with longitudinal axis 1,
the transversely isotropic elastic model was chosen as constitutive model. The model is
described by the following equation:

σ11
σ22
σ33
σ23
σ13
σ12

 =



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C33 0 0 0
0 0 0 (C22−C23)

2 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66





ε11
ε22
ε33
ε23
ε13
ε12

 (10)

where the components Cij from the stiffness matrix can be expressed in terms of five inde-
pendent mechanical properties: longitudinal modulus of elasticity (E11), transverse modu-
lus (E22), major Poisson ratio (v12), in-plane shear modulus (G12) and through-thickness
Poisson’s ratio (v23). On the other hand, epoxy resin is considered homogeneous, elastic and
isotropic, possessing the same mechanical properties in all directions. Thus, Equation (10)
is simplified to



σ11
σ22
σ33
σ23
σ13
σ12

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 (C11−C12)

2 0 0
0 0 0 0 (C11−C12)

2 0
0 0 0 0 0 (C11−C12)

2





ε11
ε22
ε33
ε23
ε13
ε12

 (11)

where only two independent mechanical properties are needed to express the Cij compo-
nents: elastic modulus Em and Poisson’s ratio (v). A unidirectional (UD) lamina is used as
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the basic block in the laminate. We assume that the lamina thickness is very small compared
with its other dimensions, that the bonding between fiber and matrix and between lami-
nae are perfect, that lines perpendicular to the surface of the lamina remain straight and
perpendicular to the surface after deformation and finally that the through-the-thickness
stresses and strains are negligible (Figure 3).

Figure 3. A unidirectional lamina (UD) with a main coordination system 1,2,3 is fixed to the fiber
direction (1), laminate (2) and thickness direction (3).

The accurate estimation of the effective properties of composite materials is at the heart
of a micromechanical model, which requires the elastic properties of its constituents. Using
the GMC method, we investigated the influence of various design parameters affecting the
mechanical response of the composite by carrying out a series of parameter studies, where
one parameter varied within a predefined range while the remaining were kept constant.
For all studies, we assumed the use of the same constituents as reinforcement and matrix,
carbon fiber AS4 and epoxy resin 3501-6, respectively. Additionally, we focused on small
elastic mechanical responses; thus, we assumed a perfect bond between fiber and matrix.
Taking into account the aforementioned assumptions, the parameters to be examined were
limited to the fibers’ packaging and fiber volume fractions. For a constant, the nominal
fiber volume fraction was set to Vf = 0.60, and seven different types of RUCs were chosen
to investigate fiber packaging, categorized in two groups:

1. Periodic fiber packaging RUCs depicted in Table 1, which can model RUCs with one
or a maximum of two fibers. The characteristics are also the constraints related to the
maximum allowable Vf. A major advantage of this type is the ability to approach the
circular geometry of the fiber by discretizing the RUC in a large number of subcells.

2. Random fiber packing arrangements, depicted in Table 2. These types can incorporate
more than two fibers in one RUC in a random arrangement. Another characteristic of
this RUC type is that it also allows for including fibers in close contact with others.
Both types also allow for the control of RUC’s aspect ratio R:

R =
l
h

(12)

where l and h are the RUC’s length and height, respectively. This is a very effective method
of increasing or decreasing the mass of the matrix in a selected direction and also affecting
the mechanical response of the RUC without changing the Vf.
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Table 1. Periodic fiber arrangements of doubly periodic RUC architectures applied with constant
volume fraction Vf = 0.60.

ID

HEX
Hexagonal Pack
Constraints on the fiber volume fraction (Vf)
Vf <

√
3

2 ⇒ Vf < 0.866

REC.100
Rectangular Pack: Square R 1 = 1.0
Constraints on the fiber volume fraction (Vf)
None

REC.120
Rectangular Pack: R = 1.20 > 1.0
Constraints on the fiber volume fraction (Vf)
Vf <

0.80613
R ⇒ Vf < 0.672

REC.075
Rectangular Pack: R = 0.75 < 1.0
Constraints on the fiber volume fraction (Vf)
Vf < 0.80613·R ⇒ Vf < 0.605

1 R is the aspect ratio of the RUC, i.e., R = length (l)/height (h).

Table 2. Random packing arrangements with constant fiber volume fraction Vf = 0.6.

ID

RP.06 × 06

Square 6 × 6 (R = 1.0)
Subcells along horizontal axis: 6
Subcells along vertical axis: 6
Total subcells: 36
Subcells corresponding to fiber: 6/10 × 36~21

RP.14 × 10

Rectangle 14 × 10 (R = 1.4)
Subcells along horizontal axis: 14
Subcells along vertical axis: 10
Total subcells: 140
Subcells corresponding to fiber: 6/10 × 140~85

RP.14 × 14

Square 14 × 14 (R = 1.0)
Subcells along horizontal axis: 14
Subcells along vertical axis: 14
Total subcells: 196
Subcells corresponding to fiber: 6/10 × 140~118
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For the parameter study of fiber volume fraction Vf, we chose two RUCs, REC.120 and
RP.06 × 060 from Tables 1 and 2, respectively. RP.06 × 06 as a random packaging RUC has
to be defined manually, and therefore, we created 5 different sets of fiber packaging, each
with a different fiber volume fraction (Table 3). Note that high volume fractions require
increasing the number of fibers in the composite volume, which results in increases in the
thinner matrix regions between fibers and in the contact between fibers as well.

Table 3. Random packaging arrangements with various Vf.

Subcells along Horizontal Axis: 6
Subcells along Vertical Axis: 6

Total Subcells: 36

RP.058

Fiber subcells: 20
Vf = 0.56

RP.061

Fiber subcells: 22
Vf = 0.61

RP.067

Fiber subcells: 24
Vf = 0.67

RP.072

Fiber subcells: 26
Vf = 0.72

RP.077

Fiber subcells: 28
Vf = 0.77

2.2. Coupling GMC to CMA–ES Optimization Strategy

Nonisotropic materials like carbon fibers as well as polymeric materials like epoxy
resins show variations in their experimentally measured mechanical properties, which in
turn affects the effective properties of the composite materials. Therefore, more accurate
effective properties can only be achieved by introducing in our model variations in the
mechanical properties of the composite’s constituents. To solve the underlying complexity
of the problem created by increases in problem parameters, we developed an optimization
algorithm that couples the micromechanical model GMC with a general-purpose stochastic
optimization algorithm, covariance matrix adaptation–evolution strategy (CMA–ES) [32].
The algorithm efficiently tunes the properties of all individual composites’ constituent
properties along with their geometric arrangement in order to accurately predict the
thermomechanical stress and deformation response of a previously experimentally tested
composite material specimen [33]. CMA–ES has been successfully implemented [34,35],
providing fast and efficient optimum results. During this procedure, a set of the selected
parameters are tuned in an iterative process towards the minimization of the objective
function. As CMA–ES randomly chooses each parameter value within a user-defined
range, its bounds should be cautiously selected. Broad ranges might lead to unrealistic
values, while narrow ranges might divert the algorithm from the global minimum. For
the definition of the objective function, let C be a parameterized class of micromechanics
analytical models that simulate the composite material and will be used to estimate stress
and strain responses under prescribed uniaxial loading. Consider θ ∈ RNθ to be the
set of free material and geometric properties to be adjusted using the literature-derived
experimental data, and let g(θ|C) be the analytical predictions given the values of the
parameter set θ. In this work, parameter estimation is based on response measurements of
stress and strain pairs.
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The difference between the experimental and the model-predicted response time
histories takes the form

J(θ; M) =
∑n

i=1(s(θ|M)i − ŝi)
2

∑n
i=1(ŝi)

2 (13)

where s(θ|M)i is the analytical stress prediction and ŝi is the respective experimental stress
value. Subscript i corresponds to the total number of measured strain steps (number of
observations). The uniaxial loading applied on the laminate structure is the same as the
loading considered for the derivation of the experimental data.

In this work, a free distribution of the CMA–ES algorithm in C programming language
is applied in parallel computing. The model-updating methodology evaluates the deviation
between the experimental data and the predicted data of the analytical micromechanical
model. As graphically presented in Figure 4, the process begins by sampling a set of material
and geometrical parameter values from multivariate normal distributions with means and
variances based on the ranges of the given bounds. Then, the GMC code is invoked
to compute stress–strain responses interpolated to match the equivalent experimental
measurements. The objective function is computed, and after the completion of a set of
function evaluations (iterations), CMA–ES collects the minimum residuals for estimating
new means and variances and commences a new iteration until the convergence criterion
is met. In this work, convergence as the difference between the minimum values of
two consecutive iterations was set to be less than ∆J(θ) < 10−5. CMA–ES ends when
convergence is fulfilled and the material and geometric parameters that correspond to the
minimum best value correspond to the optimal parameters.

Figure 4. A flow diagram of the applied CMA–ES model update method.



Appl. Mech. 2022, 3 788

3. Experimental Data

All the experimental data used in our research to validate our model were obtained
from various researchers mostly on cylindrical test specimens and collected from the Word
Wide Failure exercise [33]. Testing on cylindrical specimens allows for the application of a
wide range of biaxial and triaxial stresses that better reflect the real-life performance criteria
of composite materials used in applications that impose multi-axial fields. Additionally,
this method avoids problems associated with free edge effects that are encountered with
coupons. Colvin et al. [36] investigated the mechanical responses along the longitudinal
axes of cylindrical specimens subjected to axial loading, and Dichter et al. [37] studied the
nonlinear stress–strain behavior of carbon fiber of reinforced plastic subjected to axial loads
(Figure 5); the researchers reported that the stress–strain curve exhibited slight stiffening,
with the modulus varying from E11,ini = 126 GPa at small strain to E11,sec = 142 GPa at
failure. The investigation of transverse mechanical responses using both torsion and axial
tension and the compression of thin-walled tubes revealed a linear stress–strain curve up
to failure in the case of transverse tension [38]. The stress–strain curve for shear load was
highly nonlinear, with failure in strong dependency from the test specimen. Alternatively,
the shear strength can be estimated by the Iosipescu shear test to determine the in-plane
shear modulus and strength of the unidirectional composite. In [39], the shear strength was
estimated to be higher than the torsion.

Figure 5. (a) Torsion test and (b) Iosipescu test.

Fiber, matrix and lamina properties and strength parameters are listed in Table 4,
and typical averaged stress–strain curves are shown in Figure 6. The mismatches in the
longitudinal and transverse directions of the Young’s moduli of the two constituents
are E11,fiber/E11, matrix ≈ 54 and E22,fiber/E22, matric ≈ 3.5, respectively. Because of the high
property mismatch on the longitudinal axis, the effective Young’s modulus is mainly
affected by the mechanical properties of the fibers. In contrast, due to the lower mismatch
in the transverse direction, the contribution of the matrix is significant for the transverse
effective properties.
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Figure 6. Composite AS4/3501-6: (a) longitudinal tensile/compression test along 11 directions; no
linear behavior on tensile; (b) transverse tensile/compressive stress along 22 directions; (c) plane
shear test on plane 12. Linear behavior is indicated by γ12 < 0.5%, whereas γ12 > 0.5% composite
indicates nonlinear behavior.
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Table 4. The measured mechanical properties of constituents and the unidirectional lamina [33].

AS4 3501-6 AS4/3501-6

Fiber volume fraction Vf (%) 60
Longitudinal modulus: E11 (GPa) 225 4.2 126
Transverse modulus: E22 (GPa) 15 4.2 11
In-plane shear modulus G12 (GPa) 15 1.567 6.6
Major Poisson’s ratio v12 0.2 0.34 0.28
Through-thickness Poisson’s ratio v23 - 0.34 0.4
Longitudinal tensile strength XT (MPa) 3350 69 1950
Longitudinal compressive strength XC (MPa) 2500 250 1480
Transverse tensile strength YT (MPa) - 69 48
Transverse compressive strength YC (MPa) - 50 200
In-plane shear strength S12 (MPa) - 1. 79
Longitudinal tensile failure strain ε1T (%) 1.488 - 1.38
Longitudinal compressive failure strain ε1C (%) 1.111 - 1.175
Transverse tensile failure strain ε2T (%) - - 0.436
Transverse compressive failure strain ε2C (%) - - 2.0
In-plane shear failure strain ε12u (%) - - 2.0
Strain energy release rate GIC (J/m2) - - 220

The stress–strain curves in Figure 6 indicate two stages in the mechanical response
of the cylindrical composite material, a linear and a nonlinear deformation. Linear elastic
deformation is limited to strain values below 0.5% in the case of longitudinal tension and
in-plane shear, whereas in the case of transverse compression, we notice linear elastic
behavior for strains up to approximately 1.0%. Above the aforementioned limits, the
composite starts to behave nonlinearly but with differences in the slopes. In both transverse
compression and plane shear, the stress–strain curve attains a negative slope, an indication
of the softening of the material. On the other hand, for linear tension, the stress–strain
curve shows a slight upward concave, which implies a stiffening of the material.

4. Results and Discussion
4.1. Effective Properties: Influence of Fiber Architecture

The predicted results for the effective properties in the case of constant fiber volume
fraction Vf = 0.6 are presented in Tables 5–7. The predicted values in each table are
compared with the measured values, and for each model, the percentage deviation between
the predicted and measured effective properties is derived. Figure 7 illustrates the influence
of packing arrangement on the predicted effective properties. For the ease of comparison,
we used nondimensional values of the predicted effective properties by normalizing them
with the respective experimentally measured values. We notice that the predicted values of
longitudinal elastic modulus E11 are almost constant independent of the type of RUC, as
expected. On the other hand, the predicted in-plane shear modulus G12 shows the largest
deviation from the measured values and a strong dependency from the RUC’s aspect ratio
in the case of RECTANGLE RUC. Changing the aspect ratio for the constant fiber volume
fraction leads to an increase in the matrix mass between fibers, which in turn causes a
corresponding increase in the shear modulus. Clearly, the stiffest transversal response (E22)
is associated with the REC120 RUC, followed by REC100, R075, and HEX, with all random
being the softest. This is clearly related to the relative matrix volume along the loading
direction and the small mismatch in mechanical properties between the two constituents. It
is also noticeable that in the case of randomly packed RUCs, the influence of the aspect ratio
or the total number of subcells is small on all the effective properties. In this case, the largest
deviations are observed in the case of transverse elastic modulus E22 and in-plane shear
modulus G12. These results clearly indicate that packing geometry significantly influences
the transverse response and that this influence increases with the increase in the reciprocal
aspect ratio. These trends are consistent with those discussed in the literature [40–42].
Rectangle REC120 with a length-to-height ratio equal to 1.20 provides the most accurate
estimations of the effective properties except for Poisson’s ratio v23.
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Table 5. Comparisons between the measured experimental (EXP) and the predicted effective proper-
ties for HEXAGONAL and RECTANGLE with R = 1.0 (square) RUCs.

COMPOSITE VF = 60% EXP REC100 HEX

Longitudinal modulus: E11 (GPa) 126 136.7 8% (1) 136.7 8% (1)

Transverse modulus: E22 (GPa) 11 9.3 −15% 8.9 −19%
Transverse modulus: E33 (GPa) - 9.3 - 8.9 -

In-plane shear modulus G23 (GPa) - 2.9 - 2.9 -
In-plane shear modulus G13 (GPa) - 4.4 - 4.1 -
In-plane shear modulus G12 (GPa) 6.6 4.4 −34% 3.9 −40%

Major Poisson’s ratio: v12 0.28 0.25 −10% 0.25 −9%
Through-thickness Poisson’s ratio: v23 0.4 0.27 −32% 0.30 −24%

(1) Percentage of deviation of predicted data comparting to measured.

Table 6. Comparisons between the measured experimental (EXP) and the predicted effective proper-
ties for RECTANGLE RUCs at various aspect ratios.

COMPOSITE VF = 60% EXP REC075 REC100 REC120

Longitudinal modulus: E11 (GPa) 126 136.7 8% (1) 136.7 8% (1) 136.7 8% (1)

Transverse modulus: E22 (GPa) 11 9.1 −17% 9.3 -15% 9.6 −11%
Transverse modulus: E33 (GPa) - 9.9 - 9.3 - 9.2 -

In-plane shear modulus G23 (GPa) - 2.9 - 2.9 - 2.9 -
In-plane shear modulus G13 (GPa) - 6.5 - 4.4 - 3.9 -
In-plane shear modulus G12 (GPa) 6.6 3.7 −44% 4.4 −34% 5.4 −18%

Major Poisson’s ratio: v12 0.28 0.27 −4% 0.25 −10% 0.24 −14%
Through-thickness Poisson’s ratio: v23 0.4 0.25 −37% 0.27 −32% 0.28 −30%

(1) Percentage of deviation of predicted data comparting to measured.

Table 7. Comparisons between the measured experimental (EXP) and the predicted effective proper-
ties for RANDOM PACKAGING ARRANGEMENTS for various aspect ratios and subcell numbers.

COMPOSITE VF = 60% EXP RP.06 × 06 RP.14 × 10 RP.14 × 14

Longitudinal modulus: E11 (GPa) 126 133.0 6% (1) 138.3 10% 137.1 9%
Transverse modulus: E22 (GPa) 11 8.1 −26% 8.3 −25% 8.3 −25%
Transverse modulus: E33 (GPa) - 8.1 - 8.3 - 8.2 -

In-plane shear modulus G23 (GPa) - 2.9 - 3.0 - 2.9 -
In-plane shear modulus G13 (GPa) - 3.4 - 3.6 - 3.5 -
In-plane shear modulus G12 (GPa) 6.6 3.4 −48.0% 3.6 −45% 3.6 −45%

Major Poisson’s ratio: v12 0.28 0.26 −8% 0.25 −9% 0.25 −9%
Through-thickness Poisson’s ratio: v23 0.4 0.35 −11% 0.35 −12% 0.35 −12%

(1) Percentage of deviation of predicted data comparting to measured.

Figure 7. Nondimensional predicted effective properties for various RUCs. A value of 1 corresponds
to measured experimental data.



Appl. Mech. 2022, 3 792

4.2. Effective Properties: Influence of Volume fraction

The predicted results for the effective properties in the case of influence volume
fractions are presented in Tables 8 and 9. The curves of the nondimensional effective
properties vs. the volume fractions in Figure 8 reveal a proportional relationship with
the exception of Poisson’s ratios. Qualitatively, the model results are very similar to the
results presented by Aboudi regarding the effective property predictions of a glass/epoxy
composite as a function of fiber volume fraction Vf for three different RUCs.

Table 8. Comparisons between the measured experimental (EXP) and the predicted effective properties
for RANDOM PACKAGING ARRANGEMENT RP.06 × 06 with different fiber volume fraction ratios.

COMPOSITE
RP.06 × 06 EXP

Fiber volume fraction Vf (%) 58 61 67 72 77
Longitudinal modulus: E11 (GPa) 126 126.9 1% (1) 139.1 10% 151.4 20% 163.7 30% 175.9 40%

Transverse modulus: E22 (GPa) 11 8.0 −27% 9.0 −18% 9.9 −9% 10.9 −1% 11.2 2%
Transverse modulus: E33 (GPa) - 8.0 - 8.6 - 9.3 - 10.3 - 10.9 -

In-plane shear modulus G23 (GPa) - 2.8 - 3.0 - 3.2 - 3.6 - 4.0 -
In-plane shear modulus G13 (GPa) - 3.3 - 3.5 - 3.9 - 5.7 - 6.5 -
In-plane shear modulus G12 (GPa) 6.6 3.3 −49% 5.2 −21% 7.0 −7% 7.8 −18% 8.0 21%

Major Poisson’s ratio: v12 0.28 0.26 −7% 0.25 −12% 0.23 −17% 0.23 −19% 0.23 −20%
Through-thickness Poisson’s ratio: v23 0.4 0.36 −11% 0.32 −20% 0.28 −29% 0.23 −41% 0.22 −45%

(1) Percentage of deviation of predicted data comparting to measured.

Table 9. Comparisons between the measured experimental (EXP) and the predicted effective properties
for PERIODIC PACKAGING ARRANGEMENT REC.120 with different fiber volume fraction ratios.

COMPOSITE
REC.120 EXP

Fiber volume fraction Vf (%) 53 56 59 61 64 67
Longitudinal modulus:

E11 (GPa) 126 121.2 −4% 127.9 1.5% 134.5 7% 138.9 10% 145.5 16% 152.2 21%

Transverse modulus: E22 (GPa) 11 8.8 −20% 9.2 −17% 9.5 −13% 9.8 −11% 10.2 −8% 10.6 −4%
Transverse modulus: E33 (GPa) - 8.5 - 8.7 - 9.0 - 9.3 - 9.6 - 9.9 -

In-plane shear modulus
G23 (GPa) - 2.7 - 2.8 - 2.9 - 3.0 - 3.1 - 3.3 -

In-plane shear modulus
G13 (GPa) - 3.4 - 3.6 - 3.8 - 3.9 - 4.2 - 4.5 -

In-plane shear modulus
G12 (GPa) 6.6 4.3 −35% 4.7 −29% 5.2 −21% 5.6 −15 6.6 −5% 7.2 9%

Major Poisson’s ratio: v12 0.28 0.26 −9% 0.25 −11% 0.25 −12% 0.24 −14% 0.24 −15% 0.23 −17%
Through-thickness Poisson’s

ratio: v23
0.4 0.31 −23% 0.29 −26% 0.28 −30% 0.27 −32% 0.26 −36% 0.24 −39%

Both longitudinal and transverse stiffnesses (E11, E22) indicate an almost linear depen-
dence on the fiber volume fraction independent of the RUC type. At fiber volume fractions
between 0.56 and 0.67, we observe similar results for longitudinal stiffness, ranging between
1.0 and 1.2. On the other hand, for the transverse stiffness, we note an underprediction
for random fiber packaging RUCs with values lower than those of REC.120. This can be
attributed to the existence of contact between fibers in RP.06×06. In the case of G12, we
notice significant differences in dependence on Vf between the two RUCs. For REC.120, G12
constantly increases, whereas for RP.06×06, it shows a tendency to converge to a constant
value in higher fiber volume fractions. Both Poisson’s ratios, in contrast, imply inversely
proportional behavior in relation to the changes in Vf.
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Figure 8. Nondimensional predicted effective properties as a function of fiber volume fraction Vf.
(a) Periodic fiber packaging using REC.120 as a RUC. (b) Random fiber packaging using RP.06 × 0.6 as
a RUC.

4.3. Influence of Constituents Mechanical Properties

The analytical GMC model code is herein introduced in its parameterized scheme
in order to facilitate the optimization algorithm. The parameterized analytical model
passed to the CMA–ES consisted of nine design parameters in total. The first seven design
parameters pertain to the material properties of fiber and matrix. Specifically, there are five
fiber material parameters that represent the longitudinal modulus E f 11, transverse modulus
E f 22, Poisson ratios ν f 11 and ν f 22 and shear modulus G f 12. There are two matrix material
parameters that represent the modulus of elasticity Em and the Poisson ratio νm. Finally,
two more design parameters have been included in order to account for the geometric
arrangement of the laminate analytical model, representing the fiber volume fraction Vf
and the aspect ratio of the RUC R. The nominal material parameters for the fiber were
E f 11 = 225 GPa, E f 22 = 15 GPa, ν f 11 = 0.20, ν f 22 = 0.07 and G f 12 = 15 GPa, and for the
matrix, they were Em = 4.20 GPa and νm = 0.34. Similarly, the geometric parameters had
nominal values of Vf = 60% and R = 1.00. All analyses were performed using the same
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RUC architecture ID number ARCHID = 13, which had proved the most efficient from
the precedent sensitivity analyses.

The CMA–ES framework was implemented at a range of ±15% from the nominal
values for the design parameter bounds. The optimization process converged after 155 iter-
ations performing 100 function evaluations per iteration at several seconds per run. Thus,
the total number of runs was approximately 15,500 completed in approximately 3 h, owing
to the highly parallelizable potential of the applied CMA–ES algorithm.

Table 10 summarizes the results of the previously described updating process. The
lower (LB) and upper (UB) bounds along with the nominal means are also presented.
Specifically, the first column presents the number of design parameters; the second column
presents each parameter used; the third, fourth and fifth columns present the lower bound,
mean and upper bound, respectively; and the last column presents the updated material
and geometry parameters according to the described parameterization.

Table 10. The updated design variable parameters and design bounds (LB and UB) of the examined
micromechanics model.

# Param LB MEAN UB Result

1 E f 11(GPa) 191.25 225.00 258.75 231.314
2 E f 22(GPa) 12.75 15.00 17.25 13.494
3 ν f 12 0.17 0.20 0.23 0.227
4 ν f 23 0.0595 0.07 0.0805 0.075
5 G f 12(GPa) 12.75 15.00 17.25 15.965
6 Em(GPa) 3.57 4.20 4.83 4.292
7 νm 0.289 0.34 0.391 0.383
8 Vf(%) 50.00% 60.00% 70.00% 58.41%
9 R 0.75 1.00 1.25 0.890

After the CMA–ES algorithm converged, the produced optimal parameters were used
in the analytical micromechanics model in order to evaluate the longitudinal and trans-
verse stress–strain curves. These analytical stress–strain curves are graphically compared
with the experimental ones. Figure 9 presents the comparison between the measured
experimental stress–strain curves and the analytically predicted respective ones of the
updated micromechanics model. The red continuous line represents the experimentally
measured longitudinal σ11 stress–strain curve; the green continuous line presents the
respective predicted analytical one; and the magenta continuous line represents the experi-
mentally measured transverse σ22 stress–strain curve compared with the blue continuous
line presenting the respective analytical one.

The presented result proves a nearly perfect match between the experimental data and
the analytically predicted longitudinal and transverse stress–strain curves across the whole
range of strain values. The nearly perfect match is numerically quantified in the overall
minimum value computed by Equation (13), 9.10 × 10−4, which is visually confirmed by
Figure 9. A small deviation can be noticed, attributed to the low accuracy of the derived
experimental values, where only a few decimals were available. The above result increases
the confidence of a high-fidelity analytical micromechanics model and provides strong
evidence of the efficiency of the proposed GMC–CMA–ES optimization scheme.
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Figure 9. Comparisons between the experimentally measured and analytically predicted by optimal
model of longitudinal σ11 and transverse σ22 stress–strain curves for uniaxial loading.

Furthermore, Table 11 presents the effective mechanical properties of the laminate.
The difference in the stiffness along fiber E11 is 8.65%. This is a reasonable result that
lies within the uncertainty threshold given the experimental test and the nature of such a
physical value. The highest differences are observed at E22 and G12, 16.83% and 40.70%,
respectively. This is an obvious result, keeping in mind that such material parameters
cannot be practically measured through the experimental process but are only computed
indirectly. At last, the Poisson values ν12 and ν23 are also derived indirectly during the
experiment, and the observed discrepancies cannot be practically addressed.

Table 11. Comparisons between the experimental and model updated laminate mechanical properties.

# Param Experimental Result Discrepancy

1 E11(GPa) 126.00 136.90 8.65%
2 E22(GPa) 11.00 9.149 −16.83%
3 ν12 0.28 0.2977 6.32%
4 ν23 0.40 0.3351 −16.23%
5 G12(GPa) 6.60 3.914 −40.70%

The ε predicted results constitute the tuned parameters derived by the CMA–ES
algorithm, aiming to minimize the discrepancies between the experimental stress data
and the equivalent GMC analytically computed data. Thus, CMA–ES is used to reconcile
discrepancies and achieve a high-fidelity analytical model that can confidently reflect the
experimental measurements. The whole process does not aim to optimize the design of a
structure but only to tune an analytical model using experimental information.
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5. Conclusions

The current work has explored a new material design methodology based on a combi-
nation of a GMC micromechanical model and a state-of-the-art covariance matrix adap-
tation (CMA–ES) optimization algorithm [32,34,35]. The methodology was validated by
comparing the predicted effective properties with the measured experimental data pre-
sented in the work of Hinton et al. [33].

To this end, a two-step approach was developed. Initially, a parameter analysis of the
influence of fiber packaging arrangement and volume fraction on the predicted effective
properties was implemented. In the case of the fiber packaging arrangement, we noticed
that the longitudinal stiffness was independent of the RUC type as expected. On the
other hand, in both transverse stiffness and in-plane shear modulus, we observed a linear
dependence on the RUC aspect ratio. Since the fiber volume fraction was considered
constant, the only parameter left for fine tuning the mechanical properties was the RUC
aspect ratio, which allows for changes in matrix volume on a predefined direction. For
the random fiber arrangement, the predicted effective properties were almost constant
without any effect from either the number of subcells or the aspect ratio R. Next, we
studied the influence of the fiber volume fraction by again assuming periodic and random
fiber arrangements. As expected, both longitudinal and transverse stiffness showed linear
dependence on the fiber volume fraction, with similar prediction in the case of longitudinal
stiffness. Distinctive differences between the two fiber arrangements were observed in
the in-plane shear modulus. For the periodic fiber arrangement (RUC.120), G12 shows a
positive curve. On the other hand, for random fiber arrangement (RP.06 × 06), G12 has a
negative curve, which indicates a tendency to converge to a constant value.
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