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Abstract: Nonwovens are a type of textile that possess a wide range of unique properties, such as
lightweight and damping characteristics, which make them suitable for many applications as in
medicine and engineering. In this study, the focus lies on the mechanical response of nonwovens
as a multiphase porous layer excited by an underlying vibrating plate. The material properties of
the nonwovens are characterized via laboratory measurements applied to different samples. In
particular, a dynamic analysis of the underlying thin plate is carried out to obtain its eigenmodes and,
thus, the maximum response. These eigenmodes are then utilized in the boundary conditions in an
advanced numerical porous media model to simulate the dynamic response of the anisotropic fibrous
material. To understand the coupled processes in the fibrous textile material, a three-dimensional
initial-boundary-value problem of porous media dynamics is introduced. The numerical results
demonstrate the capability of the proposed model to realize the interplay between the pore-air
pressure and the effective stresses during nonwovens vibration and, thus, the role of the pore air in
vibration-induced fiber-fiber friction reduction as well as the effectiveness of the nonwovens in the
dissipation of the kinetic energy, i.e., damping propagating acoustic waves.

Keywords: nonwovens; textile materials; porous media dynamics; experiment; simulation

1. Introduction

Nonwovens are types of textile that are loosely defined as ’manufactured sheet, web
or batt of directionally or randomly orientated fibers, bonded by friction and/or cohesion
and/or adhesion’. Because of their high porosity, low production costs, as well as their
excellent range of configurations, nonwovens are popular materials for sound insulation
applications [1]. Examples for nonwoven sound insulators include the use as acoustic wall
claddings, appliances like washing machines and in the automotive industry, where the
fabrics not only fulfill an aesthetic but also a sound-insulating functionality. In this, the goal
is to fit as much sound-insulating functionality in as little space as possible. The adaptability
of nonwovens gives engineers the freedom in choosing the right parameters for a given
application. For an efficient engineering process, the effects of nonwoven parameters on
the sound insulation performance need to be studied [2].

This paper proposes a mechanism of excitation in which the porous fabric is in a
direct contact with a solid surface (plate). Examples of the described mechanism include
sound insulation on automotive doors or household appliances like washing machines. The
nonwoven element is in direct contact with a metallic plate, which is excited by different
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vibration sources resulting in deformation of the plate surface. The plate surface itself
radiates sound into the air. The engineering task is to suppress sound radiation using
suitable insulators like nonwovens. The mode of excitation of the fabric is an imposed
displacement on the surface, not an imposed pressure from an acoustic wave. The fabric
acts as a decoupling device rather than an insulator.

One of the main aims in this contribution is to understand the mechanism of acoustic
wave propagation and attenuation in nonwovens while treating them as a multiphase
porous material with interacting solid phase (fibers) and fluid phase (interstitial air). To this
end, the Theory of Porous Media (TPM) is used in the continuum mechanical modeling,
whereas the material parameters are determined experimentally. Additionally, a boundary-
value problem is introduced and solved using the finite element (FE) method, which
includes placing the nonwoven fabric on a thin vibrating plate.

1.1. Nonwovens as Acoustic Insulators

The modes of interaction between a propagating acoustic wave and a porous medium
like a nonwoven include sound transmission, reflection, and absorption. The main mech-
anism of sound insulation when using nonwovens is the absorption of sound waves by
dissipating their energy. The main reasons for energy dissipation are the viscous and ther-
mal effects resulting from the interaction between the two phases of the porous material [3].
It follows that understanding and modeling the thermal and viscous effects inside the
porous medium lead to insights into the sound insulating properties of nonwovens. Many
works have been directed towards modeling and predicting the acoustic behavior of fabrics
to aid the engineering process in finding the optimal fabric parameters. The main quantities
to be computed are the following:

• The complex acoustic impedance of the fabric Zc that labels its resistance towards an
incoming sound wave.

• The Sound Absorption Coefficient (SAC) that labels the fraction between transmitted
and total energy.

There are both theoretical (e.g., [3,4]) and empirical (e.g., [5]) approaches towards
modeling the influence of nonwoven parameters on its acoustic impedance [6].

An important property of nonwovens are the fibers that are chosen as raw materials.
The fiber properties include their material as well as geometrical features, like fiber length,
fiber diameter, and fiber cross-section geometry. Additionally, the following process steps,
most notably web formation and bonding, also have a great impact on the nonwoven
properties. The process configuration and parameters influence the fiber orientation, the
weight per area, the thickness as well as the degree of consolidation [2].

The micro- and macroscopic nonwoven properties determine its bulk properties as
a medium for sound propagation. The bulk properties include, for instance, porosity,
permeability, and bulk elasticity modulus [1]. The porosity nF is locally defined as the
fraction of air volume and total volume in a sample. It can easily be estimated by measuring
the sample weight and geometry. The air permeability K0 can be measured according to
DIN EN ISO 9053-1 [7], which is based on Darcy’s law. In this, the permeability is obtained
by measuring the air flow velocity through a nonwoven sample given a pressure difference
using the following formula [7]:

K0 =
η d v
∆p

. (1)

The measured properties are the dynamic viscosity of air η, the sample thickness d, the
air flow velocity v, and the pressure difference ∆p. The measurement principle is shown in
Figure 1. The bulk elasticity modulus is measured with a tensile test according to DIN EN
29073 [8]. The resulting diagram shows the tension σ over the elongation ε. The elasticity
modulus E is the slope of the linear part of the diagram, as shown in Figure 1.



Appl. Mech. 2022, 3 498

Permeability measurement 

(DIN EN ISO 9053-1)

Young‘s Modulus measurement

(DIN EN ISO 29073)

d

v
A

sample

 η

p₁ p₂Δp = -

sample

F

F

σ

 ε
 Δε

Δσ

A₀

σ = F/A₀

Figure 1. Measurement of permeability and elasticity modulus.

The engineering task in the design of the acoustic insulator is to choose the nonwoven
bulk properties so that the desired performance is reached with as little material as possible.
According to [1], the goal is to guarantee a maximal Sound Absorption Coefficient (SAC)
of the material in a given frequency range. Much attention has been given to the task of
predicting the SAC from the material bulk properties to simplify the engineering task, see,
e.g., [3,4]. The recent work by Soltani and Norouzi [1] compared experimental SAC values
with the ones obtained using a hybrid numerical and empirical approach. They found
a good match between experimental and predicted values, confirming the usefulness of
SAC modeling. Soltani and Norouzi found the following relationships between nonwoven
parameters and the SAC:

• Increasing the thickness improves the SAC. For high frequencies, the SAC increases
only up to a thickness of 2 cm .

• Decreasing the fiber diameter improves the SAC at low and medium frequencies.
• There exists an optimal porosity for maximizing the SAC, but the relationship is

non-linear.

Both the empirical and experimental works discussed above show the relevance of
modeling and predicting the sound absorption behavior of nonwovens. All works identified
strong relationships between the nonwoven properties, the bulk material properties and
the SAC/Impedance. All works assume an incoming sound wave onto the insulator. The
case of an imposed displacement, e.g., by a vibrating metal plate, has not been studied.
There is the need for modeling the behavior of the nonwoven as a decoupling device while
in contact with a vibrating surface as is the case with home appliances and automotives.
Being able to predict the decoupling efficiency of nonwovens will help engineers reduce
structure-borne noise for the mentioned use cases. There are many questions still open
towards predicting the decoupling efficiency in an analytical manner which are discussed
later in this article. In this work, we study the thermal, viscous, and mechanical effects
inside the nonwoven as a porous medium when excited by an imposed displacement. This
study is the first step towards understanding how the energy dissipation works in the
described setting.

1.2. Plate Vibration

Plate Vibrations are a classical problem in structural mechanics. Many analytical
and approximate solutions have been formulated for the vibration analysis of plates with
different topologies, dimensions, boundary conditions, and material properties. E.g.,
an overview over approximate solutions for linear and high-amplitude non-linear plate
vibrations can be found in [9]. Analytical solutions for thick plates are summarized in [10].
In a related context, useful approaches can be extracted from [11–14], which focus on the
numerical simulation of laminated composite as well as functionally graded porous plates
and shell structures.

Bending vibrations are the main source for sound radiation of plates [15]. For thin
plates, they can be described in the linear range by the classical Kirchhoff plate theory. This
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theory applies to plates for which Hooke’s law holds and whose width and height are much
greater than their thickness. Here, the strain in the middle surface as well as transverse shear
deformations are neglected. With these assumptions, a partial-differential equation (PDE)
for the transversal displacement field as a function of time and place is derived. For some
topologies and boundary conditions, e.g., for a simply-supported rectangular, isotropic
plate, eigenmodes can be obtained analytically based on the homogenous PDE [15].

Analytical solutions may not be available for more complex problems. Thus, the PDE
has to be solved approximately, e.g., using the FE method. In [16], a comparison of the FE
method with the exact solution of the natural frequencies of a simply-supported plate has
been performed. The influence of different stiffener geometries on the natural frequencies
of different plate shapes has been analyzed using the FE method in [17].

In this paper, the displacement field of a thin vibrating plate serves as a boundary for
a nonwoven placed above. To this end, the plate will be excited by concentrated harmonic
forces with different excitation frequencies at different locations. Its dynamics will be
analyzed both analytically and numerically using the FE method. The excitability of the
plate for different excitation frequencies and locations will be discussed using the concept
of plate transfer mobility. Several excitations will then be used for the subsequent analysis
of the nonwoven in contact to the vibrating plate.

1.3. Porous Media Mechanics

In the present contribution, we discuss the acoustic properties and the mechanical
response of nonwovens as anisotropic porous media. For the continuum mechanical
modeling of heterogeneous, fibrous porous materials with interstitial pore fluid (e.g, air),
the Theory of Porous Media (TPM) will be applied, which presents a reliable framework as
has been shown in, e.g., [18–23]. In this regard, important parameters, such as the elastic
modulus of the solid matrix, the porosity, and the intrinsic permeability, will be estimated
based on experimental data applied to different samples of the material. Alternative to
experimental data, lower-scale simulations, such as the lattice Boltzmann method (LBM),
can be applied to representative volume elements (RVEs) to determine parameters like
the intrinsic permeability [22]. In this, the LBM allows to estimate the fluid flow velocity
in different directions based on prescribed pressure differences applied to the RVEs. If
the assumption of isotropic pore-fluid flow is applied, then the permeability parameter
can be computed based on the one-dimensional Darcy’s law as presented in DIN EN ISO
9053-1 [7]. If the flow is anisotropic, then a more advanced treatment to compute the
permeability tensor is needed [22].

The considered frequency ranges in the current treatment (up to 153 Hz) allow mod-
eling of the porous material within the low-frequency framework. This is because the
resulting wavelengths of the incident waves are significantly larger than the characteristic
size of the pores of the fibrous materials. In this connection, Biot [24,25] distinguished
between low- and high-frequency ranges in the mathematical modeling of porous media
dynamics and introduced a critical frequency relation that considers the micro-geometry
and the pore-fluid properties to determine the limit between the two ranges. More details
and references to this topic can also be found in [26]. For the low-frequency range consider-
ation, a Poiseuille-type flow on the microscale allows applying Darcy’s law for the flow on
the macroscopic scale. The underlying treatment adopts the transversely isotropic model
for the solid phase [27]. Additionally, the current work addresses several schemes and
challenges within porous media dynamics and challenges related to the solution of coupled
problems, especial within phase-field fracture, as has been studied by the co-authors Heider
and Markert in several publications [20,28–32].

1.4. Highlights and Content Overview

In summary, the main aim of this research work is to gain new insight into the chal-
lenging coupled processes in fibrous nonwovens, which occur due to dynamic excitation
imposed by an underlying vibrating metallic plate. The analysis is structured as follows:
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The determination of the nonwoven material properties by means of laboratory measure-
ments of different material samples is presented in Section 2. An advanced continuum
mechanical description of the porous material using the TPM is presented in Section 3. In
Section 4, a thin vibrating plate is analyzed, which serves as excitation for the overlaying
porous medium. This includes the free vibration modes analysis following analytical solu-
tions based on Kirchhoff’s plate theory and numerical solutions based on the FE method.
The numerical solution of an initial-boundary-value problem (IBVP) of textile materials
as multiphase porous media under dynamic excitation is presented in Section 5. This is
followed by the conclusions in Section 6.

2. Material Description and Parameters

The numerical models in this work are conceptualized to capture the response of real
nonwovens. Thus, three reference material samples were produced using lab-scale equip-
ment, and the bulk properties of the samples were then measured. These measurements
are considered as the basis for building a valid numerical model of the nonwoven samples.
In particular, the steps in preparing the samples can be summarized as follows:

1. Opening polypropylene (PP) staple fibers with a staple length of 50 mm and diameter
of 16 µm by hand.

2. Carding the fibers using a lab-scale card to form a fiber web.
3. Folding the fiber web to have a nominal weight per area of 210 g/m2.
4. Mechanical bonding using two-sided needle punching with 1–3 repetitions to increase

needlepunch density.
5. Cut out the samples from the produced nonwovens.

The following nonwoven sample properties are then measured:

• Sample thickness when subjected to a pressure of 0.5 kPa. For the measurement the
sample is placed between two stamps. Weights are placed on the top stamp so that the
necessary pressure is achieved. The thickness is the distance between the two stamps.

• Weight per area, which is measured by weighing the sample and dividing by the
sample area. Three samples with a circular area of 100 cm2 are used.

• Air permeability in accordance to DIN EN ISO 9053-1 [7]. The samples are placed
in a tube as shown in Figure 1. The air pressure before the sample is kept constant
and pressure behind the sample as well as air velocity before are measured. The air
permeability is then calculated using Darcy’s law (see Equation (1)).

• Young’s Modulus in machine direction (MD) and cross direction (CD) is measured
with tensile test in accordance to DIN EN 29073 [8] as shown in Figure 1. For MD
measurement the sample strip (width 50 mm) is cut out so that the orientation matches
the machine direction. For CD measurement the sample strip is cut out so that the
orientation is perpendicular to the machine direction. Tensile tests then reveal the
stress-strain-curves in both MD and CD. Young’s modulus is the average slope of the
linear part of the resulting stress-strain curve. The samples exhibit linear behavior up
to an elongation of 10 percent. The stress-strain curves of the samples are shown in
Figure 2.

The measurement results are presented in the table below. The results are averaged
for each sample.

As shown in Table 1, the nonwoven samples become denser with each needlepunch
iteration due to the increase in needlepunch density. The thickness decreases, which causes
the porosity to decrease. As the fabric density increases, the permeability decreases. These
measurements serve as reference material for the numerical simulation. The measurements
also show that the bulk properties of the nonwoven can be purposely influenced by
changing the production parameters. Only a small subsection of the full parameter space
available has been covered by the measurements.
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Figure 2. Strain-stress curves for all samples obtained from tensile test

Table 1. Experimental measurements of the material properties of the nonwovens

Quantity Unit Sample 1 Sample 2 Sample 3

Needlepunch iterations 1 2 3
Thickness t mm 10.52 6.17 5.66

Weight per area A g/m2 242.79 248.29 265.65
Permeability K0 mm2 0.002456 0.001284 0.001071

Elasticity modulus MD ET N/mm2 0.0638 0.0605 0.0747
Elasticity modulus CD EL N/mm2 0.2208 0.2898 0.3201

Porosity nF - 0.9757 0.9576 0.9506

3. Continuum Mechanical Description of Multiphase Anisotropic Fibrous Materials

In this work, nonwovens are treated as multiphase porous materials. A brief de-
scription of saturated porous media within a macroscopic framework is introduced in the
following. This includes demonstrating the homogenization approach, the kinematics and
constitutive modeling of the two-phase anisotropic material, and the governing balance
relations under dynamic conditions.

3.1. Homogenization and Densities

The current work considers a biphase immiscible porous material, which consists of a
materially compressible pore-fluid phase ϕF (as air ϕA) and a materially-incompressible
fibrous solid-phase ϕS. Within the continuum mechanical modeling, homogenization is
applied to representative volume elements (RVEs) in which every spatial point consists
of overlapping and interacting solid and fluid constituents, i. e. ϕ = ϕS ⋃ ϕF. For each
constituent, a volume fraction nα is defined so that the saturation condition is always
satisfied, i.e.,

∑
α

nα = nS + nF = 1 with
{

nS : solidity ,
nF : porosity.

(2)

Moreover, for each constituent, we have the partial and intrinsic densities, i.e., ρα and
ραR, respectively, which are related through the volume fraction as ρα = nαραR.

3.2. Kinematics

The following study is restricted to the small strains framework in which the linearized
strain tensor εS of the solid phase can be expressed in terms of the gradient (∇) of the solid
displacement vector uS as

εS = 1
2 (∇ uS + ∇TuS) . (3)

The solid motion is expressed within Lagrangean settings, whereas the air motion
within Eulerian settings using the gas velocity vF = vA. Alternatively, one can utilize
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the seepage velocity wF := vA − vS . Thus, the material time derivative of an arbitrary
vector-valued quantity (•) and a scalar-valued quantity (◦) with respect to the motion of
constituent ϕα can be expressed, respectively, as

(•)′α :=
dα(•)

dt
=

∂(•)
∂t

+ ∇(•) vα , (◦)′α :=
dα(◦)

dt
=

∂(◦)
∂t

+ ∇(◦) · vα . (4)

3.3. Governing Balance Relations

For the given fibrous material and loading conditions, the formulations of porous
media dynamics in the following are restricted to the low-frequency range. In this, a
critical frequency that separates the low- and high-frequency considerations in porous
media dynamics can be found in, e.g., [24,25] and relies on the micro-geometry and fluid
properties of the medium. In particular, this can be expressed according to [26] as

fcrit :=
2 ηFR

ρFR
0 r2

(5)

with r being the pore radius, ηFR > 0 is the effective dynamic fluid viscosity, and ρFR
0 is

the initial material density of the fluid. Considering the material properties of air as the
pore fluid and assuming the pore radius to be approximately equal to the fiber radius, i.e.,
r ≈ 8µm [1], the critical frequency is approximately fcrit ≈ 5 × 105 Hz. The value of fcrit
is much higher than the considered frequencies in the numerical implementations, i.e.,
fexc < 200 Hz, which justifies our treatment in the low-frequency range.

The current study also makes the following assumptions: (1) The deformations occur
under isothermal conditions, (2) the airflow on the micro-scale is assumed laminar, and
(3) no mass production or exchange occurs between the phases. Under these assumptions,
the focus will be on the mass and momentum balances of the constituents and the overall
aggregate. Moreover, the primary variables to be determined are the solid displacement uS
and the pore pressure p, whereas secondary variables like the solid velocity vS = (uS)

′
S,

the fluid velocity vF, and the seepage velocity wF = vF − vS will also be needed in the
equations and computed based on the primary variables.

The mass balance of constituent ϕα under the aforementioned assumptions reads

(ρα)
′
α + ρα div vα = 0 . (6)

For the incompressible solid-phase ϕS with ρSR = const., the solid mass balance, which
yields automatically the solid volume balance, leads to an explicit relation of the solid
volume fraction, expressed as

(nS)′S = −nSdiv vS −→ nS ≈ nS
0S (1− div uS) , (7)

where nS
0S is the initial value of nS. Additionally, we proceed in the current work from

the assumption of a barotropic fluid phase. Thus, a simplified relation among the fluid
material density ρFR(p), the fluid compressibility κF, and p is applied according to Borja
and White [33], i.e.,

(ρFR)′S :=
∂ρFR

∂ p
(p)′S =

ρFR

κF (p)′S . (8)

Having this together with the material time derivatives in Equation (4) and the solidity
in (7), the governing fluid mass balance can be rewritten as

nF ρFR

κF (p)′S + ρFR div vS + div (ρFR nFwF) = 0 . (9)
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In our treatment, there is no need to explicitly compute nFwF as Darcy’s law can be
incorporated in Equation (9) and, thus, the pressure gradient∇p will appear instead in this
equation.

The momentum balance equation of constituent ϕα can be expressed as

ρα (vα)
′
α = div σα + ρα b + p̂α , (10)

where p̂α is the volume-specific direct momentum production, which represents the local
interaction force between the phases and fulfills the relation p̂S + p̂F = 0 . Moreover,
σα = (σα)T is the symmetric partial Cauchy stress tensor and b is the mass-specific body
force. In connection with the constitutive relations of the stress tensors and the momentum
production term, the concept of effective stresses according to de Boer and Ehlers [34] is
applied. Thus, having (•)E as an extra or effective term, the following relations hold:

σS = σS
E − nS p I , σF = σF

E − nF p I , p̂F = p̂F
E + p∇ nF. (11)

Thus, the following step is to specify the effective stress tensors. The material param-
eters presented in Table 1 show a clear difference in the stiffness between the machine
direction (MD) and the cross direction (CD). Therefore, we adopt in this work a trans-
versely isotropic model, discussed in, e.g., [27,35,36], for small strain problems. In this,
the symmetry groupMGT with the preferred fiber direction a that fulfills ‖a‖ = 1, can
be expressed as

MGT :=
{

I ; Q(θ, a) | 0 ≤ θ ≤ 2 π
}

. (12)

In this, Q(θ, a) represents all the rotations about the a-axis. Having M := a⊗ a as
the structural tensor, the corresponding elasticity tensor can be expressed as

4
CS = λT I⊗ I + 2 µT

4
Isym + α

[
M⊗ I + I⊗M

]
+ 2 (µL − µT)

4
Ia + β M⊗M .

(13)

In this, the 4th-order tensor (
4
Ia)ijkl can be expressed in index notations in terms of a

and the Kronecker delta δ as (I4
a)ijkl := ai(δjkal + δjlak) + aj(δilak + δikal), see, [27,35]. An

alternative formulation of anisotropic viscoelasticity within the large strain and porous
media framework can be found in, e.g., Mabuma [37]. Following this, the effective stress
tensor σS

E can be expressed as

σS
E =

4
CS εS . (14)

An accurate estimation of the permeability can be carried out experimentally or via
lower-scale simulations using, e.g., the Lattice Boltzmann methods (LBM) as have been
thoroughly discussed in [22] among others. In connection with fibrous materials, Tamayol
and Bahrami [38] studied the effects of fiber shape, orientation, and tortuosity of the
medium on the permeability formulation. They concluded that the fiber alignment leads to
transverse permeability for low porosities, i.e., nF < 0.7. However, for higher porosities,
this permeability is approximately isotropic. Therefore, we proceed in the current treatment
from isotropic, deformation-dependent permeability, which can be expressed according
to [39] as

KS :=

(
nF nS

0S
nF

0S nS

)κ

KS
0S with κ > 0 . (15)

In this, κ is a material parameter to adjust the dependency of the permeability on the
solid deformation and is considered equal 1 in this paper. The change of the permeability
due to the deformation is realized through the dependency on nF, nS, and their initial
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values nF
0S, nS

0S. Having an isotropic intrinsic permeability tensor KS = KS I with KS
0S as

the initial value, the constitutive relation for the interaction force p̂F can be expressed as

p̂F
E = − (nF)2 µFR

KS wF . (16)

With regards to the fluid effective stress, many studies have shown that div σF
E � p̂F

for low-viscous pore fluids, see, e.g., [28]. Thus, σF
E can be neglected from the fluid

momentum balance. It is worth mentioning here that an alternative formulation of p̂F

in the high-frequency range can be found, as presented in, e.g., [26]. However, such
formulations are beyond the scope of the underlying work. In the underlying treatment
with air as the only pore fluid, the inertia force of air ρA (vA)

′
A, and its gravitational force

ρA b are also negligible. In summary, the governing balance relations, which are applied
in the FE modeling of the nonwoven under vibration and allow to determine the primary
variables {uS, p}, are

• Overall momentum balance:

ρS (vS)
′
S = div(σS

E − p I ) + ρSb + fv . (17)

• Overall mass balance:

nF ρFR

κF (p)′S + ρFR div vS − div
[ ρFR

µFR KS∇p
]
= 0 . (18)

In this, we defined in the momentum balance equation (17) a solid viscosity-related
force fv := µS∇2vS with ∇2 being the Laplace operator and µS as a solid viscosity-related
parameter, chosen equal to 0.01 in the current treatment (see also Section 4). This term
is added in the sense of body force to capture the viscous-damping-induced attenuation.
An explicit inclusion of the viscosity in the solid material model, as presented in [40], is
beyond the scope of this work. In this connection, the presence of a viscous pore fluid
leads to another source of viscous damping in the formulation. This effect is realized in
the mass balance equation through the effective fluid viscosity ηFR. However, this kind of
damping becomes of less importance for low-viscous pore fluids like air and the case of
high permeability.

4. Dynamics Analysis of Plate Vibration

In this work, the displacement field of a thin vibrating plate serves as a boundary for
the nonwoven layer placed above. Before analyzing the dynamic response of the nonwoven,
plate vibrations are studied separately. Free vibration modes and plate excitability are
analyzed applying analytical solutions based on Kirchhoff’s plate theory, complemented
by numerical solutions obtained with the FE method. At this point, an exemplary plate
with suitable dimensions and boundary conditions is selected.

4.1. Mathematical Modeling

A thin plate shown in Figure 3 with parameters given in Table 2 is considered in the
following.

The boundary conditions of the plate are defined such that the edges of the plate are
simply supported, i.e., displacements on the edges are restricted whereas the edges can
freely rotate.
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Table 2. Parameters of the plate.

Quantity Unit Value

Dimensions:
Length lp mm 400
Width bp mm 600

Thickness tp mm 2
Material Parameters (Steel):

Density ρp kg/m3 7850
Elasticity modulus Ep N/mm2 210,000

Poisson’s ratio νp - 0.3
Viscous damping ratio ξp [41] - 0.01

x 

y 

z 

bᵖ

lᵖ

P₁

P₂

P₃

tᵖ

Fᵗ

l /2ᵖ
b /4ᵖ

Figure 3. Model of the vibrating plate with its dimensions, characteristic points P1 to P3 for displace-
ment evaluation and force application as well as an exemplary force Ft.

For a plate with the given parameters and boundary conditions, an analytical solution
of the bending vibration based on Kirchhoff’s plate theory is possible. Using the parameters
introduced in Table 2, the natural angular frequencies ω(m,n) are

ω(m,n) = k2
m,n · tp ·

√
Ep

12 · (1− ν2
p) · ρp

(19)

with
k(m,n) = π ·

√
(

m
lp
)2 + (

n
bp

)2. (20)

The integer indices m and n refer to the vibration mode and correspond to the number
of vibration antinodes in x- and y-direction, respectively [15].

Steady-state solutions of vibrations excited by a concentrated harmonic force Ft in the
lateral direction can also be found analytically. The relation between the lateral displace-
ment w of an arbitrary point Pw on the plate and the force Ft applied at an arbitrary point
PF is described by the transfer mobility Y. Here, complex quantities are used to represent
harmonic functions, marked by an underscore, e.g.,

Ft = F̂t · exp (jΩexct) (21)
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with F̂t as the force magnitude, Ωexc as the angular frequency of the excitation, and t as the
time. j denotes the imaginary unit. It can be shown that the transfer mobility Y is a linear
superposition of the modal transfer mobilities Y(m,n), i.e.,

Y = ∑
m

∑
n

Y(m,n) . (22)

For a thin, simply-supported rectangular plate, the modal transfer mobility Y(m,n) can
be calculated as

Y(m,n) =
4

ρpVp
·

sin (mπ xw
lp
) · sin (nπ

yw
bp
) · sin (mπ xF

lp
) · sin (nπ

yF
bp
)

ω2
(m,n) −Ω2

exc + j · 2d(m,n)ω(m,n)Ωexc
. (23)

In this equation, Vp denotes the volume of the plate. xw and yw as well as xF and yF
are the coordinates of point Pw and PF, respectively. d(m,n) refers to the modal damping
ratio, which is assumed in this case to be equal to the viscous damping ratio ξp for each
mode [15].

In addition to this analytical model, a numerical FE model of the plate is built in
Abaqus/CAE 2021. With this model, free vibration mode shapes as well as time histories
of the lateral displacements under force excitation are determined. The plate is meshed
with eight-node shell elements (element type S8R) with an element size of 0.01 m. Material
damping is modeled as Rayleigh damping, which is viscous damping proportional to the
mass and stiffness of the system. Based on the global mass matrix MFE and stiffness matrix
KFE, the damping matrix CFE can be calculated as

CFE = αRD MFE + βRDKFE, (24)

where αRD is the factor for mass-proportional damping and βRD is the factor for stiffness-
proportional damping [42]. The factors are calculated such that a viscous damping ra-
tio ξp = 0.01 (see Table 2) is approximated in the frequency range between 50 Hz and
100 Hz [42]. This yields αRD = 4.19 1/s and βRD = 2.12 · 10−5 s.

4.2. Numerical Analysis

Table 3 shows the free vibration modes of the simply-supported plate with parameters
from Table 2. All free vibration modes with a natural frequency below 200 Hz are listed. In
the following, frequency values f will be used instead of angular frequency ω for better
readability. Solutions for the natural frequencies obtained analytically and numerically
using the FE method as well as the corresponding mode shapes are shown. Analytically
and numerically obtained natural frequencies are very similar. Due to the selected plate
dimensions and boundary conditions, the first free vibration mode has a natural frequency
of about 44 Hz and one vibration antinode located in the middle of the plate. As expected,
higher vibration modes exhibit an increasing natural frequency in combination with an
increasing number of vibration antinodes. These results were validated through a compari-
son with the natural frequencies given for an exemplary plate with different but similar
parameters in [15]. For this validation, the parameters of the models presented here were
adjusted to match the parameters in the reference. Since the resulting natural frequen-
cies are similar to the results in the reference, it is assumed that the results in Table 3 are
reliable, too.
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Table 3. Free vibration modes with natural frequencies f(m,n) below 200 Hz.

Mode f(m,n) in Hz f(m,n) in Hz Mode Shape
(Analytical) (FE) (FE)

Mode 1 (m = 1, n = 1) 44.391 44.318

Mode 2 (m = 1, n = 2 85.367 85.211

Mode 3 (m = 2, n = 1) 136.59 136.47

Mode 4 (m = 1, n = 3) 153.66 153.44

Mode 5 (m = 2, n = 2) 177.56 177.24

In terms of vibration excitation due to the concentrated harmonic force, the location
of force application and the excitation frequency have a major influence on the resulting
vibration. As mentioned before, the transfer mobility Y is a linear superposition of all
transfer mobilities Y(m,n) of the different free vibration modes. These modes are therefore
closely related to the excitability of the plate as analyzed in the following. Figure 4 shows
the magnitude of the transfer mobility from a force applied at position P1 to displacements
at positions P1 to P3 as a function of the excitation frequency fexc. The vertical lines mark the
natural frequencies of the plate. Additionally, magnitudes of the modal transfer mobilities
for mode 1 and mode 4 are shown. It is observed that the transfer mobility between
0 Hz and 200 Hz can be approximated as a superposition of the modal transfer mobilities
mainly of mode 1 and 4. This corresponds to the fact that both vibration modes exhibit a
vibration antinode in the point of force application (see also Table 3). In contrast, modes
2, 3, and 5 have a vibration node at this location. They cannot be excited by a force at
this location, resulting in a modal transfer mobility equal to zero. Vibration modes with
higher natural frequencies are negligible since they do not participate significantly on the
transfer mobility Y in the frequency range up to 200 Hz. The magnitude of the transfer
mobility depends strongly on the excitation frequency. As expected, resonance occurs if
the excitation frequency matches the natural frequency of a mode. The magnitude of the
transfer mobility exhibits local maxima at these frequencies and the vibration is strongly
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dominated by the corresponding free vibration mode. In contrast, antiresonance occurs at
a frequency of about 100 Hz. Here, the magnitude of the transfer mobility shows a local
minimum, since the modal vibrations of mode 1 and mode 4 cancel each other out due to
their phase shift.
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Figure 4. Magnitudes Ŷ of the transfer mobility for force application in P1 as a function of the
excitation frequency fexc: (a) (Overall) transfer mobility; (b) Modal transfer mobility of mode 1;
(c) Modal transfer mobility of mode 4.

Transfer mobility for force application in point P2 is shown in Figure 5. In contrast
to force application in point P1, resonance occurs also at a frequency of about 85 Hz,
which is the natural frequency of mode 2. At this frequency, the transfer mobility for the
displacement in point P3 has the same magnitude as for P2 where the force is applied due
to the symmetry of the involved shape modes. In contrast, this resonance does not affect
the transfer mobility for the displacement in point P1 since mode 2 has a vibration antinode
at this point.
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Figure 5. Magnitudes Ŷ of the transfer mobility for force application in P2 as a function of the
excitation frequency fexc.

Dynamic simulations in the time domain were performed with the FE model to
confirm the analytical results and to examine the transition response after the start of the
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force excitation. The plate was excited at the natural frequencies of mode 1, mode 2, and
mode 4, respectively, whereby the point of force application was a vibration antinode of
the corresponding mode (point P1 for mode 1 and 4 as well as point P2 for mode 2). The
amplitude of the force was chosen as F̂t = 1 N. Figure 6 shows the lateral displacement
envelopes of points P1 to P3 as well as the vibration shape for the different excitations.
Starting from the initial condition (zero displacement and velocity), the amplitudes of
the vibration grow in the transition phase. After a short time, steady-state response is
reached due to the material damping. Amplitudes in the steady-state are similar to the
corresponding magnitudes of the transfer mobilities (see Figures 4 and 5). Small deviations
are caused by the fact that the viscous damping ratio ξp = 0.01 is only approximated by
the Rayleigh damping in the FE analysis.
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Figure 6. Envelope of the lateral displacement w in points P1 to P3 and vibration shapes for different
excitations: (a) Excitation in P1 with 44 Hz; (b) Excitation in P2 with 85 Hz; (c) Excitation in P1 with
153 Hz.

All in all, this analysis of plate vibrations shows that the location and frequency of the
excitation has a huge influence on the amplitudes and the shape of the resulting vibration.
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This, in turn, influences the excitation of the porous medium which is in contact with the
vibrating plate. This is analyzed in the following section, considering force excitation in
point P1 at the natural frequencies of 44 Hz, 85 Hz, and 153 Hz.

5. Dynamic Response of Nonwovens as Multiphase Porous Media

The objective of the following initial-boundary-value problem (IBVP) is twofold: First,
to realize the coupled hydromechanical processes in fibrous nonwovens that occur under
dynamic excitation. Second, to show the effect of the applied load frequency on the coupled
hydromechanical response at different locations in the domain. Therefore, we consider
a three-dimensional geometry of the corresponding IBVP as illustrated in Figure 7. In
this, the lower layer represents the linear elastic solid plate with material parameters and
geometry discussed in Section 4 and given in Table 2. The upper layer represents the
anisotropic fibrous porous domain with material parameters summarized in Table 4, which
rely on the parameters that are extracted from the experiments in Table 1.

e2
e1

e3

e2

e3

l pm
=

400 mm

bpm = 600 mm

Ft Plate

Textile

10.52 mm
2 mm

Figure 7. Geometry and boundary conditions of the porous media dynamics model, consisting of a
lower plate and an upper textile layer. At the upper boundary, p = 0 (drained), whereas an excitation
force Ft is applied at the lower boundary of the plate at its center. The side boundaries are fixed in all
directions, drained, and the preferred direction of anisotropy is a := e2 .

Table 4. Parameters for the multiphase textile material, which rely on sample 1 in Table 1.

Quantity Unit Value

Dimensions (textile layer):
Length lpm mm 400
Width bpm mm 600

Thickness tpm mm 10.52
Material Parameters (textile material):

Solid material density ρSR kg/m3 1500
Elasticity modulus in MD (ET) N/mm2 0.0638
Elasticity modulus in CD (EL) N/mm2 0.2208

Poisson’s ratio νS - 0.3
1st Lamé parameter in MD (µT) N/mm2 0.0245
2nd Lamé parameter in MD (λT) N/mm2 0.037
1st Lamé parameter in CD (µL) N/mm2 0.16

initial porosity nA
0S − 0.976

Fluid (air) material density ρAR kg/m3 1.2
Effective dynamic fluid viscosity ηAR Ns/mm2 18.1

Initial intrinsic permeability KS
0 mm2 0.0002456

Permeability-related parameter κ − 1
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The FE implementation of the porous media coupled problem is carried out using
the FE package FlexPDE (professional, ver. 7.15). In this, the Galerkin method with equal-
order, linear shape functions is applied for spatial discretization using tetrahedral mesh
elements. The applied time discretization is the 2nd-order implicit backward difference
formula (BDF2). In this, an adaptive time-stepping scheme is used to ensure that the
numerical solution remains within the specified limits of accuracy. For the solution of the
non-linear PDE, a modified Newton-Raphson iteration procedure is implemented in the
FlexPDE package.

In the solution of the coupled porous media problem, a monolithic approach has been
implemented, which offers an unconditionally stable solution [28]. In this, the presence of a
compressible pore fluid (air) allows bypassing numerical stability challenges, usually faced
with incompressible fluids, as the inf–sup condition is fulfilled in this case, see, e.g., [43–45]
for references.
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Figure 8. Total solid stress, solid effective stress, and pore-pressure changes over the time range
[0, 0.1]s at points A (top-left), B (top-right), C (bottom-left), and D (bottom-right) of the domain for
the case of an excitation frequency of fexc = 153 Hz.

A load Ft = 1.0 N sin(2 π fexc t) with different frequencies, i.e., fexc = 44, 85, 153 Hz,
is considered in the analysis and applied at the center of the plate from the bottom, i.e., at
coordinates (0, 0,−12.52). The relationship between the pore-air pressure and the volumet-
ric deformations of the porous textile material can be studied based on the effective stress
principle, presented in Equation (11), viz.

σS · I = σS
E · I− p I · I −→ tr(σS) = tr(σS

E)− 3 p . (25)

In the following, the time history of σS, σS
E, and p at four exemplary different points,

i.e., A (0, 0, −4), B (0, 50, −4), C (0, 100, −4) and D (0, 150, −4), of the porous domain
are investigated. These points are located above the neutral surface, where the volumetric
deformations induce a significant amount of volumetric deformations and, thus, lead to
increasing or decreasing in the air pressure. Particularly, Figure 8 shows the interplay
between the pore-air pressure and the effective stress at all four points of the domain for
the case of an excitation frequency of fexc=153 Hz. Of particular interest is the interaction at
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point A, which is located directly over the excitation point. At this point, the values of the
stresses and pressure are significantly higher than that the other points in the domain. At
the other points, the values of the total stress and, thus, the effective stress and the pressure
are much lower.

At point A of Figure 8, the negative sign of tr(σS) and tr(σS
E) corresponds to a com-

paction response, which is also associated with an increase of the pore pressure. The
compaction response with the negative sign of tr(σS

E) is associated with an increase in the
normal forces between the fibers and, thus, an increase of the static friction force that is
proportional to the normal one. It is worth mentioning here that at point A, the material
remains under compaction also after a long time of excitation as illustrated in Figure 9, left.
Moreover, it is noticeable in Figures 8 and 9 that the presence of the air pressure contributes
to carrying part of the load and, thus, reduces of the friction between the fibers.
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Figure 9. Total solid stress, solid effective stress, and pore-pressure changes over the time range
[0, 0.3]s at point A (left) and point B (right) for the case of excitation frequency fexc=153 Hz .

Figure 8 shows that at points B, C, and D, the response changes between compaction
and dilation, i.e., tr(σS) and tr(σS

E) change between negative and positive values. The
tendency of the response remains unchanged for a longer time as illustrated in Figure 9
for point B. Although the amplitude of the stresses and the pressure is much smaller than
that at the location directly over the excitation point, the contribution of the air pressure
(negative or positive) is significant. On the one hand, the positive pressure (notice that −3 p
is plotted) reduces the compaction and, thus, obstructs the increase of the static friction
force. On the other hand, the negative pressure (suction effect) reduces the dilation effect
and, thus, obstructs the reduction of the static friction force.

Looking at the other cases of excitation, i.e., for fexc = 85 Hz and fexc = 44 Hz depicted
in Figure 10 for point A, the same conclusion can be drawn about the contribution of the
pore pressure to carrying a significant part of the applied stresses and, thus, affecting the
values of the friction forces between the fibers. In this, at the beginning of the excitation,
a larger amplitude of tr(σS) is obtained, which is reduced after each cycle until reaching
a steady-state response. In connection with the effect of the excitation frequency on the
response, the results presented in Figures 9 and 10 show that the lower the frequency of
the excitation, the higher is the value of the resulting total solid stress tr(σS) and, thus, the
deformation. This effect is illustrated in Figure 11, left, for the three considered frequencies.
It is also noticeable that the change of the material response over the excitation point from
compaction to dilation is reached for lower frequency excitation but not for the higher
frequency, as for fexc = 153 Hz.
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Figure 10. Total solid stress, effective solid stress, and pore-pressure changes over the time range
[0, 0.5]s at point A for the case of an excitation frequency fexc=85 Hz (left) and over the time range
[0, 0.7]s for fexc=44 Hz (right).

With regards to quantifying the damping effects during wave propagation in the
porous medium layer, the obtained results show a reduction of the maximum amplitude of
tr(σS) by approx. 85% from point A to point D. This wave amplitude attenuation is also
illustrated in Figure 11, right, for four points (A, B, C, D) in the domain.
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Figure 11. Illustration of the maximum reached amplitude of tr(σS) at point A for the three different
excitation amplitudes fexc (left). Illustration of attenuation of the maximum amplitude of tr(σS) as
getting far from the point of excitation for fexc=153 Hz and in the steady-state (right).

6. Conclusions and Future Aspects

In this research work, we presented a holistic study related to the dynamic response of
nonwovens. This included the characterization of the properties of the nonwoven materials
using laboratory experiments and samples with different initial states, a dynamic analysis of
a thin vibrating plate, which represents a base for the fibrous textile layer, and a numerical
simulation of nonwovens as multiphase anisotropic porous media.

The Theory of Porous Media was used for the continuum-mechanical description of
the anisotropic porous medium, whereas the formulations considered two phases, i.e., solid
and air phases. In this, we restricted the modeling to isothermal and small strain conditions.
The formulations adopted a deformation-dependent permeability and considered the
damping effect of the solid material in the sense of a body force. Another source of
damping in the mechanical response resulted from the flow of the viscous fluid (air) in the
porous textile domain. The resulting coupled PDEs were then solved numerically using a
monolithic approach in the FEM package FlexPDE.

The material parameters in the FE model of the dynamic response of nonwovens as
multiphase porous media are based on the experiments carried out within this research
project. The geometry of the vibrating plate and the excitation frequencies are based on a
dynamics analysis of plate vibration. Plate vibration, excited by concentrated harmonic
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forces, was analyzed using transfer mobilities. It was shown that vibration shape and am-
plitude strongly depend on the location and frequency of the force excitation. As expected,
the highest amplitudes occur if a free vibration mode is excited at its natural frequency.
Results were confirmed by dynamic simulations of an FE model. Different excitations at
the plate’s natural frequencies were selected for the analysis of the porous medium.

The numerical results showed the capability of the proposed model in realizing the
interaction between the pore-air pressure and the effective stresses during nonwovens vi-
bration. In particular, the role of the pore air in vibration-induced friction reduction during
material compaction was evident. On the contrary, the negative pressure (suction effect)
resulted in a reduction of material dilation and, thus, obstructed the static friction force
reduction during vibration. The numerical results allowed also to show and measure the
damping effects during wave propagation in the nonwovens layer. It was also remarkable
from the numerical results that the change of the material response in the region over
the excitation point from compaction to dilation is reachable only for the lower frequency
excitation and not for higher frequency. In this regard, for the same amplitude of the
excitation, the lower the frequency the higher is the value of the resulting total solid stress
and, thus, the volumetric deformations.

Our work is a first step towards understanding the mechanisms inside a nonwoven as
a porous medium when excited by an imposed displacement. Understanding the thermal,
viscous and mechanical effects inside the medium could lead towards a model that predicts
its energy dissipation capabilities. The predictive model helps engineers to design the right
material for a given sound insulation task. Our work shows that there are many questions
remaining if one wants to build such a predictive model.

Several important aspects and open questions need to be addressed in our future
works. This includes the application of lower-scale simulations, such as the lattice Boltz-
mann method (LBM), to representative volume elements (RVEs) to determine quantities
like the intrinsic permeability. It is also important to study in future works the effect of
excitation location and boundary conditions on the response. Additionally, finding a corre-
lation between the eigenmodes of the vibrating plate and the hydro-mechanical response
of the nonwovens is one of the remaining open topics.
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