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Abstract: In order to analyze the dynamics of a structural problem accurately, a precise model of the
structure, including an appropriate material description, is required. An important step within the
modeling process is the correct determination of the model input parameters, e.g., loading conditions
or material parameters. An accurate description of the damping characteristics is a complicated
task, since many different effects have to be considered. An efficient approach to model the material
damping is the introduction of fractional derivatives in the constitutive relations of the material,
since only a small number of parameters is required to represent the real damping behavior. In this
paper, a novel method to determine the damping parameters of viscoelastic materials described by
the so-called fractional Zener material model is proposed. The damping parameters are estimated
by matching the Frequency Response Functions (FRF) of a virtual model, describing a beam-like
structure, with experimental vibration data. Since this process is generally time-consuming, a
surrogate modeling technique, named Polynomial Chaos Expansion (PCE), is combined with a
semi-analytical computational technique, called the Numerical Assembly Technique (NAT), to reduce
the computational cost. The presented approach is applied to an artificial material with well defined
parameters to show the accuracy and efficiency of the method. Additionally, vibration measurements
are used to estimate the damping parameters of an aluminium rotor with low material damping,
which can also be described by the fractional damping model.

Keywords: Parameter Identification Process; Numerical Assembly Technique; Polynomial Chaos
Expansion; Frequency Response Function; viscoelastic material behavior; fractional Zener model

1. Introduction

In modern engineering applications, advanced materials and material combinations
are used to tackle vibration problems. In order to analyze such structures with a virtual
model, an accurate representation of the structure, including geometric details, material
characteristics, loading conditions etc., is required. While the geometric description is gen-
erally available from CAD data, the material parameters of the model are often unknown
and have to be determined by comparison with measurement results.

For an appropriate description of the real structure, viscoelastic material behavior is
often required. While a perfectly elastic material has three assumptions, namely the linear-
ity, the simultaneity, and the unique equilibrium value between the stress and strain [1],
viscoelastic material models only require linearity [1]. Rheological models for these mate-
rials can be illustrated as combinations of springs and dampers [2]. In the present paper,
the fractional Zener model is used, which is a modification of the traditional Zener model
presented in [3]. While the classical Zener model contains two springs and a dashpot [4],
the introduction of fractional calculus leads to a modification of the dashpot behavior, see,
e.g., [4,5], and an additional fourth parameter, the fractional-order of the time derivative, is
introduced [6]. This modification allows for the representation of real materials with a low
number of parameters [6].
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A possibility to estimate the parameters in the material model is through a minimiza-
tion of the error between a numerical model and measurements. Different experimental
setups are available to generate reference data for the minimization process. Quasi-static
methods, such as the creep test and the relaxation test, analyze the behavior of the materials
to an impulsive loading over a long time [1], while dynamic methods consider the response
to varying loads. According to [7], the dynamic methods can further be categorized into the
Dynamic Mechanical Analysis (DMA) [8] and vibration tests [9]. Several other techniques
are listed in [9], with a special focus on the estimation of damping.

The analysis of the material behavior by DMA is based on the measurement of the
amplitude and the lag in the stress–strain relation caused by an oscillating force [8]. Then,
the parameters of the model, such as the modulus and the damping, can be calculated [8].
In [10], the viscoelastic material parameters of synthetic rubber are estimated by DMA.
The damping of the test object is described by a Maxwell model, where two different speci-
fications are compared [10]. First, a series Maxwell setup containing 12 components and
second, a fractional derivative model containing a springpot element instead of the dashpot
is analyzed [10]. In [11], a unidirectional glass fibre-reinforced epoxy is investigated, where
a three-point bending test including the effect of different temperatures of the test object
is applied.

DMA leads to very good estimates for the material parameters, but expensive test
equipment is required [12] and the method is limited to low frequencies [7]. Alternatively,
vibration tests can be used to estimate the material properties. In [7], a bare beam and a
sandwich structure are analyzed by shaker tests. The Frequency Response Function (FRF)
curve is used in a model updating process applying the amplitude correlation coefficient [7].
The results are compared to those of DMA and show that the vibration test was found
superior [7]. In [12], a setup containing two beams with different lengths is analyzed by
impact hammer tests. The response is measured by an acceleration sensor and the complex
Young’s modulus is estimated, based on the comparison of a calculated FRF of the beam
and the measured response [12].

Comparing the measured FRF curves with numerical data is also used by other
researchers, like in [13–15]. In [13], isotropic and orthotropic material parameters are
estimated from bending tests. Finite element (FE) simulations predict the viscoelastic
material behavior and the Levenberg–Marquard algorithm is used for the estimation of the
best fitting parameters [13]. In [14], a finite element model is applied to describe the test
object containing a beam with a layer of viscoelastic damping material in a clamped-free
boundary condition. The FRF curves are used to extract the values of the eigenfrequencies
and amplitudes at these eigenfrequencies for the Parameter Identification Process [14].
A two-step minimization is applied to estimate the best fitting parameters in combination
with a parameter sensitivity analysis [14]. In [15], a viscoelastic composite plate is investi-
gated. Amplitude values at the resonance frequency and close to the resonance frequency
are used to fit the parameters [15].

Generally, simple objects such as beams or plates are used in the process of material
identification, since the modeling is less involved and the measurements are easier to
conduct. Nowadays, various methods exist to solve one-dimensional structural problems,
such as the Transfer Matrix Method, the Dynamic Stiffness Method or the Green function
method [16]. These methods involve a frequency-dependent system matrix that needs
to be solved numerically [16]. In the present paper, a (semi-)analytical method, named
Numerical Assembly Technique (NAT), is used to describe one-dimensional beam struc-
tures. The method was introduced by Wu and Chou [17] in 1999. NAT subdivides the
beam structure into segments that contain a constant cross-section and constant mate-
rial parameters [16]. The homogeneous governing equations of the uniform beam seg-
ments are solved analytically and the resulting solutions are used to fit the boundary and
interface conditions [16].

Generally, the minimization process for the parameter identification requires numer-
ous evaluations of the numerical models, which is a time-consuming process. In order
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to raise the efficiency of the Parameter Identification Process, the numerical model can
be replaced by a surrogate model. Several surrogate modeling techniques exist, such
as the Artificial Neural Network [18–21], parametric Reduced Order Model [22], the Re-
sponse Surface Method [23] or the Polynomial Chaos Expansion (PCE) [24–28]. In [18,19],
a viscoelastic cylinder coated by water is analyzed and the complex Young’s modulus is
estimated. An Artificial Neural Network is used as a surrogate model. In [20,21], a lam-
inated structure is analyzed. The FRF curve gives the reference values and an Artificial
Neural Network is used for the surrogate modeling process [20,21]. A Bayesian approach
is applied for the estimation process [20,21]. In [22], a reduction in the computational
time is achieved by the reduction in the order of the model in order to efficiently estimate
the complex shear modulus. In [23], a Response Surface Method is used to describe the
reference values based on the storage modulus and the loss factor. In [24], a frictional
system is analyzed and the Polynomial Chaos Expansion is used as a surrogate modeling
technique. In [25,26], composite plates are analyzed and, based on the deviation of the re-
sults, the input parameters are chosen to describe the polynomial basis. In [27,28], a special
combination of the Polynomial Chaos Expansion to estimate the material parameters [27]
and bearing stiffness parameters of a test rig [28] is shown. The used method is called
Polynomial Chaos Kriging and uses the Polynomial Chaos Expansion for a global system
description and the Kriging method for the interpolation of local values [29].

In the present work, PCE is used, which approximates the complex numerical model
by orthonormal polynomials to reduce the computational load. PCE is based on the
concept of Wiener [30] and has been extended by Cameron and Martin [31] using non-
linear functions defined by a Fourier–Hermite series [32–34]. Many refinements and
new fields of applications for PCE have been investigated, which are summarized by
Ghanem and Spanos [32]. The aim of PCE is to span a space based on a polynomial basis
and correlating coefficients in order to build a surrogate model [34]. Depending on the
distribution of the input parameters, different polynomials can be applied, as listed in,
e.g., [33].

The outline of the paper reads as follows: In Section 2, the two numerical methods are
explained, which build the basis for the Parameter Identification Process (PIP). In Section 3,
two examples are presented. First, a numerical example shows the efficiency and simplicity
of the presented method. Second, a real measurement is used and the material and damping
parameters are estimated. Finally, in Section 4, the conclusion is presented.

2. Materials and Methods

In this section, the Numerical Assembly Technique (NAT) and the Polynomial Chaos
Expansion (PCE) are explained. These methods form the basis of the Parameter Identifica-
tion Process (PIP).

NAT is an efficient computational technique, which is used to analyze the dynamic
behavior of beams. A numerical model includes input parameters, such as the material
parameters and geometry parameters. Based on these input parameters and an excitation
function, the dynamic response of the system is calculated. This gives the FRF curve,
from which parameters such as the eigenfrequency of the beam are extracted. These pa-
rameters are named output parameters in the following. So, NAT describes the correlation
between input parameters and output parameters.

The aim of the PIP is to find appropriate values of the input parameters for given
output parameters. In order to find these input values, the model needs to be evaluated
very often, which is very time-consuming. Here, the computational effort is reduced by a
surrogate model: PCE uses polynomials to describe the correlation of the input parameters
and output parameters to raise the efficiency of the estimation process.

2.1. Numerical Assembly Technique (NAT)

The Numerical Assembly Technique gives a (semi)-analytical solution of one-dimensional
structures [16]. In this section, NAT is explained for the Timoshenko beam theory with
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viscoelastic material behavior represented by the fractional Zener model. The content and
the structure of the description is based on the work of the authors presented in [35].

NAT is based on the subdivision of a one-dimensional structure into segments. Each
segment has a constant cross-section area and constant material parameters. The point
between two segments is named station. At the stations, lumped masses, mass moments of
inertia, springs or dampers can be applied. The governing equation describing a segment
is solved. The resulting displacement, rotation, shear force and moment are parameters,
which are used to fulfil the boundary and interface conditions of the segment. All segments
are assembled to give a full description of the structure [16,35].

The harmonic equations of the Timoshenko beam theory are given by [35]

d4w̃`(x)
dx4 +

(
ω̄2
` (1 + Ē`)− d̄a`
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where j is the imaginary number, the index ` is the segment number, w̃`(x) is the complex
amplitude of the transverse displacement w`(x, t) = Re[w̃`(x) e jωt], ϕ̃`(x) is the complex
amplitude of the rotation ϕ`(x, t) = Re[ϕ̃`(x) e jωt], M̃`(x) is the complex amplitude of
the moment M`(x, t) = Re[M̃`(x) e jωt], Q̃`(x) is the complex amplitude of the shear force
Q`(x, t) = Re[Q̃`(x)e jωt], x is the global coordinate, ω is the angular frequency, ρ` is the
density, A` is the cross-section, I` is the second moment of area, kS` is the shear correction
factor, da` is a damping coefficient, q̃(x) is the complex amplitude of the distributed
force q`(x, t) = Re[q̃`(x) e jωt], m̃(x) is the complex amplitude of the distributed moment
m`(x, t) = Re[m̃`(x) e jωt], Re[•] is the real part of •, E?

` is the complex Young’s modulus
and G?

` is the complex shear modulus.
The complex Young’s modulus E?

` (ω) and shear modulus G?
` (ω) are described by a

four-parameter model called fractional Zener model. This model describes a viscoelastic
material behavior. The four-parameter model was analyzed by Pritz [6]. The axial stress
based on this model is described by [35]
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where σ̃xz(x, ω) is the shear stress, γ̃xz(x, z, w) is the shear strain, and aG
0`, aG

1`, bG
0` and αG

`
are four positive real constants [35].

The numerical description of the system given by w̃`(x`) is represented by a homoge-
neous solution w̃h`(x`) and a particular solution w̃p`(x`) of the governing equation. First,
Equation (1) is solved by neglecting the excitation. Considering the boundary conditions
given in [36] and the modification of w̃h` = cw`e jkx` , where w̃h` is the homogeneous part
of the displacement, a system of equations representing the homogeneous solution is
given by [35]

x̃h`(x`) = B`(x`) c`. (8)

Here, x̃h`(x`) contains the homogeneous field variables, B`(x`) is a matrix contain-
ing the material parameters and c` is a vector of constants. Second, the particular solu-
tion is calculated, which considers the effect of the excitation on the particular solution
of x̃p`(x`) [16].

Last, the assembly process is operated where a system is described by [16]

Ac̄ = b, (9)

where A is a system matrix containing the matrices B` and the vector c̄ accounts for the
constant parameter values which are to be estimated. The vector b contains the loadings
and boundary conditions [16].

2.2. Polynomial Chaos Expansion (PCE)

The Polynomial Chaos Expansion is a surrogate modeling technique which has many
applications. In the present case, the method gives a very efficient surrogate model of the
structure. More investigations on this method are given in [34,37].

The content and the structure of the following are similar as given in [37]. A quantity
of interest Y with a finite variance is described by an infinite summation given by [37,38]

Y =
∞

∑
i=0

yi Zi (10)

where yi represents coefficients and Zi represents a numerable set of random variables.
Instead of the numerable set of random variables, PCE uses a set of multivariate orthonor-
mal polynomials. For this, a polynomial basis needs to be defined, which represents the
multivariate orthonormal polynomials. The construction of the basis starts with univari-
ate orthogonal polynomials π

(i)
k (ζi), where π

(i)
k represents the orthogonal polynomial,

k represents the degree of the polynomial and ζi represents the independent variable.
The orthogonality is described by [37]
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where E[] represents the expectation value, δjk is the Kronecker delta and ai
j is the squared

norm of the polynomials given by [37]
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j , π
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This orthogonal polynomial basis is usually not orthonormal. Therefore, the orthogo-
nal polynomials are normalized by [37]
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where ψ
(i)
j is the orthonormal polynomial. A table of orthonormalized polynomials is

given in [37]. The polynomial basis of the Polynomial Chaos Expansion is built up by the
univariate orthonormal polynomials by [37]

ψα(ζ) =
M

∏
i=1

ψ
(i)
αi (ζi), (14)

where ψα(ζ) represents the multivariate orthonormal polynomial and α the multi-indices.
The multi-indices are ordered lists of integral. Finally, the Polynomial Chaos Expansion is
described by [37]

Y = ∑
α∈NM

yαψα(ζ), (15)

where Y represents the surrogate model and y are the corresponding coefficients of the
polynomials ψα which need to be estimated in order to describe the system. In practice,
the infinite series expansion is truncated. The truncated series is given by [37,39]

Y ≈ MPCE = ∑
α∈A

yαψα(ζ), (16)

where A is the truncation factor. This factor is defined by [37]

card A =
(M + p)!

M!p!
, (17)

where M is the number of independent input variables, p is the polynomial order and •! is
the factorial function [37].

Given the description of the multivariate orthonormal polynomial basis, the coeffi-
cients need to be estimated. Two categories of computational schemes were developed to
estimate the coefficients: the intrusive schemes and the non-intrusive schemes [37].

Intrusive schemes are applied, e.g., in the stochastic finite element method. Equations,
which describe the system, are discretized in the physical space and in the random space.
The results are coupled and solved intrusive. The non-intrusive schemes use a realization
of the model by repeated runs and a, e.g., least-square minimization in order to estimate
the coefficients [37].

The aim of this work is to describe the material constants given in Equations (6) and (7)
in order to achieve this in an efficient way, the system as given in Equation (9) is repre-
sented by a surrogate model as given by Equation (16). This constitutes the model for the
Parameter Identification Process.

2.3. Parameter Identification Process (PIP)

The structural model presented in Section 2.1 contains several input parameters. These
parameters describe the geometry of the structure and the material properties. Some of
these parameters are easy to measure, such as the length of a section or the density of the
material. In the following, a new process is developed to estimate the parameters of the
fractional derivative model. This Parameter Identification Process (PIP) uses reference
values from a measurement, which have to be met by the structural model using the
estimated input parameters.

2.3.1. Reference Values and Fundamentals of the PIP

The measured FRF is used to estimate the reference values of the identification process.
Peaks in the FRF curve are determined, where the eigenfrequency (EF), the amplitude
at the eigenfrequency (AMP) and the normalized frequency band (NFB) are extracted
as the reference values for each peak. The NFB is equivalent to the amplification factor
given in [40]. This factor is estimated by the half-power method [40]. In [41], the NFB
value is called the quality factor of a system and its reciprocal value is also named loss
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angle [1], which is an indicator for the internal friction of the material. The NFB value is
given by [1,40]

NFB =
EF

f2 − f1
. (18)

The frequencies f1 and f2 are defined by the crossing point of the Frequency Response
Function curve and a horizontal line which marks 70.7% of the amplitude at the eigenfre-
quency. The 70.7% value is often used for the description of the structural or hysteretic
damping of the system and can be found in different sources, like in [40] or [1]. In Figure 1,
a peak of an FRF curve including the relevant reference values is illustrated.

Figure 1. Schematical representation of a peak including the reference values.

The presented PIP is shown for homogeneous isotropic materials. At the beginning,
the complex Young’s modulus E?(ω) is rewritten as [1,42]

E?(ω) = E
′
(ω) + j E

′′
(ω), (19)

where E
′
(ω) is the frequency depending storage Young’s modulus and E

′′
(ω) is the fre-

quency depending loss Young’s modulus [1,42]. These two parameters are combined to
|E?(ω)| given by

|E?(ω)| =
√

E′(ω)2 + E′′(ω)2, (20)

where |E?(ω)| is the frequency-dependent absolute value of the complex Young’s modulus.
The parameter η(ω) is given as the ratio of the loss and the storage modulus [1,42]

η(ω) =
E
′′
(ω)

E′(ω)
. (21)

The value η(ω) describes the frequency depending energy loss of the material [1,42].
This allows for rewriting the complex Young’s modulus as

E?(ω) = |E?(ω)| 1√
1 + η(ω)2

(1 + jη(ω)). (22)

The reference values estimated from the FRF curve are values depending on a specific
frequency. The complex Young’s modulus as represented in Equation (22) describes the
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value over a frequency range. For the following process, the unknown parameters are
estimated at the specific frequencies defined by the frequency of the reference values.

2.3.2. Bisection Method

The PIP focuses first on the estimation of |E?(ω)| and η(ω). Other parameters related
to the mass or the geometry of the structure are assumed to be known or easy to measure.
The first step of the process uses bisectioning on a wide range of parameter values. This
method is basically used to estimate the roots of a function and uses the halving of the
analyzed interval [43]. The limit values of |E?| and η and the mean values are defined.
This gives 9 possible parameter combinations for the bisectioning as depicted in Figure 2.
Only four out of these combinations are evaluated: For the combinations marked in grey
color, the eigenfrequencies and corresponding amplitudes are computed from the NAT-
model described in Section 2.1 and compared to the corresponding measured values at the
specific frequency.

Figure 2. Schematical representation of the bisection estimated values at a specific frequency.

The comparison leads to different cases to be considered:

• The combination of |E?
µ| with both, ηmin and ηmax gives computed eigenfrequencies

higher than the measured value. In this case |E?
max| is disregarded and replaced by |E?

µ|;
• Similarly, if both combinations of |E?

µ| give a value of the computed eigenfrequency
lower than the measured one, then |E?

min| is replaced by |E?
µ|;

• For the combinations of ηµ with both |E?
min| and |E?

max|, the computed amplitudes are
compared to the measured amplitude. If both computed values are higher than the
measured values, then ηmin is replaced by ηµ;

• Similarly, if both combinations are lower than the measured amplitude, ηmax is re-
placed by ηµ.

The bisection method stops, when defined limit values are reached or if one calculated
value is higher than the correlating reference value and one calculated value is lower than
the correlating reference value. The usage of the eigenfrequency and the amplitude as
reference values is adapted from [14], where the estimation of the unknown parameters
is explained as the two-step identification method. In [14], the reference values EF and
AMP are proved successfully for the fitting process. The third reference value is used in
the bisection method as an indicator of the correct estimation of η, because [1]

η =
1

NFB
. (23)

The bisectioning gives rough estimates for |E?| and η, which are used to generate a
surrogate model.

2.3.3. Surrogate Modeling

The surrogate model describes the relationship between the input parameters |E?|
and η on the one hand side and the output values EF, AMP and NFB on the other side.
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For each output parameter, an independent surrogate model is generated. Depending
on the number N of peaks in the FRF curve, 3N surrogate models are built. In a general
case, no information is given about the distribution of the input parameters, so the input
parameters are chosen to be uniformly distributed. After determining the surrogate models,
a large input sampling set is generated for each peak in the FRF curve depending on its
limit values.

The surrogate models are evaluated for the values given by the sampling set and
the corresponding output parameters are calculated. The differences between calculated
and measured values are analyzed and based on this information, new limit values (the
final limit values) for the input parameters |E?| and η are defined. With these final limit
values, new surrogate models are generated for each reference value. These final surrogate
models are estimated and the corresponding final limit values for each peak in the FRF
curve are determined.

2.3.4. Curve Fit

After the estimation of the final surrogate models and its corresponding limit values
of |E?| and η, a large input sample set is generated and the surrogate models calculate the
output parameters EF, AMP and NFB for each peak in the FRF curve. These calculated
values per peak are compared to the reference values per peak and a finite number of fitting
parameter combinations of |E?| and η are estimated. These finite number of parameters
are converted into the real and imaginary parts of the complex Young’s modulus E?. This
conversion has the advantage that two curves are available for the non-linear curve fit for
the description of the complex Young’s modulus over the frequency range. The curve fit
is executed based on the number of supporting points, which is equal to the number of
peaks in the FRF curve. In Figure 3a,b the real and imaginary parts of the complex Young’s
modulus for an numerical example are illustrated.
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Figure 3. Real and imaginary parts of the complex Young’s modulus. (a) Re[E?(ω)]; (b) Im[E?(ω)].

The complex Young’s modulus described in Equation (22) is describable with fractional
derivative parameters based on the description of a fractional Zener model given by [35]

E?(ω) =
aE

0 + (jω)αE
aE

1

1 + (jω)αE bE
0

. (24)

Following, the support points for the description of the real and imaginary parts of the
complex Young’s modulus are used to fit the fractional derivative parameters presented
in Equation (24).

2.3.5. Estimation of the Fractional Derivative Parameters

After the curve fitting process, possible fractional derivative parameter combinations
are estimated. Based on the maximum error of the curve fit of the imaginary and the real
part of the complex Young’s modulus, a set of appropriate fractional derivative parameter



Appl. Mech. 2021, 2 965

combinations is estimated. Based on these limit values of the input parameters, a large
sample set of input parameters is generated and the output parameters EF, AMP and NFB
are calculated from the NAT model. The values that fit the measurement are used for the
generation of the surrogate models. After the generation of the surrogate models, the best
fitting fractional derivative parameters are estimated.

Therefore, the range of the values of the possible fractional derivative parameters is
equidistantly subdivided. Under the consideration of [35]

aE
0 <

aE
1

bE
0

, (25)

a large number of input sample sets is generated and the surrogate models calculate the
output parameters. Following, the error of the input sample set is estimated and an error
minimization is given by

εREF =
∑k

i=1 |REFi,calculated − REFi,measured|
REFi,measured

, (26)

where REF represents the reference values EF, AMP and NFB. Based on the minimum
error, the global optimum is estimated by refining the input sample space and the repeated
calculation of the output parameters based on the surrogate model. Closing, the best fitting
combinations for the surrogate model are estimated. These combinations are solved with
the numerical model and the FRF curve of the measurement and the FRF curve based on
the fractional derivative parameters estimated by the PIP are compared.

3. Results

In this section, the PIP technique is applied to estimate the fractional derivative
parameters of an unknown material. First, an example is illustrated step by step to show the
efficiency and accuracy of the method. Therefore, a theoretical material is used to generate
a FRF curve and following, the fractional derivative parameters are estimated. Second,
the process is applied to a real structure. A beam made of aluminium is analyzed and the
fractional derivative parameters are estimated. NAT is implemented in MATLAB® 2020b
and the surrogate modeling process is executed by the MATLAB® toolbox UQLab [44].

3.1. Numerical Experiment

A numerical example is used to show the PIP in detail. The beam is made of a non-
existing material described by the fractional Zener model. These reference parameters are
listed in Table 1.

Table 1. List of the fractional derivative parameters—reference values.

aE
0 in N

m2 aE
1 in Nsα

m2 bE
0 in sα α in [-]

7× 1010 2.8× 108 0.0035 0.75

First, the geometry of the system needs to be defined. Here, a beam with six stations
and five segments is considered. The cross-sections of the beam are modeled as being
circular. The diameter d1 = d2 = d5 = 0.04 m and the diameter d3 = d4 = 0.05 m
describe the beam. The density of the beam is ρ = 8250 kg

m3 and the Poisson number is
ν = 0.27. The shear correction factor is calculated based on [45] for a homogeneous circular
cross-section as [45]

kS =
6 · (1 + ν)2

7 + 14ν + 8ν2 = 0.8516, (27)

where kS is the shear correction factor. The position of the stations, the additional mass
moments of inertia Θ, and additional masses m are listed in Table 2.
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Table 2. List of the additional components of the numerical example.

Station Global Coordinate x in m Mass m in kg Mass Moment of
Inertia Θ in kg m2

1 0 0.006 0
2 0.015 0.015 9.375× 10−6

3 0.240 0 0
4 0.340 0.013 8.125× 10−6

5 0.390 0 0
6 0.580 0.006 0

In Figure 4, the numerical example is illustrated.

Figure 4. Model of the numerical example.

The FRF curve is calculated in the case of the numerical example, and all the reference
values are extracted. Figure 5 illustrates the FRF curve that represents a point force
excitation at xF = 0.34 m and a response at xR = 0.015 m.
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Figure 5. Reference FRF curve of the numerical example.

As a first step, the peaks in the FRF curve (represented by dots in Figure 5), containing
the reference values EF, AMP and NFB need to be determined. All four peaks are used to
describe the fractional derivative parameters of the system. In Table 3, the reference values
are listed. Based on the resolution of 1 Hz, the frequency values needed for the estimation
of the NFB value are calculated by a linear interpolation.
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Table 3. List of the reference values of the numerical example.

Reference Point EF in Hz AMP in dB NFB in -

1 361 −119.6203 22.2922
2 880 −136.1885 28.3189
3 1739 −147.0678 40.2943
4 2726 −149.9440 52.5787

After the estimation of the reference values, the limit values of |E?| and η of each
peak in the FRF curve are determined from the bisection method presented in Section 2.3.2.
The limit values of |E?| and η are based on the EF and AMP reference values. The bisection-
ing gives rough limit values, where a difference of 10% to the corresponding EF reference
value and 20% to the corresponding AMP reference value per peak in the FRF curve is
acceptable. These tolerances are a rough limit and can be defined freely, e.g., with reference
to the measurement equipment. In Table 4, the limit values of |E?

•,B| and η•,B depending on
the peak in the FRF curve after the bisection processes are listed.

Table 4. Limit values obtained from the bisection process.

Peak in the FRF |E?
min,B| in N

m2 |E?
max,B| in N

m2 ηmin,B in - ηmax,B in -

1 6.3586× 1010 1.0185× 1011 0.0183 0.2000
2 5.7986× 1010 1.2693× 1011 0.0183 0.2000
3 6.3586× 1010 1.0185× 1011 0.0183 0.2000
4 6.3586× 1010 8.2716× 1010 0.0183 0.0606

By the calculation of the reciprocal value of the NFB value, the correctness of the
limits of η•,B is shown, referred to Equation (23). Based on this check, the correctness of the
estimated values of η•,B is proofed and the PIP is continued.

In the next step, the surrogate models are generated with the MATLAB® toolbox
UQLab [44] based on the values listed in Table 4. The estimated limit values are used as
the limit values of the uniformly distributed input parameter. Legendre Polynomials are
applied to generate the multivariate orthonormal space [37]. The polynomial order p is
defined and the error between the calculated results by NAT and the estimated values by
the surrogate model is minimized. Based on the polynomial order p and the number of
independent variables M, Equation (17) calculates the number of needed output parameters
for the estimation of the surrogate model.

These generated surrogate models are evaluated and based on the quality of the model,
new limit values of |E?

•,S| and η•,S are defined. These new and final limit values are listed
in Table 5. Again, the reciprocal values of the NFB values listed in Table 3 are between in
the limit values of the η•,S values. This shows the correct estimation of the parameters.

Table 5. Limit values after the surrogate modeling analysis.

Reference Point |E?
min,S| in N

m2 |E?
max,S| in N

m2 ηmin,S in - ηmax,S in -

1 7.5140× 1010 7.6562× 1010 0.0442 0.1817
2 7.7485× 1010 8.1419× 1010 0.0345 0.1730
3 7.7485× 1010 7.8779× 1010 0.0241 0.1878
4 7.9069× 1010 7.9189× 1010 0.0187 0.0192

The final surrogate models, as described in Section 2.3.3, are used for the estimation
of the possible parameter combinations for the curve fitting process. Large sample sets,
based on the limit values listed in Table 5 are generated and a finite number of possible
parameter combinations per peak in the FRF curve are estimated. These finite number of
parameter combinations are now transformed into the real and the imaginary part of the
complex Young’s modulus. Closing, the non-linear curve fit is executed for the estimation
of the fractional derivative parameters described by Equation (24).
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The non-linear curve fit process is executed with the MATLAB® function lsqcurvefit.
Based on these non-linear curve fits, the parameter combinations of the fractional deriva-
tive, based on the description of the complex Young’s modulus, is given. Afterwards,
the normalized error at each peak in the FRF curve related to its reference value of the real
part and the imaginary part is estimated.

In Figure 6a,b the errors normalized to the real and imaginary parts of the parameters
estimated from the surrogate modeling are illustrated. Based on the lowest errors, the pos-
sible fractional derivative parameter values are estimated. In Table 6, the lower and upper
limits of the parameters based on the error of the curve fit of the real and the imaginary
part are presented.
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Figure 6. Normalized errors. (a) Real part; (b) imaginary part.

Table 6. Limit values after the curve fit.

Parameter Lower Limit Upper Limit

aE
0 in N

m2 6.9693× 1010 7.1078× 1010

aE
1 in Nsα

m2 1.2827× 108 3.1277× 108

bE
0 in sα 0.0016 0.0039
αE in - 0.7388 0.8281

The presented surrogate modeling process and error minimization process gives an estima-
tion for the best fitting parameter combination. Table 7 lists the PIP-approximated parameters.

Table 7. List of the fractional derivative parameters—example.

aE
0 in N

m2 aE
1 in Nsα

m2 bE
0 in sα α in [-]

7.0036× 1010 2.7655× 108 0.0035 0.7512

In Figure 7, the measured and calculated FRF curves of the numerical example are
illustrated. In [6], the quality of a the parameter fit is evaluated by the comparison of the
static Young’s modulus aE

0 . The value aE
0,Re f = 7× 1010 N

m2 is used to generate this example;

the value aE
0,PIP = 7.0036 × 1010 N

m2 is found by PIP. The relativ error is 0.051%. This
shows the efficiency of the PIP. Additional, η(ω) is analyzed, to illustrate the difference
between the parameters that are used for the generation of this example and the PIP-
estimated values.

In Figure 8, the frequency-dependent loss value η(ω) of the given values of the
numerical example and the fractional derivative parameters estimated by the PIP are
illustrated. The dots represent the frequency points used for the PIP, which are illustrated
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by the peaks in the FRF illustrated in Figure 5. It is shown that with four peaks as reference,
the system is described accurately.

Figure 7. Comparison of the reference FRF curve and the FRF curve estimated by the PIP.
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Figure 8. Schematically representation of a peak including the reference values.

To assess the efficient of the PIP, the computational time to compute the training
set, to generate the surrogate models and the actual Parameter Identification Process is
compared to a straight forward identification process without a surrogate model. All
calculations are carried out on a computer operating on Windows 10, with an Intel® Xeon®

E3-1270 processor (4 × 3.6 GHz) with 32 GB RAM. The calculations are executed with
MATLAB® 2020b.

The first step, the bisectioning process, only requires a small number of calculated
reference values; therefore, the computational time is negligible compared to the other
steps. The surrogate modeling process uses 8000 reference calculations to estimate the limit
values of |E?| and η at each reference frequency. The total computational time to calculate
these reference values is approximately 6800 s. Depending on the used polynomial order,
the generation of the surrogate model takes between 0.07 s (polynomial order p = 3) and
2.2 s (polynomial order of p = 30). The needed parameter combinations for the description
of the metamodel are calculated by Equation (17), the remaining parameter combinations
are used for the quality check of the PCE. As an example, for the computation of 106

input parameter sets (required to find a reasonable estimate of |E?| and η), the original
NAT model requires about 236 h, while the total calculation time of the surrogate model
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including the training process is only 6826 s. Therefore, the surrogate model approach is
124 times faster in this case.

3.2. Measurements

In the following, the PIP is applied for measured FRF curves obtained from a
real structure.

The analyzed beam is made of aluminium. During the measurement, the test object
is suspended horizontally by fishing lines with a diameter of 1 mm, giving a free–free
boundary condition. The test setup is illustrated in Figure 9.

The beam is excited with an electrodynamic shaker (Brüel and Kjær LDS V406, Virum,
Denmark) and the response is measured with a triaxial acceleration sensor (Brüel and Kjær
84506, Virum, Denmark). The excitation force is measured with a force transducer (Brüel
and Kjær 8230-001, Virum, Denmark), where a stinger is mounted between the shaker and
the force sensor. The sensors are installed on the test object with a thin layer of wax on the
surface. Both sensors are in the same horizontal plane. The excitation signal is sinusoidal
and the system is in steady state condition when the response is measured. The duration of
the measurement is one second; the resolution of the measurement is 1 Hz. First, the time
signals are recorded. Then, a FFT is obtained from the measured data and the dynamic
response of the test object is estimated. Finally the Frequency Response Function signal is
transformed into dB by the transformation of the logarithmic function.

Figure 9. Illustration of the test setup—created by author.

In Figure 9, the multi-stepped beam made of aluminium a is illustrated. The force
excitation is applied at the global position xF = 340 mm, in which the force is measured
by a force transducer b . This sensor is connected with a stinger c to a electrodynamic
shaker d . The response is measured at the global position xR = 565 mm by a triaxial
acceleration sensor e . The support, realized by fishing lines f , represents the free–free

boundary condition. Screws g are used to fix the fishing lines at the beam. In Figure 10,
the geometry of test object, including the position of the lumped masses and mass moments
of inertia, is presented.

The stepped beam is subdivided into five segments, in which the cross-section is de-
scribed by a circular and defined by diameters d1 = d4 = d5 = 0.04 m and d2 = d3 = 0.05 m.
The density is calculated based on the measured mass and the calculated volume of the
beam as is given by ρ = 2798 kg

m3 . The Poisson ratio is based on a literature value of
ν = 0.34 [46].

Equation (27) gives the shear correction factor based on the Poisson ratio, which is
given by kS = 0.8493. Table 8 lists the position of the stations, the lumped masses and the
mass moment of inertia of the system.
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Figure 10. Model of the test object.

Table 8. List of the additional components of the test object.

Station Global Coordinate x in m Mass m in kg Mass Moment of
Inertia Θ in kg m2

1 0 0.006 0
2 0.240 0 0
3 0.340 0.013 8.125× 10−6

4 0.390 0 0
5 0.565 0.015 6× 10−6

6 0.580 0.006 0

The additional masses and mass moments of inertia represent the acceleration sensor
(station 5) and the force transducer (station 3) of the system, in which the lumped mass
(station 1 and station 6) represent the mass of the screw.

The measured FRF curves are illustrated in Figure 11. Four curves are measured,
while the test configuration is identical. The modification between the measurements is
based on the variation of the force amplifier to analyze any modifications. It is shown that
the measurement values are nearly equal. The anti-resonance at around 1000 Hz illustrates
the different amplifier levels of the measurements.
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Figure 11. Measured FRF curves of the test object.

The reference values of the measurement define the limit values of the PIP. Based on
four different measurements, a range of the reference values per peak in the FRF curve
is given. The limit values are listed in Table 9. Based on the resolution of the measured
Frequency Response Function curve of 1 Hz, the values that are needed for the estimation
of the NFB are linearly interpolated. It is shown that the variation of the eigenfrequencies
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EF and the amplitude AMP is small, whereas the variation of the Normalized Frequency
Band NFB is larger. This is caused by the dependency of the NFB by the AMP.

Table 9. List of the reference values of the measurement.

Reference Point EFlow in Hz EFhigh in Hz AMPlow in dB AMPhigh in dB NFBlow in - NFBhigh in -

1 597 597 −91.0368 −88.0468 378.1994 641.7989
2 1434 1435 −117.4343 −115.4552 244.5392 304.2220
3 2858 2862 −136.5392 −135.0089 165.7364 180.5811

Applying the bisection part, the surrogate modeling part and the curve fitting of the
PIP, the limit values for estimating the fractional derivative parameters are determined.
The limit values are listed in Table 10.

Table 10. Limit values after curve fit.

Parameter Lower Limit Upper Limit

aE
0 in N

m2 7.1306× 1010 7.2445× 1010

aE
1 in Nsα

m2 5.0165× 106 2.8050× 108

bE
0 in sα 4.3973× 10−14 2.0652× 10−4

αE in [-] 0.1951 0.999

Finally, the best fitting parameters are determined under the consideration of global
minimization. Based on the range of the limit values, a range of fitting parameters is
estimated. One possible parameter combination is listed in Table 11. Therefore, one
measurement is used for global minimization.

Table 11. List of the fractional derivative parameters—test object.

aE
0 in N

m2 aE
1 in Nsα

m2 bE
0 in sα α in -

7.2247× 1010 7.5779× 106 4.8713× 10−5 0.5142

Figure 12 illustrates the measured and the calculated FRF curves. The black lines
represent the measurements, whereas the dashed red line represents the parameter fit of
the system.
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Figure 12. Comparison of the measured FRF curves of test object and the FRF curve estimated by the PIP.

The quality of the modeling process is shown by the accuracy of the anti-resonance
around 1000 Hz. The value of aE

0 is similar to the value listed in the literature [46] for
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the static modulus of aluminium. It is shown that the system is fitted nearly perfectly.
The maximum error is 1%. This error is shown at the third bending frequency.

4. Conclusions

The presented method shows the efficiency of combining a one-dimensional analytical
description of structures with high-order polynomial surrogate modeling. No information
about the system is needed initially and the limit values are estimated fast and efficiently.
Based on the NFB value, a quality check of the estimated values is executed. Using
surrogate modeling of the fractional derivative parameters, an estimate of the parameters
can be found which describes the whole structure over a wide frequency range.

The advantages of the presented method are as follows:

• Analytical solutions of real structures are indispensable for a minimization of the error
between the mathematical description of viscoelastic behavior and the real behavior
of materials.

• The Polynomial Chaos Expansion, especially the MATLAB® toolbox UQLab [44],
enables a fast and efficient implementation of surrogate modeling. The high-order
polynomials are an efficient way to surrogate a large numerical calculation with a
minimized error.

• Based on splitting up the complex Young’s modulus into the real part and the imagi-
nary part, two curves are used for the parameter fit, which minimizes the number of
needed peaks in the FRF curve.

• The final surrogate modeling process is used to describe the whole structure with a
minimum error in the representation of the whole system and the equidistant split of
the input sample rang the global minimum is found directly.
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Gdańsk, Poland, 17–19 February 2021; pp. 331–340.

29. Schöbi, R.; Sudret, B.; Wiart, J. Polynomial-Chaos-based Kriging. Int. J. Uncertain. Quantif. 2015, 5, 171–193. [CrossRef]
30. Wiener, N. The Homogeneous Chaos. Am. J. Math. 1938, 60, 897–936. [CrossRef]
31. Cameron, R.H.; Martin, W.T. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals.

Ann. Math. 1947, 48, 385–392. [CrossRef]

http://doi.org/10.1016/S0022-460X(73)80131-2
http://dx.doi.org/10.1007/BF02820620
http://dx.doi.org/10.4401/ag-5051
http://dx.doi.org/10.1006/jsvi.1996.0406
http://dx.doi.org/10.1115/1.4003594
http://dx.doi.org/10.5028/jatm.v7i2.474
http://dx.doi.org/10.1016/j.polymertesting.2020.106428
http://dx.doi.org/10.1016/j.jsv.2021.116462
http://dx.doi.org/10.1002/adem.201800417
http://dx.doi.org/10.1016/j.jsv.2009.02.040
http://dx.doi.org/10.3390/app7050455
http://dx.doi.org/10.24132/acm.2020.583
http://dx.doi.org/10.1006/jsvi.1998.1958
http://dx.doi.org/10.1063/1.2423227
http://dx.doi.org/10.1016/j.cma.2007.05.013
http://dx.doi.org/10.3182/20120711-3-BE-2027.00222
http://dx.doi.org/10.1016/j.jsv.2013.02.032
http://dx.doi.org/10.1016/j.compstruc.2018.10.013
http://dx.doi.org/10.1016/j.ymssp.2017.05.031
http://dx.doi.org/10.1016/j.jsv.2017.01.040
http://dx.doi.org/10.1016/j.proeng.2017.09.241
http://dx.doi.org/10.1016/j.jsv.2017.04.025
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2015012467
http://dx.doi.org/10.2307/2371268
http://dx.doi.org/10.2307/1969178


Appl. Mech. 2021, 2 975

32. Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Dover Publications, Inc.: Mineola, NY, USA, 2003.
33. Xiu, D.; Karniadakis, G.E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002,

24, 619–644. [CrossRef]
34. Sepahvand, K.; Marburg, S.; Hardtke, H.J. Uncertainty quantification in stochastic systems using polynomial chaos expansion.

Int. J. Appl. Mech. 2010, 2, 305–353. [CrossRef]
35. Klanner, M.; Prem, M.S.; Ellermann, K. Steady-State Harmonic Vibrations of Viscoelastic Timoshenko Beams with Fractional

Derivative Damping Models. Appl. Mech. 2021, 2, 797–819. [CrossRef]
36. Rao, S.S. Vibration of Continuous Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
37. Sudret, B. Polynomial chaos expansions and stochastic finite element methods. In Risk and Reliability in Geotechnical Engineering;

Phoon, K.K., Ching, J., Eds.; CRC Press: Boca Raton, FL, USA, 2014; Chapter 6, pp. 265–300.
38. Soize, C.; Ghanem, R. Physical systems with random uncertainties: Chaos representations with arbitrary probability measure.

SIAM J. Sci. Comput. 2004, 26, 395–410. [CrossRef]
39. Marelli, S.; Lüthen, N.; Sudret, B. UQLab User Manual—Polynomial Chaos Expansions; Technical Report; Chair of Risk, Safety and

Uncertainty Quantification: ETH Zurich, Switzerland, 2021. Report # UQLab-V1.4-104. Available online: https://www.uqlab.
com/pce-user-manual (accessed on 20 October 2021).

40. Avitabile, P. Modal Testing: A Practitioner’s Guide; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2018.
41. Torvik, P.J. On estimating system damping from frequency response bandwidths. J. Sound Vib. 2011, 330, 6088–6097. [CrossRef]
42. Gaul, L.; Klein, P.; Kemple, S. Damping description involving fractional operators. Mech. Syst. Signal Process. 1991, 5, 81–88.

[CrossRef]
43. Burden, R.L.; Faires, J.D. Numerical Analysis; Brooks/Cole: Boston, MA, USA, 2011.
44. Marelli, S.; Sudret, B. UQLab: A framework for uncertainty quantification in Matlab. In Proceedings of the 2nd International

Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, UK, 13–16 July 2014; pp. 2554–2563.
45. Steinboeck, A.; Kugi, A.; Mang, A.H. Energy-consistent shear coefficients for beams with circular cross sections and radially

inhomogeneous materials. Int. J. Solids Struct. 2013, 50, 1859–1868. [CrossRef]
46. Kovácik, J.; Marsavina, L.; Linul, E. Poisson’s Ratio of Closed-Cell Aluminium Foams. Materials 2018, 11, 1904. [CrossRef]

[PubMed]

http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1142/S1758825110000524
http://dx.doi.org/10.3390/applmech2040046
http://dx.doi.org/10.1137/S1064827503424505
https://www.uqlab.com/pce-user-manual
https://www.uqlab.com/pce-user-manual
http://dx.doi.org/10.1016/j.jsv.2011.06.027
http://dx.doi.org/10.1016/0888-3270(91)90016-X
http://dx.doi.org/10.1016/j.ijsolstr.2013.01.030
http://dx.doi.org/10.3390/ma11101904
http://www.ncbi.nlm.nih.gov/pubmed/30301257

	Introduction
	Materials and Methods
	Numerical Assembly Technique (NAT)
	Polynomial Chaos Expansion (PCE)
	Parameter Identification Process (PIP)
	Reference Values and Fundamentals of the PIP
	Bisection Method
	Surrogate Modeling
	Curve Fit
	Estimation of the Fractional Derivative Parameters


	Results
	Numerical Experiment
	Measurements

	Conclusions
	References

