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Abstract: In cell structures, unlike in dense bodies, nonuniform deformation occurs from the impact
end, even at velocities in the order of tens to hundreds of meters per second. In this study, we
experimentally examine the nonuniform deformation mechanism of cell structures. They prepared
two kinds of specimens: nickel foam (Ni foam) and silicone-rubber-filled nickel foam (Ni/silicone
foam). As a dynamic and impact test method (compression velocity of 20 m/s or more), we used
a dynamic and impact load-measuring apparatus with opposite load cells to evaluate the loads on
both ends of the specimen in one test. At compression velocities of 20 m/s or less, no nonuniform
deformations were observed in the Ni foam and the Ni/silicone foam, and the loads on the impact
and the fixed ends achieved force equilibrium. The Ni foam showed no change with an increasing
strain rate, and the Ni/silicone foam showed a strong strain rate dependence of the flow stress.
At a compression velocity of approximately 26 m/s, the loads differed at the two ends of the
Ni/silicone foam, and we observed nonuniform deformation from the impact end. The results of
the visualization of the load and deformation behavior obtained from both ends of the specimen
revealed that the velocity of the plastic stress wave and the length of the specimens are important for
nonuniform deformation.

Keywords: cell structures; stress wave; impact deformation; nonuniform deformation

1. Introduction

Such cell structures as foam or honeycomb formations are widely used in shock-
absorbing materials owing to their low weight and excellent shock-absorbing capacities.
Unlike dense bodies, cell structures undergo plateau deformation, whereby a strain in-
crease is not accompanied by a stress increase [1,2]. Plateau deformation occurs from the
collapse of cells (voids). However, the mechanical properties of cell structures change
with geometrical conditions, including the shape, size, and number of cells. Therefore,
many studies have investigated the mechanical properties of various cell structures. For
example, a constitutive law for a material was formulated by treating cell structure as a ma-
terial [1,2]. The effect of the cell structure’s shape on its mechanical properties has also been
reported [3–6] and the effect of the substance (typically air) that fills the cells [7,8]. Studies
have conducted impact tests, such as the split Hopkinson pressure bar (SHB) method, to
investigate the strain rate dependence [9,10]. However, these tests are only valid if the
material is deformed uniformly, and different tests are required if nonuniform deformation,
which means the deformation from the impact end, occurs due to the inertia effect.

Studies have described that when a hyper-velocity impact load in the order of several
kilometers per second is applied to a dense solid body, a discontinuity surface is generated
inside it and propagates as a wave (shock wave), producing a nonuniform deformation
in the body [11,12]. This shock wave was generated in a solid. However, unlike in
dense bodies, in cell structures, nonuniform deformation occurs from the impact end,
even at velocities in the order of tens to hundreds of meters per second. For example,

Appl. Mech. 2021, 2, 911–931. https://doi.org/10.3390/applmech2040053 https://www.mdpi.com/journal/applmech

https://www.mdpi.com/journal/applmech
https://www.mdpi.com
https://doi.org/10.3390/applmech2040053
https://doi.org/10.3390/applmech2040053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/applmech2040053
https://www.mdpi.com/journal/applmech
https://www.mdpi.com/article/10.3390/applmech2040053?type=check_update&version=2


Appl. Mech. 2021, 2 912

Elnasri et al. [13] and Pattofatto et al. [14] used the direct-impact Hopkinson pressure
bar (DHB) method to evaluate large deformations in a cell structure and clarified that a
foamed aluminum (Al) alloy shows nonuniform deformation. They presented a method
for acquiring the wavefront of a nonuniform deformation by visually expressing the
deformation behavior with digital image correlation. Wang et al. [15] also used DHB
and digital image correlation to demonstrate that when an impact load is applied to a
foamed Al alloy, nonuniform deformation occurs sequentially from the impact end, and the
loads on the impact and fixed ends might not achieve force equilibrium. Gaitanaros and
Kyriakides [16] built a numerical analysis model by correlation between the propagation
speed of the leading edge of the nonuniform deformation generated from the impact end
and the deformation rate. Their experiment analytically showed that when a nonuniform
deformation occurs from the impact end in a foamed Al alloy, the Rankine–Hugoniot
relation [12], which is used for discussing shock waves in solid bodies, is satisfied at
the boundary between the nonuniformly deformed and undeformed areas. Although
these studies reported the transition velocity, which is the boundary velocity between the
uniform and nonuniform deformations, a more detailed explanation of the nonuniform
deformation mechanism is necessary. Under conditions where force equilibrium is not
achieved, most studies using the DHB method require the following two tests to obtain the
load history at both the impact and fixed ends: (1) attaching the specimen to a projectile and
launching it, and (2) attaching the specimen to a transmitted bar and fixing it. However,
since these tests must be performed twice with different specimens, the load at both ends
of the specimen cannot be measured in a one-time test.

In this study, we overcame the drawbacks of the DHB method using a test apparatus
that can evaluate the load state at the impact and fixed ends in a one-time test. We focused
on the stress waves propagating in the specimen and clarified the nonuniform deformation
mechanism of the cell structure from our obtained test results.

2. Specimen
2.1. Nickel Foam

In this study, we used nickel foam with an open cell (Sumitomo Electric Industries,
Figure 1) as a specimen for observing the nonuniform deformation of the cell structure. The
specimens were cut into rectangular parallelepipeds with a 20 mm long, 10 mm × 10 mm
cross-section using a wire discharge. Figure 2 shows a 3D image of the cell shape of a
typical Ni foam observed by an X-ray computed tomography system. Table 1 lists the cell
shape parameters observed by X-ray CT. The cells are composed of dense solid columns
(pillars), nodes, and pores. They have an open cell structure and are connected in three
dimensions. In addition, the Ni foam has an irregular cell structure with nonuniform cell
shapes. Bulk density ρcell of the Ni foam was approximately 450 kg/m3.
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Table 1. Cell shape parameters of Ni foam and Ni/silicone foam.

Specimen Ni Foam Ni/Silicone Foam

Expansion ratio Average value: 18.7 (Standard deviation: 1.91)
Porosity Average value: 95% (Standard deviation: 0.16)

Dimensions 20 × 10 × 10 mm3

Bulk density 450 kg/m3 1300 kg/m3

Filling in the pores Air Silicone rubber
Cell size 3.2 mm

Aperture length 1.2 mm
Cell struts thickness 0.05 mm

Cell shape Dodecahedron
Anisotropy Isotropic

2.2. Silicone Rubber-Filled Nickel Foam

We changed the compressive deformation behavior of the Ni foam and the silicone-
rubber-filled nickel foam (Ni/silicone foam) by filling the former with silicone rubber and
heat-curing it at 423 K for 2100 s in a vacuum oven (ESPEC Co. (Osaka, Japan), VAC-301).
Figure 3 shows the Ni/silicone foam. As shown in Table 1, the specimen’s shape resembles
those described in the previous section, and its density was approximately 1300 kg/m3.
The silicone rubber (Dow Corning (Midland, MI, USA), Sylgard 527) used for the filling
consisted of a main agent and a curing agent in a 1:2 ratio. The density of the silicone
rubber alone was approximately 1000 kg/m3. Although Ni/silicone foam has the same cell
structure as Ni foam, it has a different strain rate dependence because they have different
parameters of Young’s modulus, density, and stress wave speed. Therefore, we clarified
the compressive deformation behavior of the cell structure by performing compression
tests on the Ni foam and the Ni/silicone foam in a wide strain rate range.

2.3. Pure Nickel

To investigate the effect of the base material of Ni foam, a dense body of pure nickel
(99.7%) were prepared as a specimen. The 4 mm-diameter cylindrical specimen was
6 mm high.
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2.4. Silicone Rubber

To investigate the mechanical properties of silicone rubber, we prepared a specimen
made of silicone rubber used in 2.2, which is the filling material for Ni/silicone foam. The
dimensions of the specimen were 10 mm × 10 mm (cross section) and 10 mm (height). The
dimensions and density of the Ni and the silicone rubber are summarized in Table 2.

Table 2. The dimensions and density of the Ni and silicone rubber.

Specimen Dimensions Density

Pure Ni φ4 × 6 mm3 8900 kg/m3

Silicone rubber 10 × 10 × 10 mm3 1000 kg/m3

3. Compression Test
3.1. Quasi-Static Test

A quasi-static test was performed using a universal testing machine (INSTRON
(Norwood, MA, USA), 5500R) at room temperature. The compression velocities were
3.4 × 10−3, 3.4 × 10−2, and 3.4 × 10−1 s−1 (strain rates: 1.7 × 10−4, 1.7 × 10−3, and
1.7 × 10−2 s−1). The test was performed three times at each velocity.

3.2. Dynamic/Impact Test
3.2.1. SHB Method

The SHB method [17,18] is a typical test method in which an elastic stress bar is used
as an impact load sensor. We used it for pure Ni. This method is widely recognized as a
rapid deformation test method with high reliability for solid materials. The average strain
rates obtained in it were 1.4 × 102 and 8.3 × 102 s−1.

3.2.2. Dynamic and Impact Load-Measuring Apparatus with Opposite Load Cells

Generally, the SHB method is also used to evaluate the impact compression character-
istics of dense materials. However, because the cell structure used in this study undergoes
large deformation over a long period of time, a sufficient amount of strain cannot be
obtained by the SHB method, resulting in a deformation of constant duration, depending
on the bar length. In such cases, the DHB method is often used because, compared to the
SHB method, it has no incident bar and can be used to measure a large deformation by
lengthening the transmitted bar. However, as mentioned above, when the DHB method is
used, the loads on the fixed and impact ends must be obtained from different specimens,
and the force equilibrium cannot be evaluated using the same specimen.
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To overcome these issues, in a previous study, we developed dynamic and impact load-
measuring apparatus with opposite load cells that can evaluate the force equilibrium and
large deformations of a specimen in a one-time test [19,20]. Figure 4 shows their schematics.
The test apparatus consists of a load measurement section, a movable mechanism, and a
displacement measurement section. For the load measurement section, a universal rate range
load cell [21] measured the load over a long period by reducing the disturbance due to the
reflection and the interference of stress waves even at a dynamic strain rate. Figure 5 shows
a schematic view of the universal rate range load cell (hereafter URR load cell). The URR
load cell is composed of a stress detection part and a stress transmission part. The stress
waves were measured using a semiconductor strain gauge with a gauge factor of 164 ± 3%
(Kyowa Electronic Instruments (Tokyo, Japan), KSP-1-350-E4) attached to the center of the
stress detection part. In this configuration, a 1 MHz low-pass filter was used to remove
electrical noise. The URR load cell has a capacity of 12 kN and a theoretical natural period
of 0.013 ms. With URR load cell, the reflected stress waves can be reduced by increasing
the cross-sectional area ratio between the measurement and transmission sections. In this
apparatus, URR load cells are used for all movable load cells and stationary load cells.

Appl. Mech. 2021, 2, FOR PEER REVIEW 5 
 

 

lengthening the transmitted bar. However, as mentioned above, when the DHB method 
is used, the loads on the fixed and impact ends must be obtained from different specimens, 
and the force equilibrium cannot be evaluated using the same specimen. 

To overcome these issues, in a previous study, we developed dynamic and impact 
load-measuring apparatus with opposite load cells that can evaluate the force equilibrium 
and large deformations of a specimen in a one-time test [19,20]. Figure 4 shows their sche-
matics. The test apparatus consists of a load measurement section, a movable mechanism, 
and a displacement measurement section. For the load measurement section, a universal 
rate range load cell [21] measured the load over a long period by reducing the disturbance 
due to the reflection and the interference of stress waves even at a dynamic strain rate. 
Figure 5 shows a schematic view of the universal rate range load cell (hereafter URR load 
cell). The URR load cell is composed of a stress detection part and a stress transmission 
part. The stress waves were measured using a semiconductor strain gauge with a gauge 
factor of 164 ± 3% (Kyowa Electronic Instruments (Tokyo, Japan), KSP-1-350-E4) attached 
to the center of the stress detection part. In this configuration, a 1 MHz low-pass filter was 
used to remove electrical noise. The URR load cell has a capacity of 12 kN and a theoretical 
natural period of 0.013 ms. With URR load cell, the reflected stress waves can be reduced 
by increasing the cross-sectional area ratio between the measurement and transmission 
sections. In this apparatus, URR load cells are used for all movable load cells and station-
ary load cells. 

 

 
Figure 4. Schematics of dynamic (a) and impact (b) load-measuring apparatus with opposite load cells. 

Strain gauge

Specimen

70
m

m

～600 mm

Guide rail

Connector

Laser displacement meterStopper

Weight Stationary
load cell

Movable
load cell

Spring

AmplifierWheatstone bridge box Digital oscilloscope

(a) Strain gauge

Strain gauge

Specimen

70
 m

m

1500 mm

Guide railConnector Stopper

Air tank

Cylinder

1500 mm
Compressor

Stationary
load cell

Movable
load cell

Laser displacement meter

Amplifier Digital oscilloscopeWheatstone bridge box 

Strain gauge

(b)
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The movable mechanism allows the use of two loading methods, depending on the
strain rate. As shown in Figure 4a, the loading method given by a tension spring was
used for the dynamic compression test. In addition, for the impact compression test,
the injection method with compressed air was used as shown in Figure 4b. By selecting
the movable mechanism, it is possible to test in a wide compression velocities range.
Two laser displacement meters (KEYENCE (Osaka, Japan), LK-G5000) with a sampling
rate of 200 kHz were used in the displacement measurement section. We measured the
displacements of the movable and stationary load cells and calculated the specimen’s
displacement by their differences. The deformations of the movable and stationary load
cells (the stiffness of the test apparatuses) were also measured in advance and subtracted
from the test results.
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The compression velocities obtained using this test apparatus was 1.0 m/s (strain rate:
4.7 × 101 s−1) in the dynamic test and 7.6 m/s (strain rate: 3.8 × 102 s−1) and 26.0 m/s
(strain rate: 1.3 × 103 s−1) in the impact test. In the dynamic test, we confirmed that the
movable load cell can compress the specimen at a constant velocity without deceleration.
The deformation behavior of the specimen during the test was captured using a high-speed
camera (nac Image Technology (Tokyo, Japan), HX-3) at a frame rate of 100,000 fps, a
shutter interval of 3.0 µs, and an image size of 384 × 184 pixels. The field of view is a
single plane.

4. Results of Compression Tests of Constituent Materials
4.1. Pure Ni

The compression characteristics of pure Ni were investigated through quasi-static
and impact compression tests (SHB method). Figure 6 shows the obtained true stress–true
strain rate relationships. Here, true stress σ increases at each true strain, caused by true
strain rate

.
ε increase:

σ = K
.
ε

m, (1)

where K is a constant and m is the strain rate sensitivity index, which determines the
increase in the true stress with a growing true strain rate and is represented by a slope
in the double logarithmic graph. The results indicate m ≤ 0.009, which is an exceedingly
small value. Therefore, the strain rate dependence of the stress between the true strains of
0.05 and 0.2 is small for pure Ni.

4.2. Silicone Rubber

As with pure Ni, quasi-static and impact compression tests (with the load-measuring
apparatus with opposite load cells) were performed to determine the compression char-
acteristics of the silicone rubber. The obtained true stress–true strain rate relationships
are shown in Figure 7. Although there is no change in the true stress with the quasi-static
true strain rate, Figure 7 shows that the silicone rubber alone had a higher strain rate
sensitivity between 1.7 × 10−2 and 8.2 × 102 s−1 than during the quasi-static test. This
finding confirmed that silicone rubber has a strain rate dependence of the stress.
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Figure 6. True stress–true strain rate relationships at strains of 0.05 to 0.2 for pure Ni: Results indicate
m ≤ 0.009: an exceedingly small value.
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Figure 7. True stress–true strain rate relationships at strains of 0.2 to 0.6 for silicone rubber.
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5. Results of Compression Tests of Cell Structure
5.1. Compression Velocity of 20.0 m/s or Less
5.1.1. Ni Foam

In this study, the stress was corrected to suppress the variation caused by the differ-
ences in specimen density [20]:

σn = σ ×
(

ρre f

ρcell

)x
, (2)

where σn is the flow stress after correction (normalized stress), ρcell is the bulk density of
individual specimens, ρref is the average bulk density of all specimens (in case of Ni foam,
ρref = 479 kg/m3), and x is the density sensitivity index. Density sensitivity index x of the
Ni foam in this study was 2.19.

Figure 8 shows the typical normalized stress–strain relationship of Ni foam at strain
rates between 8.3 × 10−4 and 3.8 × 102 s−1, which correspond to compression velocities
of 20.0 m/s or less. Since the figure confirms no difference in the time history of the
loads on both ends of all specimens at a compression velocity of 20.0 m/s or less, only the
values of the movable load cell are shown here. Regardless of the strain rate, we observed
elastic, plateau, and densification regions corresponding to the three stages in the general
deformation processes of a cell structure [2]. No change in the normalized stress with an
increasing strain rate was confirmed. This tendency is identical as that of the strain rate
dependence in the base metal Ni. For the Ni foam, the pores are filled with air, and because
it is an open cell, hardly any air compression occurs. Therefore, this structure clearly shows
no strain rate dependence.
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Figure 8. Typical normalized stress–strain relationship of Ni foam at a strain rate between 8.3 × 10−4

and 3.8 × 102 s−1.

No nonuniform deformation due to high-speed deformation was observed at com-
pression velocities of 20.0 m/s or less, and deformation occurred throughout the entire
specimen. In other words, local deformation, which occurred sequentially from the part
with the lowest normalized stress inside the specimen, occurred simultaneously through-
out. Because the load histories of the movable and stationary load cells were identical,
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the load at both ends of the specimen clearly reached force equilibrium at a compression
velocity of 20.0 m/s or less.

5.1.2. Ni/Silicone Foam

Figure 9 shows a typical normalized stress-strain relationship for Ni/silicone foam
at strain rates between 8.3 × 10−4 and 3.8 × 102 s−1. For comparison, the Ni results at a
strain rate of 8.3 × 10−4 s−1 are also shown. The load at both ends in all the Ni/silicone
foam for this strain rate range was identical when the compression velocity was 20.0 m/s
or less; only the values of the movable load cell are shown here. A comparison of the
quasi-static test results of the Ni foam and the Ni/silicone foam confirmed that the latter
shows increased normalized stress in the plateau region because the silicone rubber inside
the structure was also compressed. The normalized stresses again coincide in the densified
region because the silicone rubber flows out with densification.

Next, the normalized stress was confirmed to increase remarkably with a higher strain
rate in the Ni/silicone foam, clarifying that the Ni/silicone foam with silicone rubber
void-filling material has a strain rate dependence of normalized stress. This includes the
strain rate dependence of the normalized stress confirmed for the silicone rubber alone
but also the normalized stress increase due to the silicone rubber’s flow. In the densified
region, the quasi-static test identified the same tendency as that observed in the Ni foam.
To investigate the increase in the normalized stress with an increasing strain rate and the
change in the densification start time in detail, we focused on the deformation behavior of
the Ni/silicone foam.
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Figure 9. Typical normalized stress–strain relationship of Ni/silicone foam at strain rates between
8.3 × 10−4 and 3.8 × 102 s−1.

Figure 10 shows the deformation behavior of the Ni foam and the Ni/silicone foam
at a strain rate of 8.3 × 10−4 s−1. In the quasi-static test of Ni foam, no nonuniform
deformation was observed from the end of the specimen, although random deformation
was observed from the weak part of the cell struts. At this time, no swelling was observed
in the direction perpendicular to the compression direction, and the sample exhibited a
compressive deformation behavior with a Poisson’s ratio of almost zero. In the Ni/silicone
foam quasi-static test, as the deformation progressed, the silicone rubber flowed out at a
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strain of 0.4, and most flowed out at a strain of 0.6. The results of the quasi-static test for the
Ni/silicone foam indicate that the resistance due to the compression of the silicone rubber
might contribute to an increase in the normalized stress at the initial stage of deformation.
However, because silicone rubber extrudes from inside the cell as it densifies, it stops
contributing to the normalized stress increase in the densified region. Figure 11 shows
the deformation of the Ni/silicone foam at a strain of 0.6 for strain rates of 5.0 × 101 and
3.8 × 102 s−1. Despite the equal strain, as the strain rate increases, the outflow of the
silicone rubber filler decreases and more rubber remains inside. This may be because
the compression velocity is higher than the outflow velocity of the silicone rubber, so the
silicone rubber lacks sufficient time to flow out. The remaining silicone rubber may have
contributed to the increase in the normalized stress under compressive deformation.
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Next, we focused on the specimen state after each compression test because the
deformation can be tracked to only a limited extent from the moving images captured
using the high-speed camera. Figure 12 shows each specimen after the compression test
at strain rates of 8.3 × 10−4 and 3.8 × 102 s−1. After the quasi-static test, the Ni foam
showed almost no deformation perpendicular to the compression direction and exhibited
folded deformation. The Ni/silicone foam showed almost the same deformation of the cell
structure as the Ni foam, excluding silicone rubber outflow. By contrast, in the impact test,
the Ni foam and the Ni/silicone foam showed significantly different deformation states.
With Ni foam, since the specimen shape was almost the same as that in the quasi-static
test, the deformation behavior remain unchanged. On the other hand, with the Ni/silicone
foam, the cell struts formed by Ni was caught in the deformation of the silicone rubber,
and it fractured and scattered in all directions. Perhaps the silicone rubber did not flow out
and was subjected to compressive deformation, causing expansion perpendicular to the
compression direction owing to a high Poisson’s ratio. The outflow of silicon is pushing
the structs to deform in a random direction, causing easier failure.

In the dynamic test, the start of densification after a strain of 0.7 was slower than
that in the quasi-static compression test (Figure 9). Perhaps the silicone rubber flowed
out at a strain of 0.7. The out-flowing silicone rubber incorporated cell struts, decreasing
the ratio of the Ni foam occupied by the Ni/silicone foam. By contrast, in the impact test,
since the compression velocity of the silicone rubber was higher than its outflow rate, it
did not flow out before densification; the relative density was increased due to the space
occupied by this silicone, and the start of densification occurred at a low strain. This clearly
indicates that the void-filling material significantly affects the deformation behavior of the
cell structure. Generally, when the void-filling material is a low-viscosity fluid, such as air,
it is hardly affected by the strain rate at a compression velocity of 20 m/s or less, although
the velocity largely influences highly viscous silicone rubber.
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5.2. Compression Velocity of 20.0 m/s or More

Figures 13 and 14 show the normalized stress–strain relationship of the Ni foam and
the Ni/silicone foam during impact tests conducted at the maximum compression velocity
of the test apparatus: approximately 26.0 m/s (strain rate: 1.3 × 103 s−1). When the
compression velocity was 26.0 m/s, since the load histories obtained from the load cells at
both ends of the specimen differed, the normalized stresses of the movable and stationary
load cells are shown. The strain was calculated by dividing the displacement generated
in the specimen by its original length. Similar to the dense material described above, the
vibration of the movable load cell is a natural period. The normalized stress increase in
the stationary load cell was delayed with respect to the normalized stress increase in the
movable load cell due to the propagation of elastic waves.
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Figure 13. Typical normalized stress–strain relationship of Ni foam in an impact test conducted at
compression rate of approximately 26.0 m/s.

In the plateau region, the load value of the movable load cell exceeded that obtained
from the stationary load cell, and the normalized stresses at the two ends almost matched
as the deformation proceeded for a Ni foam strain of up to 0.25; the Ni-silicone strain
reached 0.4. These results indicate that the stress applied to the two ends of the specimens
did not match at the initial stage of deformation at a compression velocity of approximately
26.0 m/s, and no force equilibrium was achieved for either specimen. The normalized
stress increase of the movable load cell was larger than that of the stationary load cell for
the Ni/silicone foam.

Figure 15 shows the deformation behavior of the Ni foam and the Ni/silicone foam
at a compression velocity of approximately 26.0 m/s (strain rate: 1.3 × 103 s−1). For the
Ni foam, the nonuniform deformation could not be observed clearly from the impact end,
where the compression velocity was 26.0 m/s or less. In addition, for the Ni/silicone foam,
no clear wavefront of nonuniform deformation was observed in the process. Observing the
wavefront only by visualization is difficult. However, silicone rubber greatly expanded
owing to the compressive deformation on the impact end at the beginning of deformation
(ε = 0.1 and 0.2 in Figure 15), and this expansion was transmitted from the impact end to
the fixed end; similar observations for Ni foam were unclear. At this time, the Ni/silicone
foam showed uniform deformation at a strain of 0.4 or more. The load history of the
movable and stationary load cells did not match in the Ni/silicone foam compression
test at a compression velocity of 26.0 m/s, possibly due to this nonuniform deformation.
However, no clear nonuniform deformation was observed in the Ni foam, despite the fact
that the normalized stress at the two ends of the specimen was not in equilibrium. Perhaps
the transition velocities at which nonuniform deformation occurs differ between the Ni
foam and the Ni/silicone foam.
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Figure 14. Typical normalized stress–strain relationship of Ni/silicone foam in an impact test
conducted at a compression rate of approximately 25.6 m/s: (a–d) correspond to the stress wave
propagation behavior in Figure 19.
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As discussed above, we experimentally confirmed the nonuniform deformation and
reproduced the transition velocity at which it occurred. The specimens with identical
cell structure suggested various deformation behaviors due to different void-filling ma-
terials. The next section discusses the mechanism of nonuniform deformation based on
these results.

6. Discussion of Mechanism of Nonuniform Deformation

The discontinuous state, which occurs in solids, was evaluated in previous studies
using the Rankine–Hugoniot relation based on the mass conservation law, the momentum
conservation law, and the energy conservation law. For example, Barns et al. showed that
the following relations are satisfied before and after the discontinuity surface [22]:

εH =
(S0 − S1)

S0
(3)

Cs =
Vi
εH

(4)

σd = σud + ρud
Vi

2

εH
. (5)

As shown in Figure 16, the density, particle velocity, stress, and energy of the unde-
formed part are denoted as ρud, Vud, σud, and Uud, respectively, and those of the deformed
part are denoted as ρd, Vd, σd, and Ud, respectively. In the above equations, S0 is the
length of the deformed part before the deformation, S1 is its length after the deformation,
Vi is the compression velocity of the striking bar, Cs is the speed of the wavefront of an
inhomogeneous deformation (hereafter discontinuity surface) generated inside the spec-
imen, and εH is the strain before the discontinuity, also called the Hugoniot strain. The
stress of the deformed part (the impact end of the deformed part of the specimen) can be
obtained by calculating εH by empirically finding Cs and Vi from Equations (3) and (4) and
substituting it into Equation (5). An almost linear tendency is obtained between Cs and Vi
in the cell structure:

Cs = A + BVi. (6)

Here A and B are constants. A corresponds to the bulk sound speed of a solid, as
observed in many solid materials [22].

However, it is essential to measure the compression velocity and the speed of the
discontinuity surface from the captured image of the deformation behavior to conduct
an evaluation with the Rankine–Hugoniot relation with the above method. The above
method is suitable if the collision velocity is sufficiently high and a nonuniform deformation
is clearly generated. As shown in Figure 15, observing a clear discontinuity is difficult,
especially near the transition velocity. Even when using a digital image correlation, accurate
observation was complicated by the coarse cell structure and the transparent silicone
rubber. Therefore, confirming whether the Rankine–Hugoniot relation is satisfied near
the transition velocity is hard with conventional methods. In this study, the deformation
mechanism is discussed based on the test and observation results on the same time axis
obtained using the load-measuring apparatus with opposite load cells.
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Figure 17 shows the simple stress–strain relationship of a typical cell structure. The
elastic modulus of cell structure Ee is the slope of the elastic response, and strain-hardening
exponent Ep is the slope of the plateau region. In other words, when the bulk density of
the specimen is ρcell, plastic stress wave speed Cp is expressed as:

Cp =

√
Ep

ρcell
. (7)

We calculated the plastic stress wave speed from the plateau region in the stress–strain
relationship, and the results are reported in Figures 13 and 14. For Ni foam, Ep = 250 kPa
in the initial stage of the plateau region, and Cp = 23.0 m/s for specimen density ρcell
of 471.7 kg/m3. For Ni/silicone foam, Ec = 325 kPa in the initial stage of the plateau
region, and Cp = 15.7 m/s for specimen density ρcell of 1314.4 kg/m3. In other words, the
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compression velocity of the impact test was higher than the plastic stress wave speed in the
initial stage of the plateau region in both specimens. As shown in Figures 8, 9, 13 and 14,
strain-hardening exponent n is not constant, and the stress–strain curve has a convex shape
down from the plateau region with increasing densification. Here, we examined cases
where the compression velocity is sufficiently high and slightly higher than the plastic
stress wave speed.
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When the compression velocity is sufficiently higher than the plastic stress wave
speed, the impact surface catches up with the wavefront of the plastic stress wave over
time, and a clear discontinuity surface is generated (Figure 18). Therefore, when the
compression velocity is sufficiently higher than the plastic stress wave speed that causes
deformation, a discontinuity surface is formed due to the accumulation of plastic stress
waves as deformation progresses, and nonuniform deformation occurs from the impact end.
At this time, the speed of the discontinuity surface from the accumulation of plastic stress
waves corresponds to CS in a shock wave in a solid. This condition was experimentally
confirmed at a discontinuity surface speed in the order of tens to hundreds of meters per
second [16]. Because the elastic stress wave speed is much higher than the plastic stress
wave speed, an elastic stress wave was found in the front of the discontinuity surface,
although the ratio of the elastic deformation is very small compared to the deformation of
the cell structure. The effect is considered very small.

Next, we consider the case where the compression velocity is slightly higher than
the plastic stress wave speed, as shown in Figure 19. Figure 19a–d corresponds to the
history of the experimental results shown in Figure 14. The impact surface approaches the
wavefront of the plastic stress wave over time and forms a discontinuity surface owing
to the accumulation of the plastic stress wave (Figure 19a,b). In Figure 19b, because only
the elastic stress wave reaches the fixed end, the elastic region can be confirmed from the
stress–strain relationship. At this time, because the compression velocity is almost the
same as the plastic stress wave speed, the discontinuity surface due to the accumulation
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of plastic stress waves does not catch up with the wavefront of the plastic stress wave,
and only the plastic stress wave arrives at the fixed end (Figure 19c). Therefore, a plastic
deformation region (plateau region) was observed at the fixed end, even with the stress–
strain relation shown in Figure 14, despite the fact that the stresses at the two ends did
not achieve force equilibrium. Finally, the stresses at the two ends of the specimen were
considered to have achieved force equilibrium when the discontinuity surface due to the
accumulation of plastic stress waves reached the fixed end, as shown in Figure 19d. Strictly
speaking, the discontinuity surface due to the accumulation of plastic stress waves is not a
clear discontinuity surface because plastic deformations occur even in front of it. Further,
random deformation is speculated to occur in the part where the front surface deforms, in
the same way as in the deformation mode of 20 m/s or less. Therefore, a clear observation
is difficult using high-speed camera images.
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Figure 18. Stress wave propagation behavior when compression velocity is sufficiently higher than plastic stress wave speed.

The nonuniform deformation of the cell structure probably occurred owing to the
accumulation of plastic stress waves. In contrast to the speed of the discontinuity surface
from the accumulation of plastic stress waves, their speed depends on the shape of the
plateau region and the density of the specimen; plastic stress wave speed is not constant
and changes with time. Near the transition velocity, plastic deformation may occur even in
front of the discontinuity surface from the accumulation of plastic stress waves, treating
the deformation behavior as a distinct discontinuity surface.
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7. Conclusions

We used a new test apparatus that could evaluate load state at the impact and fixed
ends in a one-time test and investigated stress wave propagation and clarified the nonuni-
form deformation mechanism of the cell structure of Ni foam and Ni/silicone foam. They
obtained the following results:

1. At a compression velocity of 20.0 m/s or less (strain rate from 8.3× 10−4 to 3.8 × 102 s−1),
no nonuniform deformation was observed in either the Ni foam or the Ni/silicone
foam, and the loads on the impact and fixed ends achieved force equilibrium.

2. The flow stress of the Ni foam did not show any change with an increasing strain rate;
by contrast, the flow stress of the Ni/silicone foam showed remarkable strain rate
dependence. Perhaps this result was caused by the outflow resistance when silicone
flows out from the inside and the pressure rises owing to the residual silicone.

3. At a compression velocity of approximately 26.0 m/s (strain rate: 1.3 × 103 s−1), the
loads at both ends of the Ni/silicone foam differed, and we observed nonuniform
deformation from the impact end. The plastic stress wave propagation speed in the
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Ni/silicone foam, derived from the slope of the plateau region, was 15.7 m/s, sug-
gesting that nonuniform deformation occurs when the compression velocity becomes
higher than the plastic stress wave propagation speed.

4. Nonuniform deformation of the cell structure was probably caused by the accumula-
tion of plastic stress waves. However, near the transition velocity, plastic deformation
can occur even in front of the discontinuity surface owing to the accumulation of
plastic stress waves. Therefore, deformation behavior cannot be considered a distinct
discontinuity surface.
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