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Abstract: Due to growing demands on newly developed products concerning their weight, sound
emission, etc., advanced materials are introduced in the product designs. The modeling of these
materials is an important task, and a very promising approach to capture the viscoelastic behavior
of a broad class of materials are fractional time derivative operators, since only a small number of
parameters is required to fit measurement data. The fractional differential operator in the constitutive
equations introduces additional challenges in the solution process of structural models, e.g., beams
or plates. Therefore, a highly efficient computational method called Numerical Assembly Technique
is proposed in this paper to tackle general beam vibration problems governed by the Timoshenko
beam theory and the fractional Zener material model. A general framework is presented, which
allows for the modeling of multi-span beams with general linear supports, rigid attachments, and
arbitrarily distributed force and moment loading. The efficiency and accuracy of the method is shown
in comparison to the Finite Element Method. Additionally, a validation with experimental results for
beam systems made of steel and polyvinyl chloride is presented, to illustrate the advantages of the
proposed method and the material model.

Keywords: Timoshenko beam theory; numerical assembly technique; viscoelastic material; fractional
derivatives; Fourier extension method; steady-state response; frequency response function

1. Introduction

In the modeling process of real structures, many components are accurately described
by simplified beam models, e.g., Euler-Bernoulli beam or Timoshenko beam theory, if two
dimensions are significantly smaller than the third one. Therefore, a detailed analysis of
this simplified structural elements is very important for practical applications; hence, a
vast amount of literature on this topic is available, and many efforts have been devoted to
understand the dynamics of beam models [1]. Due to advanced manufacturing processes,
more complicated materials, especially viscoelastic materials [2], can be used in the
product design to further improve dynamic characteristics, e.g., noise emission or vibration
levels [3]. Therefore, it is necessary to also include such materials in the analysis of
beam vibrations.

An accurate modeling of the behavior of such materials is required and various
constitutive equations have been presented, e.g., the Kelvin–Voigt model [4], the Maxwell
model [5], or the Zener model [6]. Increased possibilities in mechanical testing have shown
that many materials with complex microstructure lead to a power-law signature in their
creep and relaxation behaviors [7]. Even though recent studies, e.g., References [8,9],
show that generalized versions of the classical models can lead to a good agreement with
measured data for such materials, a large number of model parameters is required, which
greatly hinders physical interpretation [7]. Therefore, so-called fractional time derivatives
have been introduced in the constitutive equations, which are ideally suitable to model
the viscoelastic behavior of materials [7,10] and allow for an accurate representation of the
material behavior with a small number of parameters over a wide frequency range [11,12].
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Several studies are reported in literature using fractional derivative damping models
in the analysis of beam vibration problems. In Reference [13], a Timoshenko beam made of a
viscoelastic material obeying a three-dimensional fractional derivative constitutive relation
is analyzed. The Laplace transform is applied to compute the quasi-static response to a
step loading, and the steady-state response to a periodic excitation of a simply-supported
single-span beam is calculated by a modal approach. The Mellin transform is used by
Pirrotta et al. [14] to compute the response of a viscoelastic Timoshenko beam under
static loading conditions in the time domain. Additionally, an exact linking relationships
between the response of a viscoelastic beam governed by the Euler–Bernoulli theory and
the Timoshenko theory is established in Reference [2].

Usuki and Suzuki [15] derived the dispersion relations for Timoshenko beams made
of different types of fractional viscoelastic materials and a beam made of polyvinyl chloride
(PVC) foam is analyzed in detail. In Reference [12], the wave propagation method is
applied to calculate the steady-state response of Euler-Bernoulli beams with a fractional
Kelvin–Voigt material model. An analytical solution is obtained in the frequency domain
and the effect of different fractional orders in the material damping model is analyzed. A
comprehensive review on beam vibration problems with fractional viscoelastic material
models can be found in Reference [16]. More recently, fractional damping models are also
introduce in micro structures, e.g., micro beams [17] and nano beams [18], or anomalous
materials [19].

Due to the fractional derivative material models, the solution of the resulting governing
equations is more challenging compared to classical material models. Several computational
techniques have been applied in literature to calculate natural frequencies, steady-state
harmonic or transient responses of beam systems. Paunović et al. [20] presented a Galerkin
approximation method combined with the Fourier integral transform method to calculate
the vibrations of cantilever beams with several attached concentrated masses. In their work,
the fractional order Kelvin–Voigt model is applied. In Reference [21], the Finite Element
Method (FEM) is extended to analyze the vibrations of frames composed of Euler-Bernoulli
beams with a fractional derivative damping model.

In this paper, the so-called Numerical Assembly Technique (NAT), which was proposed
by Wu and Chou [22] in 1999 for the calculation of natural frequencies and mode shapes of
beams with various attachments, is extended to general beam vibration problems governed
by the Timoshenko beam theory with fractional viscoelastic material models. Since 1999,
various modifications and extensions of NAT have been presented, e.g., free torsional
vibrations of shafts [23], free vibrations of axially loaded beams [24], forced harmonic
vibrations of beams with concentrated [25,26] and distributed loadings [27] or rotating
beams [28–30].

Similar to the Transfer Matrix Method (TMM) [31] and the Dynamic Stiffness Method
(DSM) [32], NAT uses (semi)-analytical solutions of the harmonic governing equations to
fit the boundary conditions (and interface conditions if multi-span beams are investigated).
An advantage of NAT compared to TMM and DSM is the simple introduction of specific
particular solutions functions, which allows for the investigation of arbitrarily distributed
loadings [27]. Since NAT is only applicable for free vibrations or harmonic excitations,
the steady-state harmonic response of a general beam system is examined in this paper.
However, using the Fourier transform technique, periodic or transient beam vibrations
could also be investigated with NAT, e.g., Reference [20].

The outline of this paper reads as follows: First, a most general beam vibration problem
is defined in Section 2, which includes a general linear model for the beam supports, rigid
attachments, arbitrarily distributed loadings, and the introduction of the fractional Zener
material model. In Section 3, the Numerical Assembly Technique is presented, and the
analytical solutions of the Timoshenko beam theory with a fractional derivative damping
model are derived. The exact solutions of the homogeneous governing equations and the
particular solutions for point loadings are computed. For generally distributed loadings,
an approximation by the Fourier extension method [33] is presented, and semi-analytical
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particular solutions are derived. A numerical validation of the proposed method is given in
Section 4 using a numerical reference solution computed with the Finite Element Method.
Additionally, a comparison with vibration measurements on two different beam structures
made of steel and PVC is carried out. Finally, a conclusion is given in Section 5.

2. Problem Description

In this section, a general two-dimensional beam vibration problem is described, and
different viscoelastic material models using fractional time derivatives are outlined. The
Timoshenko beam theory is applied to model the beam segments including external viscous
(air) damping.

2.1. General Viscoelastic Beam Vibration Problem

A general beam vibration problem is illustrated in Figure 1. It is assumed that the
system is two-dimensional; therefore, no deformation occurs in the y-direction. Additionally,
the system has no loading in the x-direction. The beam with total length L is split into
M uniform and homogenous segments by (N) stations. The first (1) and last station
(N) represent the boundaries of the beam system. An additional station (i) has to be
introduced if a discontinuity in the system appears, either through a concentrated element,
a change in the cross-section or the material parameters. The global coordinate of an
intermediate station (i) is given by x = Xi and for each segment `, a local coordinate system
(O`, x`, y`, z`) is defined. The origins of the local coordinate systems O` are coincident
with the bending centers of each beam segment ` and are located at the associated left
station (x` = (x− Xi) (i = `)).

Figure 1. General two-dimensional beam vibration problem with distributed loading.

Each beam segment ` is straight and uniform with the length L` = (Xi+1−Xi) (i = `),
complex Young’s modulus E?

` , complex shear modulus G?
` , density ρ`, cross-section area

A`, and second moment of area about the y-axis I`. It is assumed that the principal axes of
all segments are aligned; therefore, the axial and bending deformations are decoupled [34].

The support at station (i) of the beam is modeled by linear springs and dampers
(translational springs k(i)t or dampers d (i)

t , rotational springs k(i)r or dampers d (i)
r ) and

rigid attachments by lumped masses m(i), and rotatory inertia Θ(i). The translational and
rotational springs and dampers are linear, and, in the initial undeformed state, the springs
are unstressed. All concentrated elements are connected to the beam at the bending center
line. As illustrated in Figure 1, it is assumed that a general support, a rigid attachment,
and a change in material and geometric properties appear simultaneously at each station.
Every possible configuration at a station (i) can be achieved by setting certain parameters
of the supports or rigid attachments to zero or by keeping the material or geometric
properties unchanged.
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The external loading of the beam is modeled by point forces FP(t) at the local
positions XF, point moments MP(t) at the local positions XM, distributed forces q(x, t), and
distributed moments m(x, t). For steady-state harmonic vibrations at angular frequency ω,
the external loads can be defined by

q(x, t) = q̃(x) e jωt, m(x, t) = m̃(x) e jωt, FP(t) = F̃P e jωt, MP(t) = M̃P e jωt, (1)

where t is the time, j =
√
−1 the imaginary unit, and F̃P, M̃P, q̃(x), and m̃(x) are the

complex amplitudes of the concentrated and distributed external loads. The external
viscous (air) damping is denoted by qD(x, t).

2.2. Modeling of the Internal Material Damping

Although many solid materials are modeled as perfectly elastic, mainly by Hooke’s
law, actual solids behave differently even for small stresses [35]. There is always at least a
small dissipation of energy, even for metals [35].

In most beam theories, it is assumed that the transverse stress components σyy and
σzz are very small compared to the axial stress component σxx (σxx � σyy, σxx � σzz).
Consequently, it is assumed that the transverse stress components vanish (σyy ≈ 0,
σzz ≈ 0) [34]. Furthermore, only small deformations are considered; therefore, a linear
material model can be applied. A perfectly elastic material is defined by Hooke’s law,
which leads to the non-zero normal and shear stresses in a beam segment ` [34]:

σxx(x, z, t) = E` εxx(x, z, t), (2)

σxz(x, t) = G` γxz(x, t), (3)

with E` the Young’s modulus, G` the shear modulus, εxx(x, z, t) the normal strain and
γxz(x, t) the shear strain. A transformation of Equations (2) and (3) into the frequency
domain applying the Fourier transform results in

σ̃xx(x, z, ω) = E` ε̃xx(x, z, ω), (4)

σ̃xz(x, ω) = G` γ̃xz(x, ω). (5)

A common approach to model the dissipative behavior of solid materials in the
frequency domain is the constant hysteric damping model [36]. In this frequency independent
model, the real-valued Young’s and shear modulus are simply replaced by complex moduli,
which leads to

σ̃xx(x, z, ω) = E?
` ε̃xx(x, z, ω), (6)

σ̃xz(x, ω) = G?
` γ̃xz(x, ω), (7)

with the complex Young’s modulus E?
` = E` (1 + j ηE

` ) and the complex shear modulus
G?
` = G` (1 + j ηG

` ) [36]. The loss factor η•` defines the frequency-independent damping in
this model. Although this simple model has certain advantages for numerical simulation,
especially in finite element schemes, and approximates experimental results accurately in a
limited frequency band, it leads to non-causal responses in the time-domain [36]. Therefore,
more realistic damping models have been developed. Several of these models are based on
so-called fractional time derivatives, which can be used in a wide frequency range and for
a large class of materials, such as metals, glass, and especially polymers [11].

A very effective four-parameter model has been analyzed by Pritz [11], which is a
generalized form of the so-called Zener material model. The constitutive equations of this
model in the time domain are given by [11]
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σxx(x, z, t) + bE
0`

∂αE
` σxx(x, z, t)

∂ tαE
`

= aE
0` εxx(x, z, t) + aE

1`
∂αE

` εxx(x, z, t)

∂ tαE
`

, (8)

σxz(x, t) + bG
0`

∂αG
` σxz(x, t)

∂ tαG
`

= aG
0` γxz(x, t) + aG

1`
∂αG

` γxz(x, t)

∂ tαG
`

, (9)

with aE
0`, aE

1`, bE
0`, aG

0`, aG
1`, and bG

0` as positive real constants, and the restrictions aE
0` <

aE
1`

bE
0`

and

aG
0` <

aG
1`

bG
0`

and ∂
α?
` •

∂ tα?
`

as the fractional derivative of order 0 < α?` < 1. Different mathematical

definitions of the fractional derivatives have been presented in literature. In this paper, the
Riemann-Liouville definition is applied, which has the property that the Fourier transform
F{•} of the fractional derivative [37]

F
{

dαg(t)
dtα

}
= (j ω)α g̃(ω) (10)

allows for a simple representation of the four-parameter model in the frequency domain

σ̃xx(x, z, ω) =
aE

0` + (j ω)αE
` aE

1`

1 + (j ω)αE
` bE

0`

ε̃xx(x, z, ω) = E?
` (ω) ε̃xx(x, z, ω), (11)

σ̃xz(x, ω) =
a0G + (j ω)αG

` a1G

1 + (j ω)αG
` b0G

γ̃xz(x, ω) = G?
` (ω) γ̃xz(x, ω). (12)

The complex moduli E?
` (ω) and G?

` (ω) are frequency dependent. This model can
be used to describe materials over a wide frequency range as long as the resulting loss
factors ηE

` (ω) and ηG
` (ω) exhibit only one peak in the frequency range [11]. If several

peaks are present in the loss factor, more evolved models have to be applied. The fractional
Zener model is also capable of representing a low loss factor, which is practically frequency
independent and, due to its simplicity and causality, superior to the hysteric damping
model [11]. Therefore, the four-parameter model is used in the subsequent sections to
model the material behavior of the beam segments `. The four-parameter model can be
reduced to simpler material models by setting certain parameters to specific values, e.g.,
if a•1` and b•0` is set to zero, Hooke’s law is recovered, or b•0` = 0 and α•` = 1 leads to the
Kelvin–Voigt material model.

2.3. Timoshenko Beam Theory

The beam segments ` are modeled by the well known Timoshenko beam theory, which
can be found in several textbooks, e.g., References [34,38]. The displacements u`(x, z, t),
v`(x, z, t), and w`(x, t) of an arbitrary point C in x-, y-, and z-direction and the rotation of
the cross-section ϕ`(x, t) about the y-axis are shown in Figure 2a.

In Figure 2b, an infinitesimal element of a Timoshenko beam is shown. The equilibrium
of forces and moments leads to

ρ` A`
∂2w`(x, t)

∂t2 − ∂Q`(x, t)
∂x

− q(x, t)− FP(t) δ(x− XF) + qD(x, t) = 0, (13)

ρ` I`
∂2 ϕ`(x, t)

∂t2 − ∂M`(x, t)
∂x

+ Q`(x, t)−m(x, t)−MP(t) δ(x− XM) = 0, (14)

with δ(•) the dirac delta function, the external viscous (air) damping

qD(x, t) = da`
∂w`(x, t)

∂t
, (15)

with da` > 0 the damping coefficient, the bending moment
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M`(x, t) =
∫∫

A
σxx(x, z, t) z dA, (16)

and the shear force
Q`(x, t) =

∫∫
A

σxz(x, t)dA. (17)

(a) (b)

Figure 2. Kinematics and forces/moments in the Timoshenko beam theory. (a) Kinematic assumptions. (b) Infinitesimal
element.

For harmonic vibrations at angular frequency ω, the state within a beam segment
` is completely described by the transverse displacement w̃`(x, ω), the rotation of the
cross-section ϕ̃`(x, ω), the bending moment M̃`(x, ω), and the shear force Q̃`(x, ω). Plugging
Equations (11) and (12) into Equations (16) and (17) and, subsequently, into Equations (13)
and (14) leads to

d4w̃`(x)
dx4 +

(
ω̄2
` (1 + Ē`)− d̄a`

)d2w̃`(x)
dx2 + ω̄2

`

(
ω̄2
` Ē` −

1
r2

G`

−
(

1− 1
Ē` r2

G` ω̄2
`

)
d̄a`

)
w̃`(x) =

1
kS` G?

` A`

((
1

Ē` r2
G`

− ω̄2
`

)
q̃(x)− d2q̃(x)

dx2 +
1

Ē` r2
G`

dm̃(x)
dx

)
,

(18)

ϕ̃`(x) =
−Ē` r2

G`

1− ω̄2
` Ē` r2

G`

(
d3w̃`(x)

dx3 +

(
1 + ω̄2

` Ē2
` r2

G`

Ē` r2
G`

− d̄a`

)
dw̃`(x)

dx
+

1
kS` G?

` A`

(
dq̃(x)

dx
− m̃(x)

Ē` r2
G`

))
, (19)

M̃`(x) = E?
` I`

dϕ̃`(x)
dx

, (20)

Q̃`(x) = kS` G?
` A`

(
ϕ̃`(x) +

dw̃`(x)
dx

)
, (21)

with

ω̄2
` =

ρ` ω2

E?
`

, Ē` =
E?
`

kS` G?
`

, r2
G` =

I`
A`

, d̄a` =
j da` ω

kS` G?
` A`

(22)

and kS` the shear correction factor to account for the actually shear stress distribution.
For brevity, the dependency of the variables on ω in Equations (18)–(21) is dropped, and
point loadings are not explicitly stated in the equations but included as special cases of the
distributed loadings.
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2.4. Boundary and Interface Conditions at the Stations

Since Equation (18) is a fourth order differential equation, four boundary or interface
conditions for each segment have to be defined to yield a unique solution. According to
Reference [39], the boundary conditions on the left end (station (1)) can be defined by

w̃1(0) = ŵ(1) or Q̃1(0) = −F̃(1)
P or f (1)t (w̃1(0), Q̃1(0)) = 0, (23)

ϕ̃1(0) = ϕ̂(1) or M̃1(0) = −M̃(1)
P or f (1)r (ϕ̃1(0), M̃1(0)) = 0, (24)

and on the right end (station (N)) by

w̃M(L) = ŵ(N) or Q̃M(L) = F̃(N)
P or f (N)

t (w̃M(L), Q̃M(L)) = 0, (25)

ϕ̃M(L) = ϕ̂(N) or M̃M(L) = M̃(N)
P or f (N)

r (ϕ̃M(L), M̃M(L)) = 0, (26)

where ŵ(1) and ŵ(N) are prescribed harmonic displacements, ϕ̂(1) and ϕ̂(N) prescribed
harmonic rotations, F̃(1)

P and F̃(N)
P prescribed harmonic forces, M̃(1)

P and M̃(N)
P prescribed

harmonic moments at the left and right boundary, and f (•, ?) is a linear function in terms
of • and ?, which depends on the concentrated elements at the boundaries.

In case of classical boundary conditions (no concentrated elements at the boundaries),
the displacement w̃?(•) or shear force Q̃?(•) and rotation ϕ̃?(•) or bending moment M̃?(•)
are prescribed. The most common types of classical boundary conditions are the clamped
(w̃?(•) = 0, ϕ̃?(•) = 0), free (M̃?(•) = 0, Q̃?(•) = 0), simply-supported (w̃?(•) = 0,
M̃?(•) = 0), and sliding (ϕ̃?(•) = 0, Q̃?(•) = 0) end conditions.

If concentrated elements are present at the boundaries, a coupling of the displacement
and shear force and/or rotation and bending moment appears in the boundary conditions.
The forces and moments due to concentrated elements acting on the beam boundaries are
shown in Figure 3a,b (station (1) and station (N), respectively).

(a) (b)

Figure 3. Forces and moments at the left and right boundary. (a) Left boundary. (b) Right boundary.

Using Newton’s second law of motion at the station (1) leads to

Q̃1(0) + w̃1(0)
(

m(1) ω2 − k(1)t − j ω d (1)
t

)
+ F̃(1)

P = 0, (27)

M̃1(0) + ϕ̃1(0)
(

Θ(1) ω2 − k(1)r − j ω d (1)
r

)
+ M̃(1)

P = 0, (28)

and at station (N) results in

Q̃M(L)− w̃M(L)
(

m(N) ω2 − k(N)
t − j ω d (N)

t

)
− F̃(N)

P = 0, (29)

M̃M(L)− ϕ̃M(L)
(

Θ(N) ω2 − k(N)
r − j ω d (N)

r

)
− M̃(N)

P = 0, (30)
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where F̃(•)
F = k(•)t w̃?(X•) (spring force), F̃(•)

D = j ω d (•)
t w̃?(X•) (damping force),

M̃(•)
F = k(•)r ϕ̃?(X•) (spring moment), and M̃(•)

D = j ω d (•)
r ϕ̃?(X•) (damping moment)

have been applied.
At an intermediate station (i), the displacement and rotation have to be continuous,

which results in

w̃`(X+
i )− w̃`−1(X−i ) = 0, (31)

ϕ̃`(X+
i )− ϕ̃`−1(X−i ) = 0, (32)

where (i = `) and X−i and X+
i are coordinates infinitesimal to the left and right of the

station (i). The forces and moments at an intermediate station (i) are illustrated in Figure 4.

Figure 4. Forces and moments at an intermediate station (i).

According to Newton’s second law of motion, the equilibrium of forces in z-direction
and moments about the y-axis are given by

Q̃`(X+
i )− Q̃`−1(X−i ) + w̃`(X+

i )
(

m(i) ω2 − k(i)t − j ω d (i)
t

)
+ F̃(i)

P = 0, (33)

M̃`(X+
i )− M̃`−1(X−i ) + ϕ̃`(X+

i )
(

Θ(i) ω2 − k(i)r − j ω d (i)
r

)
+ M̃(i)

P = 0, (34)

with F̃(i)
P and M̃(i)

P point loadings, which are directly located at the station (i).
The harmonic governing equation of an uniform Timoshenko beam given in Equation (18),

combined with the boundary conditions in Equations (23)–(30) and the interface conditions in
Equations (31)–(34), lead to a well-posed problem.

3. Numerical Assembly Technique

In the Numerical Assembly Technique (NAT), analytical solutions of each beam
segment ` are used to fulfill the boundary and interface conditions. Since Equation (18)
is a linear differential equation, the solution within a beam segment ` can be given by
w̃`(x`) = w̃h`(x`) + w̃p`(x`), with w̃h`(x`) and w̃p`(x`) as the homogeneous and particular
solutions of the governing equation.

3.1. Homogeneous Solution of the Governing Equations

The general homogeneous solution of the harmonic governing equation (Equation (18))
is obtained by setting the external forces and moments to zero (q̃(x) = 0, m̃(x) = 0).
Assuming a solution of the form w̃h`(x`) = cw` e j k x` , and plugging it into Equation (18),
results in the characteristic equation
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k4 −
(

ω̄2
` (1 + Ē`)− d̄a`

)
k2 + ω̄2

`

(
ω̄2
` Ē` −

1
r2

G`

−
(

1− 1
Ē` r2

G` ω̄2
`

)
d̄a`

)
= 0, (35)

with the solutions

k1,2 = ±
√

1
2
(
ω̄2
` (1 + Ē`)− d̄a` + R`

)
= ±α`, Re[α`] > 0, Im[α`] < 0, ∀ω (36)

k3,4 = ±
√

1
2
(
ω̄2
` (1 + Ē`)− d̄a` − R`

)
= ±β`, Re[β`] > 0, Im[β`]

{
> 0, ω ≤ ωc`

< 0, ω ≥ ωc`
(37)

and

R` =

√
(Ē` − 1)2 ω̄4

` +
4 ω̄2

`

r2
G`

+ d̄ 2
a` −

4 d̄a`

Ē` r2
G`

− 2 (Ē` − 1) ω̄2
` d̄a`. (38)

At the so-called cut-off angular frequency ωc`, the characteristic of the third and fourth
root changes; therefore, the form of the solutions is also different. For the undamped case,
this frequency can be computed analytically, while, for the generally damped case, only
a numerical approach is feasible. Using the roots in Equations (36) and (37), the final
solutions for the four field-variables are given by

w̃h`(x`)
ϕ̃h`(x`)
M̃h`(x`)
Q̃h`(x`)


︸ ︷︷ ︸

x̃h`(x`)

=


e j α` (x`−L`) e−j α` x` e j β` x` e−j β` (x`−L`)

−kϕ1` e j α` (x`−L`) kϕ1` e−j α` x` −kϕ2` e j β` x` kϕ2` e−j β` (x`−L`)

kM1` e j α` (x`−L`) kM1` e−j α` x` kM2` e j β` x` kM2` e−j β` (x`−L`)

−kQ1` e j α` (x`−L`) kQ1` e−j α` x` −kQ2` e j β` x` kQ2` e−j β` (x`−L`)


︸ ︷︷ ︸

B`(x`)


c1`
c2`
c3`
c4`


︸ ︷︷ ︸

c`

, ω ≤ ωc`, (39)


w̃h`(x`)
ϕ̃h`(x`)
M̃h`(x`)
Q̃h`(x`)


︸ ︷︷ ︸

x̃h`(x`)

=


e j α` (x`−L`) e−j α` x` e j β` (x`−L`) e−j β` x`

−kϕ1` e j α` (x`−L`) kϕ1` e−j α` x` −kϕ2` e j β` (x`−L`) kϕ2` e−j β` x`

kM1` e j α` (x`−L`) kM1` e−j α` x` kM2` e j β` (x`−L`) kM2` e−j β` x`

−kQ1` e j α` (x`−L`) kQ1` e−j α` x` −kQ2` e j β` (x`−L`) kQ2` e−j β` x`


︸ ︷︷ ︸

B∗` (x`)


c1`
c2`
c∗3`
c∗4`


︸ ︷︷ ︸

c∗`

, ω ≥ ωc`, (40)

with the constants

kϕ1` =
j
(
α2
` − Ē` ω̄2

` + d̄a`
)

α`
, kϕ2` =

j
(

β2
` − Ē` ω̄2

` + d̄a`
)

β`
, (41)

kM1` = E?
` I`
(

α2
` − Ē` ω̄2

` + d̄a`

)
, kM2` = E?

` I`
(

β2
` − Ē` ω̄2

` + d̄a`

)
, (42)

kQ1` = j kS` G?
` A`
−Ē` ω̄2

` + d̄a`

α`
, kQ2` = j kS` G?

` A`
−Ē` ω̄2

` + d̄a`

β`
. (43)

In Equations (39) and (40), the field variables are gathered in the column vector x̃h`(x`)
and the arbitrary constants c• in the column vectors c` and c∗` . The state variable matrices
B`(x`) and B∗` (x`) below and above the cut-off frequency are slightly different, since the
entries in the matrices are scaled to unity within the segment length (x` = [0, L`]). This
scaling has certain numerical advantages, since the terms with positive real parts in the
exponents would grow very rapidly and lead to a bad conditioning of the resulting system
matrices. In Section 3.3, the boundary and interface conditions are used to calculate the
arbitrary constants c•.

3.2. Particular Solutions of the Governing Equations

The particular solutions of the governing equation w̃p`(x`) fulfill the right-hand side
of Equation (18). Depending on the type of loading, different solution procedures are
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necessary. In case of concentrated loadings, the Fourier transform [40] and the residue
theorem and Jordan’s Lemma [41] are applied to calculated the particular solutions. For
generally distributed loadings, a two-step approach is required. First, the loading functions
are approximated by a Fourier extension (continuation) method [33], and then the Green’s
function method [42] is used to compute the particular solutions. In the subsequent sections,
an overview of the applied mathematical principle is given, and the particular solutions
for point loadings and generally distributed loadings are derived.

3.2.1. Fourier Transform, Residue Theorem, and Jordan’s Lemma

The Fourier transform is well suited to solve inhomogeneous differential equations,
due to its operational property for derivatives [40]

F
{

dng(x)
dxn

}
= ( j k)n ĝ(k), (44)

where ĝ(k) is the spatial Fourier transform F{•} of the function g(x) and n ∈ N0.
The inverse Fourier transform F−1{•} involves the evaluation of integrals on the

real axis ranging from −∞ to ∞. A powerful tool to evaluate such integrals is the residue
theorem [41]. The residue theorem leads to the integral formulas [41]

∞∫
−∞

ĝ(k) e j k x dk =


2π j

s+

∑
i=1

Res
z=z+i

{
ĝ(z) e j z x

}
+ π j

m

∑
i=1

Res
z=pi

{
ĝ(z) e j z x

}
x > 0,

−2π j
s−

∑
i=1

Res
z=z−i

{
ĝ(z) e j z x

}
− π j

m

∑
i=1

Res
z=pi

{
ĝ(z) e j z x

}
x < 0,

(45)

where z+i are poles in the upper half plane (total number s+), z−i poles in the lower half
plane (total number s−), pi poles on the real axis (total number m), and Res{•} is the
residue at the pole. The integral formulas in Equation (45) are only valid if Jordan’s Lemma
is applicable, which requires the condition

lim
|z|→∞

ĝ(z) = 0, (46)

with | • | the absolute value [41]. Several methods are available to evaluate the residues.
Since only simple poles appear in the following calculations, the formula [41]

Res
z=zi

{
ĝ(z) e j z x

}
= lim

z→zi
(z− zi) ĝ(z) e j z x (47)

can be applied, which is valid for simple poles zi 6= ∞.

3.2.2. Concentrated Loads

Using a Fourier transform of Equation (18) with respect to the spatial coordinate x`,
the displacement of the beam segment ` in the transformed domain is given by

ŵp`(k) =
1

kS` G?
` A`

(
k2 + 1

Ē` r2
G`

− ω̄2
`

)
q̂(k) + j k

Ē` r2
G`

m̂(k)

(k− α`) (k + α`) (k− β`) (k + β`)
, (48)

with ŵp`(k), q̂(k), and m̂(k) as the spatial Fourier transforms of w̃p`(x), q̃(x), and m̃(x).
The inverse Fourier transform leads to the particular solution in an integral form

w̃p`(x`) =
1

2 π

∞∫
−∞

ŵp`(k) e j k x` dk, (49)

which can be analytically evaluated for concentrated loadings.
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Point Force

A point force with the amplitude F̃P acting at the coordinate x` = XF is given by

q̃(x`) = F̃P δ(x` − XF), (50)

with δ(•) the dirac delta function. The Fourier transform of the point force is given by

q̂(k) = F̃P e−j k XF . (51)

Plugging the Fourier transform of the point force into Equations (48) and (49) leads to
the displacement

w̃p`(x`) =
F̃P

2 π kS` G?
` A`

∞∫
−∞

k2 + 1
Ē` r2

G`

− ω̄2
`

(k− α`) (k + α`) (k− β`) (k + β`)
e j k (x`−XF) dk, (52)

and the evaluation of the integral with the residue theorem results in

w̃p`(x`) = −
j F̃P

2 E?
` I`
(
α2
` − β2

`

)(1 + Ē` r2
G`

(
α2
` − ω̄2

`

)
α`

e−j α` |x`−XF | ± 1 + Ē` r2
G`

(
β2
` − ω̄2

`

)
β`

e±j β` |x`−XF |
)

. (53)

Due to the characteristic change of β` at the cut-off frequency ωc`, two different cases
have to be considered. The upper signs in Equation (53) belong to ω ≤ ωc`, and the lower
signs to ω ≥ ωc`. This compact representation of the two cases is adopted in all following
equations. The remaining field variables are computed by Equations (19)–(21) and are
given by

ϕ̃p`(x`) =
F̃P sgn(x` − XF)

2 E?
` I`
(
α2
` − β2

`

) (e−j α` |x`−XF | − e±j β` |x`−XF |
)

, (54)

M̃p`(x`) = −
j F̃P

2
(
α2
` − β2

`

)(α` e−j α` |x`−XF | ± β` e±j β` |x`−XF |
)

, (55)

Q̃p`(x`) = −
F̃P sgn(x` − XF)

2
(
α2
` − β2

`

) ((
α2
` − ω̄2

`

)
e−j α` |x`−XF | −

(
β2
` − ω̄2

`

)
e±j β` |x`−XF |

)
, (56)

with sgn(•) the signum function. The particular solutions of the field variables are gathered
in the column vector x̃p` = [w̃p`(x`), ϕ̃p`(x`), M̃p`(x`), Q̃p`(x`)]T .

Point Moment

The procedure for the derivation of the particular solutions due to a point moment is
completely equal to the point force. For completeness, the solutions of the field variables
are stated

w̃p`(x`) = −
M̃P sgn(x` − XM)

2 E?
` I`
(
α2
` − β2

`

) (e−j α` |x`−XM | − e±j β` |x`−XM |
)

, (57)

ϕ̃p`(x`) =
j M̃P

2 E?
` I`
(
α2
` − β2

`

)( β2
` − ω̄2

`

α`
e−j α` |x`−XM | ± α2

` − ω̄2
`

β`
e±j β` |x`−XM |

)
, (58)

M̃p`(x`) =
M̃P sgn(x` − XM)

2
(
α2
` − β2

`

) ((
β2
` − ω̄2

`

)
e−j α` |x`−XM | −

(
α2
` − ω̄2

`

)
e±j β` |x`−XM |

)
, (59)

Q̃p`(x`) =
j M̃P

(
Ē` ω̄2

` − d̄a`
)

2 Ē` r2
G`

(
α2
` − β2

`

) ( 1
α`

e−j α` |x`−XM | ± 1
β`

e±j β` |x`−XM |
)

. (60)
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3.2.3. Generally Distributed Loads

The particular solution functions for distributed loads are derived using the Green’s
function method, which uses the response due to a unit point source (Green’s function)
and an integration over the distributed load region [42]. In Figure 5a,b, the limits and
coordinate systems used for distributed forces and moments are shown.

(a) (b)

Figure 5. Limits and coordinate systems of the distributed loads. (a) Distributed force. (b) Distributed
moment.

Setting the point loads F̃P and M̃P in Equations (53) and (57) to one, multiplying the
solutions with the distributed loadings q̃(xq) and m̃(xm), and integrating over the load
region lead to the particular solutions

w̃p`(x`) = −
j

2 E?
` I`
(
α2
` − β2

`

) XBq∫
XAq

q̃(xq)

(
1+Ē` r2

G`(α2
`−ω̄2

`)
α`

e−j α` |x`−xq | ± 1+Ē` r2
G`(β2

`−ω̄2
`)

β`
e±j β` |x`−xq |

)
dxq, (61)

w̃p`(x`) = −
1

2 E?
` I`
(
α2
` − β2

`

) XBm∫
XAm

m̃(xm) sgn(x` − xm)
(

e−j α` |x`−xm | − e±j β` |x`−xm |
)

dxm, (62)

which are given in a general integral form. Applying a change of variables to normalized
local coordinates with respect to the limits of the distributed loading

x̄• =
(

x• −
XB• + XA•

2

)
2

XB• − XA•
(63)

and

x̄` =
(

x` −
XB• + XA•

2

)
2

XB• − XA•
(64)

simplifies Equations (61) and (62) to

w̃p`(x̄`) = −
j
(
XBq − XAq

)4

32 E?
` I`
(
ᾱ2
` − β̄2

`

) 1∫
−1

q̃(x̄q)

(
1+Ē` r2

G`(α2
`−ω̄2

`)
ᾱ`

e−j ᾱ` |x̄`−x̄q | ± 1+Ē` r2
G`(β2

`−ω̄2
`)

β̄`
e±j β̄` |x̄`−x̄q |

)
dx̄q, (65)

w̃p`(x̄`) = −
(XBm − XAm)

3

16 E?
` I`
(
ᾱ2
` − β̄2

`

) 1∫
−1

m̃(x̄m) sgn(x̄` − x̄m)
(

e−j ᾱ` |x̄`−x̄m | − e±j β̄` |x̄`−x̄m |
)

dx̄m, (66)

with
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ᾱ` = α`
XB• − XA•

2
, (67)

β̄` = β`
XB• − XA•

2
, (68)

normalized angular wavenumbers.

Generally Distributed Force

Since the evaluation of the integral in Equation (65) strongly depends on the actual
distribution of the excitation and has to be performed for any problem specific function
individually, a different approach is taken. An approximation of the distributed force with
the so-called Fourier extension (continuation) method is applied to allow for a systematic
procedure to compute the particular solution for any given force distribution. In the Fourier
extension method, a non-periodic function, which is defined on the interval [−1, 1], is
approximated by a Fourier series that is periodic on an extended interval [−T, T] (T > 1)
[43,44]. Therefore, the generally distributed force, given in normalized local coordinates x̄q, is
approximated by the Fourier series

q̃(x̄q) ≈
1√
2 T

n

∑
k=−n

dqk e j k π
T x̄q with − 1 ≤ x̄q ≤ 1, (69)

with T > 1 and n corresponding to the order of the approximation. A very efficient way to
calculate the complex coefficients dqk is presented by Adcock and Huybrechs [43], which is
called the numerical discrete Fourier extension with equispaced sampling points. Efficient
and stable numerical algorithms of this method are developed in References [44,45]. A
detailed description of the algorithm, which is applied in this paper, can be found in
Reference [44], and additional information on the convergency rate and stability of the
Fourier extension method is given in, e.g., References [43,46].

Plugging the Fourier extension of the distributed force (Equation (69)) into Equation (65),
and analytically evaluating the integrals, leads to the particular solution

w̃p`(x̄`) =
n

∑
k=−n

−
j dqk (XBq − XAq)

4

32 E?
` I`
(
ᾱ2
` − β̄2

`

) (1 + Ē` r2
G`

(
α2
` − ω̄2

`

)
ᾱ`

I1(x̄`, k)± 1 + Ē` r2
G`

(
β2
` − ω̄2

`

)
β̄`

I3(x̄`, k)

)
, (70)

with the integrals I1(x̄`, k) and I3(x̄`, k) presented in Appendix A. The remaining field
variables can either be computed by an integration of the point solutions (Equations (54)–(56))
or by applying Equations (19)–(21). The results for the rotation, bending moment, and shear
force are given by

ϕ̃p`(x̄`) =
n

∑
k=−n

dqk (XBq − XAq)
3

16 E?
` I`
(
ᾱ2
` − β̄2

`

) (I2(x̄`, k)− I4(x̄`, k)), (71)

M̃p`(x̄`) =
n

∑
k=−n

−
j dqk (XBq − XAq)

2

8
(
ᾱ2
` − β̄2

`

) (
ᾱ` I1(x̄`, k)± β̄` I3(x̄`, k)

)
, (72)

Q̃p`(x̄`) =
n

∑
k=−n

−
dqk (XBq − XAq)

3

16
(
ᾱ2
` − β̄2

`

) ((
α2
` − ω̄2

`

)
I2(x̄`, k)−

(
β2
` − ω̄2

`

)
I4(x̄`, k)

)
, (73)

where the integrals I2(x̄`, k) and I4(x̄`, k) are also presented in Appendix A. The particular
solutions for a generally distributed force are only quasi-analytical, since a small approximation
error remains due to the Fourier extension method. This error can even be reduced to
double-precision accuracy if the order n of the Fourier extension is high enough.
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Generally Distributed Moment

The calculation of the particular solutions due to a generally distributed moment is
completely equivalent. The distributed moment is approximated by a Fourier series

m̃(x̄m) ≈
1√
2 T

n

∑
k=−n

dmk e j k π
T x̄m with − 1 ≤ x̄m ≤ 1, (74)

and evaluating the resulting integrals in Equation (66) leads to

w̃p`(x̄`) =
n

∑
k=−n

−dmk (XBm − XAm)
3

16 E?
` I`
(
ᾱ2
` − β̄2

`

) (I2(x̄`, k)− I4(x̄`, k)), (75)

ϕ̃p`(x̄`) =
n

∑
k=−n

j dmk (XBm − XAm)
4

32 E?
` I`
(
ᾱ2
` − β̄2

`

) ( β2
` − ω̄2

`

ᾱ`
I1(x̄`, k)± α2

` − ω̄2
`

β̄`
I3(x̄`, k)

)
, (76)

M̃p`(x̄`) =
n

∑
k=−n

dmk (XBm − XAm)
3

16
(
ᾱ2
` − β̄2

`

) ((
β2
` − ω̄2

`

)
I2(x̄`, k)−

(
α2
` − ω̄2

`

)
I4(x̄`, k)

)
, (77)

Q̃p`(x̄`) =
n

∑
k=−n

j dmk (XBm − XAm)
4 (Ē` ω̄2

` − d̄a`
)

32 Ē` r2
G`

(
ᾱ2
` − β̄2

`

) (
1
ᾱ`

I1(x̄`, k)± 1
β̄`

I3(x̄`, k)
)

. (78)

3.3. Assembly Procedure and Solution Process

The homogeneous and particular solutions, derived in Sections 3.1 and 3.2, are used to
fulfill the boundary and interface conditions stated in Equations (23)–(34). This procedure
leads to a system of linear equations of the form A c = b, with the 4M× 4M system matrix
A and the 4M× 1 right-hand side vector b. The arbitrary constants c` of each segment are
gathered in the 4M× 1 vector c. Solving the system of linear equations for c results in a
quasi-analytical solution of the beam vibration problem stated in Section 2.1. A detailed
description of the assembly procedure can be found in the authors’ previous paper [27].

4. Numerical and Experimental Validation Examples

In the following sections, numerical and experimental validation examples are presented.
In Section 4.1, a general beam system is investigated using NAT and FEM, and the
numerical solutions are compared with respect to accuracy and computational efficiency.
Additionally, the behavior of different viscoelastic material models is examined. A validation
of NAT and the fractional Zener material model with measurement data is shown in Section
4.2. Two different test setups with materials having low (steel) and high (PVC) internal
damping are used to show the broad applicability of the fractional Zener model and the
presented numerical technique.

All computations are performed on an Intel® Xeon® E3-1270 processor (4× 3.6 GHz)
with 32 GB RAM and a Windows 10 operating system. The software package MATLAB®

R2020b is used to implement NAT, while the FEM models are built in the commercial
software Abaqus FEA® 2017.

4.1. Numerical Validation Example

In Figure 6, a multiple-stepped beam with circular cross-sections including different
loadings and support-conditions is shown. The beam with total length L = 1.5 m is divided
by N = 7 stations into M = 6 uniform segments.
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Figure 6. Beam configuration of the numerical example.

The positions Xi of the stations are listed in Table 1, including the lumped masses m(i),
rotary inertia Θ(i), and the translational spring constants k(i)t . Concentrated dampers at the
stations are omitted in the numerical example to clearly illustrate the internal damping
effect of the material.

Each segment ` of the beam has a constant circular cross-section, with the diameters
d1 = 0.08 m, d2 = 0.1 m, d3 = 0.12 m, d4 = 0.15 m, d5 = 0.11 m, and d6 = 0.09 m. The
material of the beam is uniform, and a polymer with high internal damping is chosen
to show the dissipative behavior. In Weiß et al. [47], material parameters for PVC are
presented, where the fractional Zener model is used to describe the viscoelastic material
characteristics. The viscoelastic parameters, adapted to the notation in this paper, are
aE

0 = 3.51× 109 N
m2 , aE

1 = 8.5486× 106 Nsα

m2 , bE
0 = 0.002106 sα, and αE = 0.6597 [47]. The

material is isotropic with the Poisson’s ratio ν = 0.38, and the density of the beam is
ρ = 1450 kg

m3 , which leads to a total beam mass of 23.4 kg.

Table 1. Coordinates and parameters at the stations.

Station Xi in m m(i) in kg Θ(i) in kg m2 k(i)
t in N

m

1 0.00 2.5 0.6 -
2 0.25 - - 3× 106

3 0.40 - - -
4 0.60 - - 8× 106

5 1.05 1.5 1.5 -
6 1.25 - - 7× 106

7 1.50 - - -

The beam is excited by a harmonic concentrated force with the amplitude F̃P = 20 N at
x = 0.2 m and a point moment with the amplitude M̃P = 7 Nm at x = 0.53 m. Additionally,
a distributed force acts in the fifth segment (Xaq = 0 m and Xbq = 0.15 m) given by the
function q̃(x5) = 200 + 50 · sin(64 (1.05 + x5)) · (1.05 + x5)

6 N
m , resulting in a total force

of 29.9 N.
The B22 element, which is a planer 3-node quadratic beam element having the

Timoshenko theory implemented, is used to build the FEM models. To show the accuracy
of the proposed computational technique, a FEM model with a very small element size
of 0.001 m (6002 degrees of freedom) is applied, which guarantees a highly accurate
reference solution. Furthermore, a coarse FEM model (70 degrees of freedom) with a
similar computational time as NAT is used to illustrate the computational efficiency of
the method. Since the commercial software package Abaqus FEA® 2017 only supports a
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complex Young’s modulus, the shear modulus is kept real-valued for the comparison with

G =
aE

0
2(1+ν)

. For a detailed description of the finite element modeling process, the reader is
referred to, e.g., Reference [48].

The frequency response with 2000 frequency steps in the interval of 0 Hz to 2000 Hz
(10 modes) for the response point at x = 0.225 m is shown in Figure 7.

0 200 400 600 800 1000 1200 1400 1600 1800 200010−8

10−7

10−6

10−5

10−4

10−3

Frequency f in Hz

D
is

pl
ac

em
en

t|
w
|i

n
m

FEM (fine)
NAT
FEM (coarse)

Figure 7. Comparison of the FEM and NAT solutions at x = 0.225 m over a wide frequency range.

From Figure 7, it is apparent that NAT gives highly accurate results, since the solutions
of the reference model and NAT are not distinguishable. If no distributed loadings are
present, NAT even leads to the analytical solution of the problem, due to the analytical
homogeneous and particular solutions. The boundary and interface conditions are fulfilled
with double-precision. For distributed loadings, a small error occurs when the actual
loading is approximated by the Fourier extension method. In the given example, n = 32
terms are used in the approximation of q̃(x5), which leads to an excellent agreement.

The coarse FEM model, which has a similar order of computational time as NAT,
already suffers from certain approximation errors in the higher frequency range, as
illustrated in Figure 7. This clearly shows the computational efficiency of NAT compared to
element-based techniques. The total computational time of NAT for 2000 frequency points
is 7.95 s, where 6.13 s are used to calculate the displacement, rotation, bending moment,
and shear force at 1500 locations along the x-axis. Most of the computational time is,
therefore, spend on the post-processing step, which can be reduced by a reduction of the
evaluation points. Another advantage of NAT compared to FEM is the accuracy of derived
quantities, such as the bending moment or shear force, since, in FEM, these quantities are
approximated with a lower order polynomial.

In Figure 8, a comparison of the frequency-dependent loss factor η and storage
modulus Re[E?] of the classical Zener model (standard linear solid) and the fractional
Zener model is shown. The material parameters of Weiß et al. [47] are used, which are the
result from a best fit to measurement data of a PVC beam and plate.
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Figure 8. Comparison of the complex modulus for the Zener and fractional Zener model.

While both models show a qualitatively similar behavior having one peak in the
loss factor and a monotonically increasing storage modulus, the additional flexibility of
the fractional model allows for a better control of the slope in the loss factor curve [11].
Therefore, the actual properties of the viscoelastic material (PVC) are captured more
accurately. In Figure 9, the difference of both material models is also clearly visible in the
frequency response for the beam system presented in Figure 6.
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Figure 9. Comparison of the frequency response at x = 0.225 m for the classical and fractional Zener model.

The difference in the storage modulus leads to a shifting of the eigenfrequencies
between the models, while the different loss factors result in lower or higher amplitudes.
The ninth mode at ≈1540 Hz and sixteenth mode at ≈3600 Hz are indicated by bullets and
squares in Figures 8 and 9. Since the storage modulus and the loss factor of the classical
Zener model are higher at the ninth mode, the eigenfrequency is slightly shifted to the right
and the amplitude is reduced compared to the fractional model. At the sixteenth mode, the
storage modulus of the classical model is higher, while the loss factor is lower compared to
the fractional model. Therefore, the eigenfrequency and the amplitude are greater for the
classical material model.

4.2. Comparison with Measurement Data

In this section, the presented numerical method and material model is compared to
vibration measurements. Two different cases are considered. In the first case, a beam with



Appl. Mech. 2021, 2 814

a low material damping made of steel is investigated, while the second case shows a beam
with high material damping (PVC).

The general test setup of the measurements is equal for both cases. An electrodynamic
shaker (type: LDS V406, frequency range: 5 Hz to 9 kHz, maximum force: 196 N) is used to
excite the system, and a force sensor (Brüel & Kjær Type 8230-001, maximum force: 220 N,
linearity error at full scale: ≤±1%) measures the excitation force. A triaxial acceleration
sensor (Brüel & Kjær Triaxial Type 4506, frequency range: 0.6 Hz to 3000 Hz) captures the
response of the beam. The system is excited with a sinusoidal force at constant frequency,
and the response is measured at steady-state conditions. The frequency step is 1 Hz, and
both time signals are transformed into the frequency domain. The ratio of the beam
displacement and force amplitude at the excitation frequency is calculated to get the
Frequency Response Function (FRF) of the system.

In Figure 10a,b, the test setups of the steel and PVC beam are shown. The multiple-stepped
beam a lies horizontally during the test, and fishing lines d are used to hold the beam in
position. The force sensor including the shaker and stinger b and the acceleration sensor
c are located in the same horizontal plane. Both sensors are mounted to the surface of the

beam using a thin layer of wax. The fishing lines are used to get free boundary conditions
at the ends of the beam.

(a) (b)

Figure 10. Test setup for the vibration measurements of the beams. (Created by authors.) (a) Steel beam. (b) PVC beam.

The NAT model used to compute the response of the test setup is illustrated in Figure 11.
The beam has two steps along the x-axis with the diameters d1 = d4 = d5 = 0.04 m and
d2 = d3 = 0.05 m.

Figure 11. NAT model of the test setup.

The station parameters and locations are listed in Table 2. The excitation due to
the electrodynamic shaker is modeled by a simple point force at station (3), since the
introduction of a constant distributed force over the force sensor region has a negligible
effect on the system response. The response point of the system is located at station (5).
The masses of the sensors are included as lumped masses at the corresponding stations.
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Table 2. Station parameters of the beam systems.

Station Xi in m m(i) in kg Θ(i) in kg m2

1 0.000 - -
2 0.240 - -
3 0.315 0.013 8.125× 10−6

4 0.390 - -
5 0.565 0.015 6.000× 10−6

6 0.580 - -

4.2.1. Case 1: Steel Beam (Low Damping)

The viscoelastic material parameters of the fractional Zener model are defined by
aE

0 = 1.926× 1011 N
m2 , aE

1 = 6.887× 109 Nsα

m2 , bE
0 = 0.035 sα, and αE = 0.3, which have

been found through a simple optimization approach in MATLAB® R2020b. The stated
parameters are rather different compared to the values presented in Reference [35], which
results from the low and nearly frequency independent damping of the material and the
limited frequency range. Several parameter combinations lead to a very similar response
in the viewed frequency range. Measurements up to a higher frequency would be required
to resolve this issue, which is not feasible with the presented test setup. The material is
isotropic with ν = 0.30, and the density is given by ρ = 7855 kg

m3 . The shear correction
factor is set to kS = 0.8507, which is computed with the formulas for circular cross-sections
shown in Reference [49].

In Figure 12, a comparison of the measured and calculated FRF is illustrated. There
is a general good agreement of both results over the complete frequency range. At
higher eigenfrequencies, the measurements are less reliable, since the limits of the applied
measurement equipment is reach. Overall, the fractional Zener model is capable of
representing the low, nearly frequency independent damping of steel without the drawbacks
of the hysteric damping model.
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Figure 12. Comparison of the calculated and measured FRFs for the steel beam.

4.2.2. Case 2: PVC Beam (High Damping)

The parameters of the fractional Zener model used to describe the viscoelastic behavior
of the PVC are given by aE

0 = 3.272× 109 N
m2 , aE

1 = 8.565× 106 Nsα

m2 , bE
0 = 0.00219 sα, and

αE = 0.649, which are similar to the parameters presented in Reference [47]. The density of
the material is given by ρ = 1377 kg

m3 , and an isotropic behavior with ν = 0.38 is assumed.
The shear correction factor is calculated as in the previous case, which results in kS = 0.848.

A comparison of the measured and calculated FRF is illustrated in Figure 13. The
results are in a good agreement over the complete frequency range up to 1000 Hz. The
three eigenfrequencies at around 180 Hz, 430 Hz, and 870 Hz, as well as the amplitudes,
are predicted very accurately by the NAT model. It is apparent that the internal damping
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of the PVC beam is considerable higher compared to the steel beam, since the peaks at the
eigenfrequencies are less pronounced. The fractional Zener model is, therefore, also able to
describe materials with high internal damping.
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Figure 13. Comparison of the calculated and measured FRFs for the PVC beam.

5. Conclusions

In this paper, a highly accurate and efficient numerical method for the dynamic
analysis of viscoelastic beam systems, called Numerical Assembly Technique, has been
presented. The viscoelastic behavior of the beam material is described by the fractional
Zener model, which allows for the characterization of a wide class of materials with a
low number of parameters. Analytical homogeneous solutions of the resulting governing
equations have been presented, and analytical solutions for point force and moment
excitation have been derived. Semi-analytical solutions for arbitrarily distributed loads
have been calculated by an approximation with the Fourier extension method. A comparison
to the Finite Element Method has shown the accuracy and efficiency of the proposed
numerical method. Vibration measurements for a material with low damping (steel) and
high damping (PVC) have been used to validate the material model, showing an overall
good agreement between the calculated and measured results.
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Appendix A. Integrals

In this section, the evaluations of the integrals appearing in the particular solutions
of generally distributed loadings are presented. Since the absolute value function and the
signum function appear in the integrals, three different cases x̄` ≥ 1, x̄` ≤ −1 and |x̄`| < 1
have to be considered during the evaluation. The final results are

I1(x̄`, k) =
1∫
−1

1√
2 T

e j k π
T x̄• e−j ᾱ` |x̄`−x̄• | dx̄• =



√
2 T sin

(
ᾱ` +

k π
T

)
ᾱ` T + k π

e−j ᾱ` x̄` x̄` ≥ 1,

√
2 T sin

(
ᾱ` − k π

T

)
ᾱ` T − k π

e j ᾱ` x̄` x̄` ≤ −1,

e j k π
T x̄` − e−j( k π

T +ᾱ` (x̄`+1))

j
√

2 T
(

k π
T + ᾱ`

)
− e j k π

T x̄` − e j( k π
T +ᾱ` (x̄`−1))

j
√

2 T
(

k π
T − ᾱ`

) |x̄`| < 1,

(A1)

I2(x̄`, k) =
1∫
−1

1√
2 T

e j k π
T x̄• sgn(x̄` − x̄•) e−j ᾱ` |x̄`−x̄• | dx̄• =



√
2 T sin

(
ᾱ` +

k π
T
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ᾱ` T + k π
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−
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(
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(A2)

I3(x̄`, k) =
1∫
−1

1√
2 T

e j k π
T x̄• e±j β̄` |x̄`−x̄• | dx̄• =



√
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(A3)
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I4(x̄`, k) =
1∫
−1

1√
2 T

e j k π
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(A4)
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