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Abstract: In this work, an equivalent continuum of a barrel gridshell is introduced. Constitutive
identification procedures based on periodic homogenization are provided in the literature for this
purpose, based on a flat Representative Element Volume (REV), notwithstanding that the geometry
of the structures concerned is curved. Therefore, the novelty of the present study is the selection of a
curved REV to obtain the equivalent elastic constants. The numerical validation of the identification
procedure is made comparing gridshell response to that of the equivalent shell under homogeneous
load conditions. Finally, in order to highlight the effect of the curved geometry on the constitutive
law of the continuum, the response of the proposed model is also compared to that of a continuum
obtained from a flat REV.
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1. Introduction

A gridshell has a doubly curved geometry as a shell; however, its material is laid out
in a grid pattern and that is the reason why it is also called a lattice shell or reticulated shell.

This kind of structure may be analysed as systems of beam elements, from now
on referred to as “beam lattice” models, through extensions of the ordinary theories for
structural frames, or alternatively they may be analysed as continua.

Although the propagation of highly efficient algorithmic tools for the analysis of the
beam lattices is constantly growing (FEM and DEM software [1,2] or Cad tools endowed
with Isogeometric analysis [3]), the deeper understanding of their mechanics is increasingly
difficult to achieve. As a result, the designers are not protected against errors originat-
ing from the inability to check the solution of automatic computations, especially at the
initial phases.

Analysing the static behaviour of beam lattices in parallel with that of their equivalent
continua may be a solution to this problem.

In the second half of the twentieth century, the attraction for this approach led to
defining different methods for establishing beam lattice-continuum relations. One of
them is the equivalent stiffness method, conceived by Wright in [4]; the procedure provides
the properties of the material and the effective thickness of the continuum model as a
function of the geometry and the mechanical properties of the beam lattice shell, paying
attention only on the membrane behaviour. Another method, called split rigidity method and
introduced by K. P. Buchert in [5], is based on two different rigidities, one for the membrane
deformations and the second for the bending ones. A further method is the orthotropic
equivalent continuum method introduced in [6], based on an orthotropic constitutive law to
find the rigidities of the equivalent shell.
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The same results found in [6] are obtained by the authors of the present work in [7,8],
where the orthotropic equivalent continuum, used to study the consequences of different
orientations of gridshell laths, is obtained by homogenization using a flat REV.

One of the first validations of the equivalent continuum defined by the equivalent
stiffness method has been carried out in [9]. In particular, the study compares the accuracy
of the continuum for describing the buckling phenomenon and it concludes that the
equivalent shell model could be employed only as preliminary tool to estimate the critical
buckling load of a lattice shell.

Defining an equivalent continuum together with its validation is the dominant paradigm
nowadays, as also shown in other application fields, such as periodic brickwork [10,11] and,
recently, in nano-structures [12,13].

It is evident that the continuum model provides a less accurate description of the
behavior of a gridshell than a beam lattice model. In this sense, using the denominations
coarse and fine, respectively, to indicate the two models is justified. However, even if the
continuum (coarse) model is less accurate than the beam lattice (fine) model, the former can
be used if the loss of accuracy is compensated for by a considerable increase in usability [14].

Therefore, the continuum model is not considered as an alternative to the beam lattice
one, but rather as a complementary tool; it is highly preferred in the first phase of a
design, when the effectiveness of the global geometry of the gridshell has to be evaluated,
an overall view of the distribution of internal forces is needed, the topologies of the grid and
its orientation are still to be decided, and approximate values of bars forces are looked for.

The aim of this work is to provide a proper definition of the equivalent stiffness
describing the transition from the fine model to the coarse one, that is, from the beam
lattice model to the continuum shell. The aforementioned methods are addressed to beam
lattice shells approximating shell surfaces within a framework of relatively short linear
pieces; therefore, they do not consider the influence of the curved geometry. However,
the equivalent continuum defined in [4] has also been used in the initial design phase of
the Mannheim Multihalle, a timber gridshell assembled from a lattice of curved continuous
laths [15]. That was justified since the ratio of the mesh size over to the sgrid span is
sufficiently small.

However, how small does that ratio have to be so that the equivalent model is reliable?
The present authors look for an answer to this question introducing, in the context of
linearized elasticity, a new equivalent continuum for a simple barrel gridshell, deriving
the constitutive coefficients through an identification procedure taking into account the
effects of the curved geometry. Generally speaking, the identification of curved structures
runs into complexities that depend on the value of the Gaussian curvature. Addressing
the problem of curvature for the first time, having worked on the same theme in the past
by using a flat REV, what we are doing now is to take into account the curvature on an
extremely simple case, characterized by null Gaussian curvature. The geometric choice is
accompanied by a further simplification, which limits the analysis to the coupling between
axial and bending stresses, focusing attention only on symmetrical homogeneous states.
Obviously, when we used the flat REV these coupling effects were neglected a priori.

To recap, we identify only some constitutive coefficients, with the ambition, on the
one hand, to verify the effects of unidirectional curvature and, on the other hand, to focus
on the aforementioned coupling. This identification is the subject of Section 2.1. Then,
the numerical validation of the identification procedure is made comparing beam lattice
response to that of the equivalent shell under homogeneous load conditions in Section 3.1.
In order to show the actual influence of the curved geometry in the continuum formula-
tion, the obtained equivalent continuum is finally compared, in Section 3.2, with the one
proposed in [6], which neglects the curvature of the reference surfaces. The conclusions
follow.
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2. Materials and Methods
2.1. The Constitutive Identification
2.1.1. Methodological Premise

To determine the elastic coefficients of the continuum model equivalent to the beam
lattice shell, a continualization procedure of a periodic system is used, which follows the
lines of the homogenization methods of heterogeneous continuous models.

This procedure starts from the selection of an elementary reference volume (REV) in
the fine model (the beam lattice), determined by the periodicity of the system, and identifies
in the coarse model (the continuum) a part that occupies the same space region of the REV.

At this point, a point-wise correspondence is defined between the internal forces in
the two models, coarse and fine ones, though a localization operator and, then, equality
is imposed between the respective strain energies, expressed in terms of complementary
energy. The correspondence between fine and coarse inner forces allows the strain energy of
the fine model be expressed in terms of the continuous inner forces; the elastic coefficients
of the continuum model are finally obtained by successive differentiations.

The determination of the strain energy of the fine REV passes through the resolution
of a series of hyperstatic elastic problems, to which external forces of the bulk type and
force boundary conditions are imposed. These problems are solved by the force method,
after the imposition of constraints sufficient to remove the rigid motion. The simplicity of
the beam lattice model allows the exploitation of elastic solutions in the literature ([16]),
which provide the displacement values in analytical terms. For reasons of simplicity,
therefore, the evaluation of the strain energy of the fine model is carried out by estimating
the external work, using the principle of virtual works.

2.1.2. The Fine and the Coarse Models: The REV

The beam lattice REV of a barrel gridshell is shown in Figure 1 on the left. The selected
gridshell has a quadrangular mesh, whose members are modelled as Bernoulli beams
(see [16] for equations). In particular, members can be divided into two groups: the
longitudinal ones, that are straight beams, and the transversal ones, that are circular arches.
Arches and beams are connected through panthographic joints at the intersections, in order
to guarantee the continuity of the members. Finally, the quadrangular grid is triangulated
by truss elements to provide in-plane shear stiffness.

pantographic
joint

spherical
hinge

x

y

z

l

llx

β

Figure 1. (Left) The fine geometry of the REV, together with local and global axes. The rotation axes
for pantographic joints are shown. (Right) The corresponding continuum region, together with local,
global axes and dimensions.

The model is immersed in a three-dimensional space, described by a global coordinate
system xyz. In addition, each member is endowed with the own local coordinate system
e1e2e3; in particular, e1 is tangent to the centroid axis of the member and e2 and e3 are the
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principal axes of inertia of the cross-section. Global and local coordinate systems of any
member of the gridshell module are shown in Figure 1.

For the coarse model, a Donnell shell is selected, whose equations are described in [17]
and recalled later.

Even the continuum model is endowed with an own local coordinate system e1e2e3;
the first two local axes belong to tangent plane to the surface while the third one is
perpendicular to it (Figure 1). Local axis e1 is tangent to the curved generator of the
cylindrical shell, while e2 is parallel to the straight one.

The identification procedure starts from the choice of a Representative Elementary
Volume (REV) in the beam lattice model and the selection of a region in the continuum
model of the same area as that occupied by the REV. Here, the module of the beam lattice
shown in Figure 1 on the left is chosen as REV. The geometry of the REV is defined as
having the length of the longitudinal straight beams and of the arches equal to l. Moreover,
the arches are circular with radius R, and center angle 2β = l

R .
The same figure shows the corresponding continuum region on the right.
To recap, the REV is composed of six elements: two curved beams, two straight

beams and two pin-jointed bars, i.e., the diagonals. In addition, all the beams have been
considered with half the area of their cross-sections and half the second moment of area,
for reasons of periodicity, since they are common to two contiguous modules.

2.1.3. The Localization Operator

The objective is defining the constitutive law which describes membrane and bending
behaviour of the continuum model, so that it is capable of providing strain states equivalent
to the beam lattice model ones, under equivalent stress states. This is done by equalizing
the internal work of the fine model to the internal work of the coarse one, obtained from
the equivalent stress states.

Figure 2 shows the uniform membrane and bending stresses acting on the sections of
normal vectors e1 and e2, which we collect in the vector sT = {N11, N22, M11, M22}T .

N11
N11

N22

N22

M22

M22

M11

M11

(a) (b)

(c) (d)

Figure 2. Internal actions in the continuum region corresponding to the REV for the four uni-
form states: (a) N11 membrane axial action along e1 (b) N22 membrane axial action along e2 (c) M11

bending action about e2 (d) M22 bending action about e1
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Likewise, membrane and bending strains along the same directions are collected in
the vector eT = {ε1, ε2, χ1, χ2}T . Their relationship is supposed to be linear, that is:

e = Ds, (1)

where D is the flexibility matrix, whose coefficients are the unknowns of the identification
procedure. In very general terms, it is written as follows:

D =


D11 D12 D13 D14

D22 D23 D24
D33 D34

sym D44

 (2)

At this point, the continuum stress states, depicted in Figure 2, are made equivalent to
the stress states of the beam lattice model and shown in Figure 3.

p pR
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Figure 3. The four elastic problems induced to the REV by the localization operator, starting from
the four uniform states of the continuum model. Refers to Equation (3) for definitions of boundary
actions of (a), (b), (c) and (d) respectively.

By means of the following equations:

p = N11l/2R, F = N22l/2, m1 = M11l/2, m2 = M22l/2, (3)

where the radial pressure p on the arches corresponds to the radial bulk force p/l in
the coarse model. This equation, often referred to as localization operator in standard
homogenization methods, induces four elastic problems on the REV, shown in Figure 3:
these are traction problems, due to the force identification procedure used up to now.

The four load conditions are the following:

1. Uniform pressure p applied to the arches in the plane e2, e3, in equilibrium with the
tensile forces pR at the end sections of the arches (Figure 3a);

2. Tensile forces F applied at the end sections of the straight beams (Figure 3b);
3. Couples m1 applied at the end sections of the arches (Figure 3c);
4. Couples m2 applied at the end sections of the straight beams (Figure 3d).

To any traction problem kinematic constraints are added to eliminate any rigid motions
and for reasons of periodicity. It is hardly worth pointing out that the end sections of arches
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are located on planes of symmetry of the fine model, on which all antisymmetric quantities,
such as rotations, axial displacements and shear forces cancel out, for obvious reasons.
Another plane of symmetry for the REV passes through the two center points of the
straight beam axes (see Figure 4). These geometric conditions impose specific restrictions
on the displacements, which are defined in Section 3, where, as those problems statically
indeterminate, the force method is used to solve them.

A B

CD

πa

πc

πb

πa

πc

πb

A B

C

E
F α

l

2β

lx lx = 2Rsinβ

Figure 4. Symmetries of the problems. (Left) 3D view. (Right) Top and Front view. The symmetries
of the REV (w.r.t. πa and πc ) together with periodicity conditions (w.r.t. πb) enable to impose the
boundary conditions required to eliminate rigid displacements of the REV.

2.1.4. Work Equality and the Elastic Coefficients

The solution of the elastic problems defined in Section 2.1.3 is presented in some detail
in Section 2.2 and allows the strain energy of the fine model be defined. As mentioned in
the methodological premise, in this case it is easier to determine the strain energy through
the work done by the external forces on the corresponding displacements. External forces
are those defined by the localization operator Equation (3). The only bulk force is the radial
pressure, which acts in the plane of the arches and spends work for the radial displacement
w of the axis line, while the remaining forces and torques spend work on the displacements
and the rotations of the four nodes A, B, C and D. Therefore, the external work takes the
following expression:

We f = 2
∫ l/2

−l/2
p w(s)ds +

D

∑
k=A

pRuk +
D

∑
k=A

Fvk +
D

∑
k=A

m1φk +
D

∑
k=A

m2θk, (4)

where u is the displacement tangent to the axis line of the arches’ end sections, v the axial
displacement of the straight beams’ end sections, and φ and θ are the components of nodes’
rotations around the axis e2 of the arch and the axis e2 of the beam, respectively.

Symmetry reasons impose the equality in norm of the homologue displacement
components of the four edge nodes and transform the Equation (4) into the following:

We f = 2
∫ l/2

−l/2
p w(s)ds + 4pRu + 4Fv + 4m1φ + 4m2θ (5)

which in turn, by replacing the Equation (3) in it, is modified as follows:

We f =
N11l

R

∫ l/2

−l/2
w(s)ds + 2N11ul + 2N22vl + 2M11φl + 2M22θl (6)
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At this point the solutions of the elastic problems, defined in Section 2.1.3 and which
are being treated extensively in Section 2.2, can be used to simplify Equation (6). First of
all, strict periodicity reasons impose u = 0, canceling the second addend of Equation (6).

In addition, anticipating fragments of the solution, we have:

w(s) = N11ŵ1(s) + N22ŵ2(s) + M11ŵ3(s)

v = N11v̂1 + N22v̂2 + M11v̂3

φ = N11φ̂1 + N22φ̂2 + M11φ̂3 (7)

θ = M22θ̂4

with obvious meaning of the symbols used. Thus, Equation (6) transforms into:

We f =N11

∫ l/2

−l/2

(
N11ŵ1(s) + N22ŵ2(s) + M11ŵ3(s)

)
ds

l
R
+

2N22
(

N11v̂1 + N22v̂2M11v̂3
)
l+

2M11
(

N11φ̂1N22φ̂2 + M11φ̂3
)
l+

2M2
22θ̂4l

(8)

which, after some algebra, turns out to be a quadratic form of the coarse stress state
sT = {N11, N22, M11, M22}T :

We f =N2
11

∫ l/2

−l/2
ŵ1(s)ds

l
R
+

N11N22

( ∫ l/2

−l/2
ŵ2(s)ds

1
R
+ 2v̂1

)
l+

2N2
22v̂2l+

N11M11

( ∫ l/2

−l/2
ŵ3(s)ds

1
R

)
l+

2N22M11
(
φ̂2 + v̂3

)
l+

2M2
11φ̂3l+

2M2
22θ̂4l

(9)

The external work of the fine model We f is ready to be equated with the internal work
of the coarse model, given by

Wic = l2e · s = l2Ds · s (10)

where e, s and D are defined in Section 2.1.3. Taking into account Equations (9) and (10)
assumes the following form:

Wic = l2(D11N2
11 + 2D12N11N22 + D22N2

22+

2D13N11M11 + 2D23N22M11+

D33M2
11 + D44M2

22)

(11)

with the elastic constants D11, D12, D13, D22, D23, D33, D44 given by:
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D11 =
1

lR

∫ l/2

−l/2
ŵ1(s)ds (12)

D12 =
1

2lR

∫ l/2

−l/2
ŵ2(s)ds +

1
l

v̂1 (13)

D22 =
2v̂2

l
(14)

D13 =
1

2lR

∫ l/2

−l/2
ŵ3(s)ds +

φ̂1

l
(15)

D23 =
φ̂1

l
+

v̂3

l
(16)

D33 =
2φ̂3

l
(17)

D44 =
2θ̂4

l
(18)

It is hardly worth noting that the constitutive coefficients in Equations (12)–(18) have
different physical dimensions: [D11] = [D22] = [D12] = [L F−1] ,[D13] = [D14] = [D23] =
[D24] = [F−1] , [D33] = [D34] = [D44] = [L2 F−1]. On the other hand, it is more interesting
to note that the quantities â of the linear combinations of Equations (7) do not have the
physical dimension of displacements and rotations, but of derivatives of generalized
displacements with respect to the internal forces of the coarse model, N11, . . . , M22, and,
therefore, they contain the constitutive coefficients of the fine model, as is going to be
shown later. Moreover, this is the reason for some apparent contradictions, like the one in
Equation (16).

In addition, the mechanical couplings that can be deduced from Equations (13), (15)
and (16) are worth to be underlined. The coefficient D12, coupling N11 and N22, takes into
account the Poisson effect in the membrane behavior, while the coefficients D13 and D23,
coupling N11 and M11, and N22 and M11, represent the answer to one of the questions
raised by this paper. Furthermore, if in the plane of the arch the coupling measured by D13
is practically discounted, the coupling in the perpendicular plane, highlighted by D23, is
much less obvious.

This last coefficient represents the fact that when M11, while bending the arch in
its plane, it lengthens its axis line, at the same time it also causes the elongation of the
diagonals which, in turn, compress the longitudinal beams. On the contrary, the bending
moment M22 produces effects that remain confined in its plane, because since it does not
lengthen the longitudinal beams, it does not lengthen the diagonals either, which are the
coupling element of the two perpendicular planes.

The detailed expression of the elastic constants is given in Section 2.4.
A final consideration is work making. The elastic constants determined above make

Donell’s shell model equivalent to the barrel beam lattice under examination. Having used
a force-based approach, the stress states of the two models correspond point-wise via the
localization equation Equation (3), while the deformation of the coarse model provides
only an average measure of the deformations of the fine model. In fact, it is well known
that the deformed shape of the fine model is characterized by local phenomena, which are
lost in the coarse model.

For the determination of the displacements of the fine model, starting from the solu-
tions of elastic problems of the equivalent Donnell shell, Equation (7) is used.

2.2. The Solutions of the Fine Model

The analytical solution of the four elastic problems defined on the REV can be easily
found by exploiting the symmetries shown in Figure 4. These are due to the symmetry
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of the REV, with respect to the vertical planes πa, πc together with the global cylindrical
symmetry that makes the circumferential components of the nodes displacements null.

In particular the symmetries allow to solve the whole problem by:

1. Solving the sub-problem consisting of one half arch, one half diagonal and one half
beam converging in the node B (see the rectangular hatched area in Figure 4);

2. Assuming that the displacement of the node B belong to the plane πb.

2.3. The Solution Method

The symmetry and periodicity conditions allow each of the four 3D problems be
solved as a linear combination of plane 1D problems. The 3D structure is statically un-
determined with one degree of redundancy. The Force Method is used, where the axial
force in the diagonal is assumed as redundant reaction. Each problem is then solved as the
superposition of five elastic 1D plane statically determined sub-problems, by making use
of the following scheme, where the index i = 1, . . . , 4 represents the quantities referred to
the ith problem, while the apices a, b, d are referred to (arch, beam, diagonal), respectively:

• The axial force in the diagonal is assumed as redundant reaction Xi (see Figure 5).
• The redundant reaction Xi is projected onto the vertical plane πa containing the arch

and in the plane πb containing the beam, by obtaining the components Xa
i = Xi cos(α)

and Xb
i = Xi sin(α), respectively, where α is the angle formed between the diagonal

and the plane πa in the reference configuration.
• Five statically determined elastic traction sub-problems are solved:

– Sao
i : The arch subject to the external loads (if present);

– Sax
i : The arch subject to Xa

i ;
– Sbo

i : The beam subject to the external loads (if present);
– Sbx

i : The beam subject to Xb
i ;

– Sdx
i : The diagonal subject to Xi .

• For each sub-problem the following six constraints are assumed on the plane displace-
ments of the half arch and half beam:

ua
i (0) = 0, φa

i (0) = 0, ua
i (l/2) = 0, ub

i (0) = 0, wb
i (−l/2) = wa

i (l/2), θb
i (0) = 0

• The plane displacements {ua
i (s), wa

i (s), φa
i (s)}T of the arch are obtained as sum of the

results of the problems Sao
i and Sax

i , the plane displacements {ub
i (s), wb

i (s), φb
i (s)}Tof

the beam are obtained as sum of the results of the problems Sbo
i and Sbx

i , while the
displacements ud

i (s) of the diagonal comes from the solution of the problem Sdx
i . All

the displacements are written in terms of Xi.
• The compatibility condition between the axial displacement of the diagonal and the

projection of the axial displacements of arch and beam on the x-y plane is used in
order to find the value of Xi.

ud
i (l/2) = cos(α)(ua

i (l/2) cos(l/2R) + wa
i (l/2) sin(l/2R)) + sin(α)ub

i (l/2) (19)

• The whole displacement field for each element is finally written in terms of the external
load only.
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Figure 5. Scheme of the Force Method used to solve the four fine problems. (Left) The four different
primary structures, one for each problem. (Right) The auxiliary structure, characterized by the
redundant reaction X.

2.3.1. The Equations of the Three Plane Problems

As well known, the elastic problems for the arch, beam and diagonal are defined by
the following systems of equations:

Elastic problem for the arch:
εa

i (s) = (ua
i )
′(s) + wa

i (s)
R

γa
i (s) = (wa

i )
′(s)− ua

i (s)
R − φa

i (s)
χa

i (s) = (φa
i )
′(s)


Na

i (s) = EAbεa
i (s)

γa
i (s) = 0

Ma
i (s) = EJbχa

i (s)


(Na

i )
′(s) + Ta

i (s)
R + p(s) = 0

(Ta
i )
′(s)− Na

i (s)
R = 0

(Ma
i )
′(s) + Ta

i (s) = 0

(20)

Elastic problem for the beam:
εb

i (s) = (ub
i )
′(s)

γb
i (s) = (wb

i )
′(s)− φb

i (s)
χb

i (s) = (φb
i )
′(s)


Nb

i (s) = EAbεb
i (s)

γb
i (s) = 0

Mb
i (s) = EJbχb

i (s)


(Nb

i )
′(s) = 0

(Tb
i )
′(s) = 0

(Mb
i )
′(s) + Tb(s) = 0

(21)

Elastic problem for the diagonal:{
εd

i (s) = (ud
i )
′(s)

{
Nd

i (s) = EAdεd
i (s)

{
(Nd

i )
′(s) = 0 (22)

The equilibrium equations are solved as a superposition of some basic solutions (BS)
(see Figure 6) of statically determined problems.

The used basic equilibrium solutions for the arch (BSai), for the beam (BSbi) and for
the diagonal (BSdi) are the following:

BSa1 : Na(s) = pR, Ta(s) = 0, Ma(s) = 0.
BSa2 : Na(s) = H cos( s

R ), Ta(s) = H sin( s
R ), Ma(s) = HR(cos( s

R )− cos( l
2R )).

BSa3 : Na(s) = 0, Ta(s) = 0, Ma(s) = m.
BSb1 : Nb(s) = H, Tb(s) = 0, Mb(s) = 0.
BSb2 : Nb(s) = 0, Tb(s) = 0, Mb(s) = m.
BSd1 : Nd(s) = H.

(23)



Appl. Mech. 2021, 2 640

BASIC SOLUTIONS

arch beam

diagonal

p pR

H

mm

H

pR
H

mm

H

HH

BSa1

BSa2

BSa3

BSb1

BSb2

BSd1

Figure 6. The basic solutions used in the Force Method.

2.3.2. Solution of the Problem (1)

In this case on the arch both external load and Xa
1 are applied, while on the beam only

Xb
1 is applied, then the basic equilibrium solutions to be used for the arch are BSa1 and BSa2,

by putting H = −Xa
1, while BSb1 must be used for the beam, by putting H = −Xb

1 and
BSd1 for the diagonal, by putting H = X1. Then, by integrating the compatibility equations
for arch, beam and diagonal, we obtain the following results for the displacement fields
(see Figure 7 for deformed configuration):

ua
1(s) =

X1 cos(α)(l(3AbR2+Jb) cot( l
2R ) sin( s

R )−2s(AbR2+Jb) cos( s
R )−4AbR2s cos( l

2R ))
2AbEJb

wa
1(s) =

X1 cos(α)(cos( s
R )(−l(3AbR2+Jb) cot( l

2R )+2AbR3−2JbR)−2s(AbR2+Jb) sin( s
R )+4AbR3 cos( l

2R ))+4Jb pR2

2AbEJb

φa
1(s) =

2RX1 cos(α)(s cos( l
2R )−R sin( s

R ))
EJb

ub
1(s) = −s X1 sin(α)

EAb

wb
1(s) =

4Jb pR2−X1 cos(α) csc( l
2R )(R(Jb−3AbR2) sin( l

R )+l(AbR2 cos( l
R )+2AbR2+Jb))

2AbEJb
θb

1(s) = 0
ud

1(s) = s X1
EAd

(24)

Equation (19) is then solved to find the redundant reaction X1.

X1 =
4Ad Jb pR2 cos(α) sin

(
l

2R

)
Ad cos2(α)

(
R(Jb − 3AbR2) sin

(
l
R

)
+ l
(

AbR2 cos
(

l
R

)
+ 2AbR2 + Jb

))
+ Ab Jbld + 2Ad Jbl sin2(α)

(25)

Figure 7. Deformed configuration of the problem (1).
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2.3.3. Solution of the Problem (2)

In this case on the arch only Xa
2 is applied, while on the beam both F and Xb

2 are
applied, then the basic equilibrium solutions to be used for the arch is BSa2, by posing
H = −Xa

2, while BSb1 must be used for the beam, by posing H = F − Xb
2 and BSd1 for

the diagonal, by posing H = X2. Then, by integrating the compatibility equations for
arch, beam and diagonal, we obtain the following results for the displacement fields (see
Figure 8 for deformed configuration):

ua
2(s) =

X2 sin(2α) csc(α)(l(3AbR2+Ad) cot( l
2R ) sin( s

R )−2s(AbR2+Ad) cos( s
R )−4AbR2s cos( l

2R ))
4AbEAd

wa
2(s) = −X2 sin(2α) csc(α) sin( s

R )(cot( s
R )(l(3AbR2+Ad) cot( l

2R )+2R(Ad−AbR2)))
4AbEAd

+
X2 sin(2α) csc(α) sin( s

R )(2s(AbR2+Ad)−4AbR3 cos( l
2R ) csc( s

R ))
4AbEAd

φa
2(s) =

2RX2 cos(α)(s cos( l
2R )−R sin( s

R ))
EAd

ub
2(s) = s (F−X2 sin(α))

EAb

wb
2(s) = −X cos(α) csc( l

2R )(R(Ad−3AbR2) sin( l
R )+l(AbR2 cos( l

R )+2AbR2+Ad))
2AbEAd

θb
2(s) = 0

ud
2(s) = s X2

EAd

(26)

Equation (19) is then solved to find the redundant reaction X2.

X2 =
2AdFAdl sin(α)

Ad cos2(α)
(

R(Ad − 3AbR2) sin
(

l
R

)
+ l
(

AbR2 cos
(

l
R

)
+ 2AbR2 + Ad

))
+ Ab Adld + 2Ad Adl sin2(α)

(27)

Figure 8. Deformed configuration of the problem (2).

2.3.4. Solution of the Problem (3)

In this case on the arch both m1 and Xa
3 are applied, while only Xb

3 is applied on
the beam, then the basic equilibrium solutions to be used for the arch are BSa2 and BSa3,
by posing H = −Xa

3, and m = m1, respectively, while BSb1 must be used for the beam,
by posing H = Xb

3 and BSd1 for the diagonal, by posing H = X3. Then, by integrating the
compatibility equations for arch, beam and diagonal, we obtain the following results for
the displacement fields (see Figure 9 for deformed configuration):
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ua
3(s) =

l sin( s
R )(X3 cos(α)(3AbR2+Jb) cot( l

2R )+2Abm1R csc( l
2R ))

2AbEJb
+

−2sX3 cos(α)(AbR2+Jb) cos( s
R )−4AbRs(RX3 cos(α) cos( l

2R )+m1)
2AbEJb

wa
3(s) =

X3 cos(α)(cos( s
R )(−l(3AbR2+Jb) cot( l

2R )+2AbR3−2JbR)−2s(AbR2+Jb) sin( s
R )+4AbR3 cos( l

2R ))
EJb

+
2Abm1R(2R−l csc( l

2R ) cos( s
R ))

2AbEJb

φa
3(s) =

2RX3 cos(α)(s cos( l
2R )−R sin( s

R ))+2m1s
EJb

ub
3(s) = −s X3 sin(α)

EAb

wb
3(s) =

2Abm1R(2R−l cot( l
2R ))−X3 cos(α) csc( l

2R )(l(2AbR2+Jb)+R(Jb−3AbR2) sin( l
R )+Ab lR2 cos( l

R ))
2AbEJb

θb(s) = 0
ud(s) = s X3

EAd

(28)

Equation (19) is then solved to find the redundant reaction X3.

X3 =
2Ab Adm1R cos(α)

(
2R sin

(
l

2R

)
− l cos

(
l

2R

))
Ad cos2(α)

(
R(Jb − 3AbR2) sin

(
l
R

)
+ l
(

AbR2 cos
(

l
R

)
+ 2AbR2 + Jb

))
+ Ab Jbld + 2Ad Jbl sin2(α)

(29)

Figure 9. Deformed configuration of the problem (3).

2.3.5. Solution of the Problem (4)

ua
i (s) = 0

wa
i (s) = 0

φa
i (s) = 0

ub
i (s) = 0

wb
i (s) = −m2(L2−4s2)

4EJb

θb
i (s) = 2m2s

EJb
ud

i (s) = 0

(30)

In this last case the redundant reaction X4 vanishes (see Figure 10 for deformed
configuration).
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Figure 10. Deformed configuration of the problem (4).

2.4. The Identified Constitutive Coefficients

Once the four fine problems are solved, it is possible to put solutions in Equations (12)–(18) by
means of the following substitutions:

ŵ1(s) =
wa

1(s)
pR

, ŵ2(s) =
wa

2(s)
F

, v̂1 =
va

1(s)
pR

, v̂2 =
va

2(s)
F

, ŵ3 =
wa

3(s)
m1

(31)

φ̂1 =
φa

1(s)
pR

, û3 =
ua

3(s)
m1

, φ̂3 =
φa

3(s)
m1

, θ̂4 =
θa

4(s)
m2

(32)

Then, by substituting β = l
2R , it is possible to write all geometrical parameters as

functions of β:

α = tan−1
(

β

sin(β)

)
(33)

ld = l

√
1 +

(
sin(β)

β

)2

(34)

Finally, the identified constitutive coefficients, as functions of the angle β can be
represented as follows:

D11(β) =
l

EAb

(
1 +

8(sin β/β)2 Ad Jb
c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb

)
(35)

D12(β) =
l

EAb

(
8Ad Jb

c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb

)

D22(β) =
l

E

((
1 +

(
sin β

β

)2
) 3

2

Ab + 2Ad

)
(1 +

(
sin β

β

)2
) 3

2

+
2
(

c1(β)l2 Ab − 4
(

1 + sin 2β
2β

)
Jb

)
A2

d

c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb



D13(β) =
l2

EJb

4
(

sin β
β

)2
(1− β cot β)

β

Ad Jb
c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb


D23(β) =

l2

EJb

(
4(1− β cot β)

β

Ad Jb
c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb

)
D33(β) =

l
EJb

(
1 +

2(cos β− sin β/β)2

β2
l2 Ad Ab

c1(β)l2 Ab Ad − c2(β)Ab Jb − c3(β)Ad Jb

)

D44(β) =
l

EJb
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where the dimensionless coefficients c1(β), c2(β), c3(β) are defined as follows:

c1(β) =
1
β2

(
3 sin 2β

2β
− (2 + cos 2β)

)

c2(β) = 4
(

β

sin β

)2
(

1 +
(

sin β

β

)2
) 3

2

c3(β) = 8
(

β

sin β

)2
+ 4
(

1 +
sin 2β

2β

)
. (36)

It easy to show that:

lim
β→0

c1(β) = 0, lim
β→0

c2(β) = 8
√

2, lim
β→0

c3(β) = 16

Consequently, taking the limit of the identified coefficients for small angles β, we
obtain the same coefficients introduced in [6]:

D11 = lim
β→0

D11(β) = l
EAb

( √
2Ab+Ad√

2Ab+2Ad

)
D13 = lim

β→0
D13(0) = 0 (37)

D12 = lim
β→0

D12(0) = − l
EAb

(
8Ad Jb√

2Ab+2Ad

)
D23 = lim

β→0
D23(0) = 0

D22 = lim
β→0

D22(0) = l
EAb

( √
2Ab+Ad√

2Ab+2Ad

)
D33 = lim

β→0
D33(0) =

l
EJb

Figure 11 shows the behaviour of the identified coefficients as functions of β, superim-
posed with the value obtained in [6]. It is worth noting that:

• For β = 0 (flat REV) the values coincide with that of [6].
• For β = 0 there is no coupling between membrane and flexural behaviour, i.e., D13 =

D23 = 0.
• For β > 0 (curved REV) the membrane coefficients D11 and D22 assume positive

values increasing monotonically with β, while the mixed membrane coefficient D12
(Poisson effect) assume negative values whose absolute value decreases with β. Then
the overall membrane stiffness increases with the curvature of the REV.

• For β > 0 (curved REV) the coupling coefficients D13 = D23 = 0, are non monotonic
functions of β, then there exists a value of β giving the maximum coupling.

• The flexural coefficient D44 is not affected by β because we assumed a geometry
curved only in x direction.
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(        )

(           )

(          )

(          )

Figure 11. The six curves of D11(β), D12(β), D22(β), D13(β), D23(β), D33(β), (red, solid line), su-
perimposed with the corresponding D11, D12, D22, D13, D23, D33, (blue, dashed line), in the case of
l = 1.0 m, E = 1.0× 104 MPa, Ab = 1.5× 10−3 m2, Ad = 1.5× 10−3 m2, Jb = 1.35× 10−6 m4.

3. Results
3.1. Homogeneous Load Case

In order to validate the identification procedure, the response of coarse model is
numerically compared to that of the fine one.

The numerical analyses are carried out with the finite element software SAP2000 [18].
A cylindrical gridshell having a 1.90 m radius is chosen as fine model, divided in 36 modules
(six longitudinal and six circumferential, see Figure 12). The characteristic length of each
module is 1.00 m. All structural elements are modelled as timber laths having a rectan-
gular cross-section, 50 mm wide and 30 mm deep; the chosen material belongs to the
strength class D30 [19], with the mean modulus of elasticity parallel to the fibers equal to
11,000 MPa.

1.00.5
1.0

1.0
1.0

1.0
0.5

(a) First case

0.5 1.0 1.0 1.0 1.0 1.0 0.5

(b) Second case
Figure 12. Load and boundary conditions.
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The fine model has a global orientation as defined in Figure 1. It is analysed under two
homogeneous load conditions: a uniform pressure load distributed on the arches (Figure 12a)
and a distributed moment about the axis of the straight edge beams (Figure 12b).

Boundary conditions (b.c.) are assigned with reference to the displacement components
defined in Section 2.4. In both cases of Figure 12a,b all the nodes of the gridshell depicted
as a circle have b.c. := {u, φ, θ} = 0 ∪ {v, w} 6= 0. However, in order to avoid the
rigid translation in y direction, the arch where nodes are depicted with squares have
b.c. := {u, v, φ, θ} = 0∪ {w} 6= 0.

Coarse model is analysed under equivalent load and boundary conditions; the results
in terms of deformed shapes for both models are shown in Figure 13.

mm

mm

mm

mm

(a) First case

mm mm

rad rad

(b) Second case
Figure 13. Deformed shapes.

In the first case (a), the coarse model behavior can be characterized just by ε1 and ε2.
These strain measures are constant all along whole shell; in particular, ε1 = 1.02× 10−4 and
ε2 = −1.38× 10−5. By applying Equation (7), the w component of the displacement vector
is calculated equal to 6.4× 10−2 m. Thus, the percent error between the coarse model and
the fine model is below 1%.

In the second case (b) instead, the strain measures χ1, ε1 and ε2 characterize the coarse
model behavior, and their numerical values are calculated: χ1 = 0.20 m−1, ε1 = −1.03× 10−3,
ε2 = −1.06× 10−3. Applying Equation (7) again in order to calculate the φ component of the
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rotation vector, this is evaluated as 0.102 rad. However, the obtained value of φ corresponds
to the rotation of the arches’ end sections of one module.

Being χ1 constant in the problem of Figure 12b it can be deducted that rotation φ is
linear. Thus, φ = 0.612 rad at the end section of the whole arch of the fine model when
composed of six modules. By the numerical analysis of the fine model, φ = 0.622 at the
end section of the arches; therefore, the error of the coarse model is below to 2%.

The v component of the displacement vector can be verified in the same way for both
load cases; here, the error of the coarse model is again negligible.

3.2. Influence of the Curvature: A Non–Homogeneous Example

A gridshell can be analysed using continuum models obtained by different identi-
fications. In this section, the focus is on the comparison of two continua obtained by
constitutive identifications based on different REVs. The continuum model proposed in
the present is now compared to that defined in [14]; for the sake of simplicity, the first one
is named continuum A (CA) and the second one continuum B (CB).

The responses of the different models are compared in terms of mechanical work (W),
numerically evaluated as the work spent by the external forces over the displacements.

A first comparison (shown in Figure 14) is done basing on the results of five tests,
characterized by the same radius (R) but a different number of modules (n); in particular,
the radius is 20 m and the number of the modules ranges from 12 × 12 to 36 × 36. Note
that in this case β is fixed, having l and R fixed values.

Each model, namely the fine and the coarse, is analyzed under the same uniform
vertical load equal to 1.0 N/m2. The shell is supported along the boundary straight edges
by pins on one side and by rollers on the other side.

n = 36x36

n = 30x30

n = 24x24

n = 18x18

n = 12x12

Figure 14. Percent error of CA and CB from the fine model with respect to modules’ number.

Figure 14 depicts the ratio (Wc/W f ) of the mechanical work of the continuum model
(Wc) over the mechanical work of the fine model (W f ). As could be expected, when the
number of modules increases the response of both continua tend to that of the correspond-
ing fine model. Although the trends are similar, the response of CA is closer to that of
the fine model than CB’s one. Since both curves take values greater than 1, the equivalent
continua reveal to be more flexible than the corresponding gridshells.

A second comparison is performed in order to study the effect of the geometric
curvature κ = 1/R. Seven numerical tests are performed on purpose, where the gridshells
are subject to the same loads and b.c. as in the previous test. This time the number of
modules is fixed to (n = 24), while the curvature κ ranges from 0 to 0.1125 m−1 (Figure 15).
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When κ is zero, i.e., flat geometry, the response of the two continua clearly provides
the same error compared to the fine model. However, interestingly the responses of the
two continua rapidly diverge as the curvature increases, as Figure 15 shows.

(     )

( )

Figure 15. Percent error of CA and CB from the fine model with respect to the curvature κ = 1/R.
Being l = 1 m, in this case κ = 2β. κ ∈ [0, 0.1125] m−1.

4. Conclusions

In this work, we demonstrated that a proper constitutive identification of curved grid-
shells leads to the expected coupling of membrane and flexural behavior for an equivalent
continuum model. This result is due to a novel approach taking into account the geometric
curvature in the equivalent continuum model. Even the geometrically simplest case of a
barrel gridshell shows how much the solution can diverge while adopting an equivalent
continuum derived from a flat REV.

As highlighted in the introduction, the transition from the fine model to the con-
tinuum one is a useful tool in a phase of generation and selection of the global form of
gridshells, when a precise definition of the grid is probably useless and cumbersome.
Therefore, the constitutive identification adopted in this work can be a useful tool for the
preliminary design stage. Moreover, this work can be considered a first step towards a
methodologically correct approach aiming at defining equivalent continua of gridshells
with double curvature.
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