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Abstract: In previous studies, a smeared truss model based on a refinement of the rotating-angle
softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel
elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”,
was validated against the experimental results of reinforced and prestressed concrete panels, steel
fiber concrete panels, and reinforced concrete panels externally strengthened with fiber-reinforced
polymers. The model incorporates equilibrium and compatibility equations, as well as appropriate
smeared constitutive laws of the materials. Besides, it incorporates an efficient algorithm for the
calculation procedure to compute the solution points without using the classical trial-and-error
technique, providing high numerical efficiency and stability. In this study, the efficient RA-STM
procedure is adapted and checked against some experimental data related to reinforced concrete
(RC) panels tested under in-plane cyclic shear until failure and found in the literature. Being a
monotonic model, the predictions from the model are compared with the experimental envelopes of
the hysteretic shear stress—shear strain loops. It is shown that the predictions for the shape (at least
until the peak load is reached) and for key shear stresses (namely, cracking, yielding, and maximum
shear stresses) of the envelope shear stress—shear strain curves are in reasonably good agreement with
the experimental ones. From the obtained results, the efficient RA-STM procedure can be considered
as a reliable model to predict some important features of the response of RC panels under cyclic
shear, at least for a precheck analysis or predesign.

Keywords: rotating angle-softened truss model; efficient solution procedure; reinforced concrete;
panel elements; monotonic shear; cyclic shear; shear stress; shear strain; envelope curve

1. Introduction

Reinforced concrete (RC) wall-type structures, such as shear walls or deep beams, and
RC shell-type structures, such as containers or curved shell roofs, are widely designed
and built all over the world. A rational way to analyze such structures is to consider
that they result from the union of small two-dimensional (2D) RC membrane or panel
elements under in-plane stresses. Then, rational and simplified models can be developed to
study such RC panel elements before they are incorporated into more general models—for
instance, in a finite element program—which allows analyzing the whole structure [1].
Such simplified models can also be used to check locally a critical zone of the structure as a
complement to a more global analysis.

During the last three decades, several models to study RC panel elements were
developed based on the smeared-crack concept. Such models are built in the form of
a plain stress field (or, simply, plain truss) approach and have proven to be sufficiently
reliable and easy to be implemented in a computer. These models satisfy Navier’s three
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principles for mechanics of materials, which are stress equilibrium, strain compatibility, and
constitutive laws of materials. Both the stresses and strains are evaluated in a sufficiently
wide zone in order to include the average influence of several cracks. Hence, smeared
constitutive laws, experimentally calibrated and accounting for the existing biaxial stress
state in the RC panel elements, must be incorporated. As a result, the obtained smeared
truss models allow accounting for the nonlinear behaviors and interactions between each
of the material components in the RC panel elements—namely, concrete in compression,
concrete in tension, and steel (reinforcement) in tension. Below, a brief reference to some
of the most important proposed smeared truss models is presented, which were mainly
developed from studies performed in the University of Toronto and in the University
of Houston, where special devices were specifically built (the so-called Shear Rig and
Universal Panel Tester, respectively) to test structural concrete panels under controlled
biaxial stress states.

Based on the experimental results obtained in the University of Toronto, Vecchio and
Collins in 1981 [2] and 1982 [3] developed the Compression Field Theory (CFT) which
idealizes the resistance mechanism as a nonlinear plain truss, where steel bars resist to axial
tensile stresses and concrete resists to compressive stresses. In addition, it assumes that the
angles of both the principal compressive stresses and strains in concrete coincide, alongside
the angle of cracks, which coincides with the angle of the principal compressive stresses.
Since this angle evolves during the loading history due to internal redistributions, the
model assumes that the crack rotates until failure occurs. The CFT proved its efficiency to
model the shear behavior of RC panels after cracking and up to failure. Later, Vecchio and
Collins in 1986 [4] extended the model to incorporate the tensile stresses in concrete, which
can significantly increase the post-cracking stiffness of the RC panels, as experimentally
observed. The new model was called Modified Compression Field Theory (MCFT). Variants
of the models from Vecchio and Collins were developed and proposed during the later
years [5-9].

Based on several additional experimental data from the RC panels tested at the
University of Houston, Prof. Thomas Hsu and collaborators successively developed and
refined alternative smeared truss models. The first major innovation was to propose and
incorporate in the models new and calibrated smeared constitutive stress (c)—strain (¢)
laws for the materials [10,11]. The first proposed model was the so-called Rotating-Angle
Softened Truss Model (RA-STM) [12], which was extended later so that it incorporates
high-strength concrete panels [13]. The RA-STM neglects the contribution of concrete in
shear, because, for simplicity, both equilibrium and compatibility equations are stated in a
reference frame, which coincides with the rotating principal directions of internal stresses
in concrete. To incorporate the referred contribution, a new fixed reference frame was
considered to state the equations, which coincided with the constant principal directions of
the external stresses applied to the RC panel. In addition, new experimental data allowed
to calibrate a smeared shear stress (T)-shear strain (*y) relationship for concrete in shear to
be incorporated in the model. The new model was called the Fixed-Angle Softened Truss
Model (FA-STM) [14,15]. Later, aiming to improve the prediction of the post-peak response
of the RC panels, and based on additional experimental results, the Poisson’s effect in
the cracking state was incorporated into the model through new calibrated parameters
called Hsu/Zhu ratios [16-18]. A new model was proposed, called the Softened Membrane
Model (SMM). Variants of the models with fixed reference frames were also developed and
proposed by other authors [6,19].

Finally, new experimental results on RC panels under cyclic shear, perfomed at the
University of Toronto (where three RC panels were tested) and at the University of Houston
(where twelve RC panels were tested), allowed to calibrate smeared cyclic constitutive
laws for the materials and to refine the Hsu/Zhu ratios [20-23]. This allowed extending
both the MCFT and the SMM (for this latter, the new model was called the Cyclic Softened
Membrane Model (CSMM)) to RC panels under cyclic shear [20,22,24]. It should be also
noted that, before the referred studies, experimental tests with five RC panels under
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cyclic shear were carried on at Kajima Corporation in Japan [25] with the sole objective of
finding the constitutive laws of concrete and steel. From all the three facilities where RC
panels were tested under cyclic shear, the Universal Panel Tester from the University of
Houston was the only one that incorporated a servo control system for strain-controlled
tests, allowing to register the post yield hysteretic loops of the RC panels with much more
accuracy and for a longer shear strain range [26]. For this reason, the experimental results
and proposals for the smeared cyclic constitutive laws for the materials from the University
of Houston can be considered more accurate [21-23]. Finally, it should also be referred
to that a recent alternative smeared truss model for RC panels under cyclic shear was
proposed as well, the Fixed Strut Angle Model (FSAM), which incorporates additional
friction-based constitutive law to compute the shear stresses along crack surfaces [27].

In spite of how some of the referred cyclic smeared truss models have been shown to
predict well the global hysteretic response of RC panels under cyclic shear, such as the the
CSMM and FSAM,, they are not easy to implement, because they incorporate smeared cyclic
constitutive laws for the materials. Such laws have a complex development to account
for the possibility of several loading-unloading cycles at different points and, also, for the
damage of concrete during the loading history. For a precheck analysis or a predesign, it is
usually sufficient to compute the envelope of the hysteretic behavioral curves, such as for
the 7—y loops of the RC panels under cyclic shear. For such a purpose, previous studies
have showed that the main features of such envelope curves are reasonably well-depicted
by using a monotonic smeared truss model—for instance, the MCFT—at least until the
peak load is reached [20,25]. This is also true for the other referred monotonic models,
such as the RA-STM, the FA-STM, and the SMM. Hence, the goal of this study is to explore
the use of a simpler monotonic smeared truss model to predict the main features of the
envelope - curves of RC panels under cyclic shear.

Among the referred monotonic smeared truss models, the RA-STM is the one with the
simplest calculation procedure. This model was shown to be sufficiently reliable to predict
the full response of RC panels under monotonic shear [12,13]. These features of the model
justify why it continues to be used as a base model, including being extended to analyze
different structural members than RC panels [28-31]. In addition, in the last years, the
RA-STM has also been extended and refined in order to provide better predictions and, also,
to increase the efficiency and stability of the numerical calculation procedure [18,32-35].
In fact, the calculation procedure of the original RA-STM, as for the other previously
referred smeared truss models, is based on a trial-and-error technique, which may require a
large calculation effort and lose numerical efficiency because of the large number of initial
estimates that are required to start the calculations. To solve these drawbacks, the RA-STM
was recently reformulated as a system of nonlinear equations with constraints that are
solved with an optimization algorithm instead of using the trial-and-error technique [34].
The new version of the RA-STM was called the “efficient RA-STM procedure” and was
shown to be numerically very efficient and stable, as well as reliable, to predict the full
response of RC panels under monotonic shear.

To the best of the authors” knowledge, no previous study extensively checked the
applicability of a simpler monotonic smeared truss model to predict the main features of
the response of RC panels under cyclic shear. Hence, in this study, the monotonic efficient
RA-STM procedure previousy proposed by the corresponding author and verified for RC
panels under monotonic shear is used to predict the envelope 7—y curves of RC panels
under cyclic shear. The predictions from the model are checked against the experimental
envelope 7y curves from twelve RC panels under cyclic shear tested at the University of
Houston. From the obtained results, it is shown that the model is able to predict reasonably
well the shape and some important features, such as key shear stresses, of the envelope
T—7 curves.
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2. Efficient RA-STM Procedure

The details of the model used in this study, the efficient RA-STM procedure for RC pan-
els under monotonic shear, can be found in a previous article [34]—namely, the hypothesis,
the derivation of the equations, and the description of the efficient numerical calculation
procedure to compute the solution points. However, for the sake of the readers, this section
summarizes both the fundamental equations and the numerical solution procedure of the
model. Since the monotonic character of the model is preserved, the equations and the
numerical solution procedure remain unchanged. However, since the model is applied
here to RC panels under cyclic shear, a new damage coefficient is introduced in the smeared
constitutive law for concrete in compression (as explained in Section 2.2.1). The relevance
of this modification is discussed in detail in Section 3.

2.1. Equilibrium and Compatibility Equations

In Figure 1, an RC plate element under in-plane normal stresses in the longitudinal
(0p) and transverse (o) directions and shear stresses (1;7) are illustrated. The L-T reference
frame coincides with the direction of the longitudinal and transverse reinforcements. For
the analysis, the RC panel element can be viewed as the superposition of a concrete element
with in-plane stresses 07, ¢ and 77 and a steel grid element (steel reinforcing bars) with
normal tensile stresses p f and prfr. In Figure 1, f and p stand for the normal stress in
steel reinforcement and for the reinforcement ratio, respectively.

o7 Pr fr
RESEASARREP™S RRRRRRRRRS
i SR :
= — - - may 3
S ER- S
A A
Concrete element Steel grid element

Figure 1. Reinforced concrete (RC) plate element under in-plane stresses.

From Figure 1, the following matrix equilibrium equation for stresses can be stated in
the L-T reference frame:

o1, oL’ oLfL
or | = | or° | + | prfr 1)
T T7¢ 0

Figure 2 illustrates the principal stresses (g and op) applied in the concrete element
and the variable angle ap between the L-T and D-R reference frames. From Figure 2,
the in-plane stresses in the L-T reference frame can be related in a matrix form with the
principal stresses and the variable angle as follows:
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Figure 2. Principal directions and principal stresses.

By using a similar transformation law, the average normal and shear strain compo-
nents in the L-T reference frame (¢}, €7 and <y, respectively) can be related in a matrix
form with the principal strains (¢g and ep) and the variable angle ap as follows:

] [ cos?(ap) sin?(ap) 2sin(ap) cos(ap) ] [ €D ]

®)

sin?(ap) cos?(ap) —2sin(ap) cos(ap) R
—2sin(ap) cos(ap) 2sin(ap)cos(ap) 2cos?(ap) — 2sin®(ap) 0

In addition, the following invariant equation can be derived from Mohr’s circle
for strains:
ER = €L T ET — €D 4)

Equations (3) and (4) are the compatibility equations.

2.2. Smeared Constitutive Laws

The smeared constitutive laws for the materials used in this study—namely, for
concrete in compression, concrete in tension, and embedded steel reinforcement in tension—
are basically the same ones used and justified in a previous study for RC panels under
monotonic shear [34]. This option can be considered valid, because this study solely aims
to compute the envelope 7—y curves of RC panels under cyclic shear. As discussed by
Mansour and Hsu in 2005 [24], previous studies on concrete and steel specimens under
uniaxial cyclic loading showed that the hysteretic loops of the o—¢ curves produced an
envelope curve practically identical to the curve obtained under monotonic loading. This
was also experimentally observed by Mansour et al. in 2001 [21] for the envelope curves
obtained for cyclic loading—namely, to validate the monotonic curves proposed by Belarbi
and Hsu in 1994 [10] and 1995 [11]—and, also, the softening coefficient for concrete in
compression proposed by Zhang and Hsu in 1998 [13].

2.2.1. Concrete

For concrete in compression, the smeared softened o—¢ relationship proposed by
Belarbi and Hsu in 1995 [11] (Equation (5), see Figure 3), incorporating the softening
coefficient { from Zhang and Hsu in 1998 [13] (refined latter by Zhu et al. in 2001 [18]),
is used. As discussed by Mansour and Hsu in 2005 [24], the constitutive law for concrete
in compression must consider the damage caused by the history of reversal tensile and
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compressive stress normal to the compression direction being analyzed. This can be done
by incorporating the damage coefficient D from Equation (6), which was proposed and
calibrated by the referred authors based on their experimental results. In this study, D is
applied to the smeared monotonic curves (Equation (5)).

oo =Dif[2() - ()] iten < oo

€ e0)—1\2 ©®)
op = Dgf/c |:1 — (%) if ep > g&fo
SID
D=1-p-L2 <1 ©6)
€0
58 1
= ——<09 | — 7
= (s <) e ”
1
_ orfry —or ®)
pLfLy — oL
N =nifn <1
{?]/21/77if17>1 ©)

In the previous equations, the meaning of the new parameters is the following: f’_is
the uniaxial cylinder compressive strength of concrete, ¢ is the strain corresponding to the
peak cylinder stress (f'.), 17 is the ratio of the transverse to the longitudinal tensile strength
of steel reinforcements, and f1,, (fry) is the yielding stress for the longitudinal (transverse)
reinforcement. To compute the damage coefficient D, Mansour and Hsu [24] defined ¢’ as
the maximum compression strain normal to the compression direction under consideration
that occurred in the previous loading cycle and considered 1 to be constant and equal to
0.4 (a value that showed to best fit the test results of the cyclic T—y curves [22]). For this
study, some considerations regarding the damage coefficient D are stated in Section 3.

Or A
o
& i
< ‘ : < 1
€l <& s £, s A
‘ ’
| SR :
| | |
| ! !
|
| | i
****** KA | !
- —>
v O-D (g,v gsu 8 N
Concrete in compression / tension Steel reinforcement in tension

Figure 3. Smeared constitutive laws.

For concrete in tension, the smeared, softened o—¢ relationship proposed by Belarbi
and Hsu in 1994 [10] (Equation (10), see Figure 3) was used in this study.
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{ Or = Eceg if er < &gy 1)

0.4
e .
OR = fcr(ﬁ) if e > ecr

E. is the Young’s Modulus for concrete, and ¢, is the tensile strain corresponding
to the peak stress f., (concrete tensile strength). E. and f., can be computed from the
correlation with f’, by using codes’ rules. e. can be considered constant and equal to
0.00008 [10].

2.2.2. Steel Reinforcement

To model the behavior of steel bars in tension embedded in concrete, the smeared and
bilinear o—e¢ stiffened relationship proposed by Jeng and Hsu in 2009 [36] (Equation (11),
see Figure 3), which constitutes a simplification of the nonlinear relationship from Belarbi
and Hsu in 1994 [10], is used.

fs = Esesif eg < €y

{ fs = (091 —2BN)fs, + (0.02 + 0.25BN)Eg¢s if e5 > ¢/ (1)
, S
¢y = E% (12)
f', = (0.93 = 2BN)fs, (13)
1 f 1.5
BN = —|[Z<£ 14
Ps (fSy) ( )

In the previous equations, fs and €g are the average tensile stress and strain in the steel
reinforcement, respectively, fs, is the yielding stress, and Es is Young’s modulus for steel.
The subscript “S” must be replaced by “L” and “T” for the longitudinal and transverse
steel reinforcements, respectively.

2.3. Efficient Solution Procedure
2.3.1. Equations for Proportional Loading

For proportional loading, the ratios of the applied in-plane stresses in the RC panel
element are constant. This condition is incorporated through the proportionality coefficients
mp (Equation (15)), mt (Equation (16)), and myr (Equation (17)). These coefficients relate
the applied in-plane stresses in the L-T reference frame (o7, o and 117, see Figure 1) with
the applied principal tensile stress o in the 1 and 2 reference frames (see Figure 2).

L
—_ 7L 1
my, o (15)
_Jr
mr = o (16)
T
mpp = —L (17)
01

Substituting o, or and 771 from Equations (15) to (17) into Equations (1) and (2) after
some algebraic manipulations and considering the applied principal tensile stress ¢ in
the RC panel element (see Figure 2) as the independent variable, a quadratic equation
(Equation (18)) can be stated, with Equation (22) as the solution equation for oy [34].
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Alr>?—Bo+C =0 (18)
A = mpmr — mLTz (19)
B'=my (UR +porfr+ PTffo) +mr (UR +poLfL + PLffo) (20)
C'= (UR +poLfL+ PLffo) (fTR +prfr+ PTffo) (21)
B+ \/B'? —4A'C’
0= A (22)

From Mohr’s circle for stresses, 0y can be related with the stresses in the L-T reference
frame system as follows [34]:

2
oL +0o oy — o

2.3.2. Residual Function for the Initial Estimates

The average strains ep, €1, and e7 are chosen to be the initial estimates to start the
efficient RA-STM procedure. For this, additional algebraic manipulations to those that led
to Equations (18) to (23) allow to write Equations (24)—(26) to compute the average strains
as a function of the proportionality coefficients (1, mr and m); the applied principal
stress o7; and the variable angle ap (see Figure 2) [34]. To obtain Equations (24)-(26), and
for the early stage (first loading increment), the tensile concrete was neglected, and the
materials were considered to behave in the linear and elastic stages so that Hooke’s law
holds (op = E.ep, fr = Eser and fr = Eser).

. —mrrol
0=, sin(ap) cos(ap) @4)
e = (mp + mpr cot(ap))oy 25)
EspL
er = (mr + mpptan(ap))oy (26)
Espr

From Equation (3), the variable angle ap (Figure 2) can be written as a function of the
average strains in both the L-T and R-D reference frames through Equation (27) [34].

[ep —¢€
tan?(ap) = ﬁ (27)

From Equation (27), a nonlinear residual function (Fsyarr(ap)) is stated (Equation (28))
where the average strains are defined from Equations (24) to (26). This residual function
is set to zero (Equation (29)) and numerically solved for ap. The solution angle ap, the
value which minimizes Fsrarr(ap), is used to compute the initial estimates ep, €7, and
eT by using Equations (24)—(26) again. Such values are used to start the efficient RA-STM
procedure, as explained below.

€L — €D
&T — €D

Fstarr(ap) =0 (29)

Fstarr(ap) = — tan’(ap) (28)
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2.3.3. Residual Functions for the Efficient RA-STM Procedure

In the efficient RA-STM procedure, the average strains ¢ and e are chosen to be
the primary variables. To numerically compute these variables, two nonlinear residual

functions (Flgllg_ stm(er, er) and Fl(a_ st (€L, €r) defined in the matrix Equation (30)) were

stated from additional algebraic manipulations involving the equations resulting from the
substitution of Equations (15)—(17) into the equilibrium Equations (1) and (2) and, also, the
equations relating the variable angle ap and the average strains in both the L-T and R-D
reference frames [34]. Both residual functions are set to zero (Equation (31)), constituting a
system of two nonlinear equations numerically solved for ¢ and e7. The solution’s average

strains 7 and et are the values that minimize both residual functions FI(JILL stm (€L, er) and

2
Fz(zzg—STM(stgT)-

1 _ _
Fsru(er er) _ | ope= A ORE=E —mLoy +pLfL+ pLpfiy 30)
Fa_stam(eL er) Op =2 + or I — mroy + prfr + prrfrs
1
Fl(?/i—STM(SL'ST) |0 31
) =10 (31)
Fra—stm(eL €t)

2.3.4. Algorithm for the Efficient RA-STM Procedure

Figure 4 illustrates the flowchart for the algorithm to implement the efficient RA-STM
procedure with a programming language [34]. The steps of the calculation procedure can
be summarized as follows:

1. Specify the initial data: OL, OT, Eg, fLy/ ny, Esu, flc, fcr/ E¢, €cr, €0, €cu, 0L, 01, TrT, and
Aep. The meaning of the new parameters is: Aep is the path’s increment for the prin-
cipal compressive concrete strain (¢p), and €5, and g, are the conventional ultimate
values for steel reinforcement in tension and concrete in compression, respectively.
The first value for the principal compressive strain ep is defined as ¢55°0 = €, = Aep
(with superscript k representing the step number of the calculation procedure).

2. Calculate: ¢1,, and e, from Hooke’s law (f1,/ Es and fr,,/ Es, respectively); the ap-
plied principal tensile stress oy from Equation (23); and the proportionality coefficients
(mp, mt and myT) from Equations (15) to (17).

3. Solve (minimize) the residual function Fsrarr(¢p) (Equations (28) and (29)) for the
variable angle ap.

4. Calculate the average strains (ep, €1, and e1) from Equations (24) to (26). These values
are defined to be the initial estimates (s}), elL and slT) to compute the first solution
point and start the efficient RA-STM procedure.

5. Compute, for each step k and each incremented strain ¢f, = 811‘3_1 + Aep, the primary

variables ¢ and eT by solving (minimizing) the residual functions Flglfii stm (€L €T)

and F](a_ stmer er) (Equations (30) and (31)) . For each step k, the initial point is
defined as the solution point from the previous one (k — 1).

6.  Calculate, for each step k, the principal tensile strain eg from Equation (4), the principal
tensile stress in concrete og from Equation (10), the principal compressive stress in
concrete op from Equation (5), and the tensile stresses in the longitudinal (f;) and
transverse (fr) steel reinforcements from Equation (11) and recalculate the applied
principal tensile stress 0y from Equation (22).

7. If one of the failure criteria is reached (ep > ey, €1, > €5 Or €T > €gy), the calculation
procedure ends; otherwise, repeat steps 5 and 6.
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In this study, the ultimate strains (¢, and e5;,) were defined from Eurocode 2 clauses [37].
The code for the efficient RA-STM procedure was implemented in MATLAB [38], and Equa-
tions (29) and (31) were numerically solved with the least-squares method.

v

Initial data: )OJ[ : pT:‘ E.S':' fb" fj“"_t': ‘gsn: .f;; fu"
B B ERse o e Ney=i i =0

C cr

Calculate: &, and &, from Hooke's law; &, Equation (23):

m, Equation (15); m, Equation (16); m,, Equation (17)

v

raer (@) =0 Equations (28)-(29) >

5

< Solve: F.

Calculate: &, Equation (24); &, Equation (25); &, Equation (26)

v

Initial point for k =1: &, = ¢, :

Solve: F} ... (£,,&;) =0 Equations
(30)-(31) for &) =&, +Ag, and using

k-1 B -
g, and &;  as initial point

v
Calculate: &, Equation (4); o, Equation (10): o, e Bod
Equation (5); f; and f; Equation (11); &, Equation (22) A

k D) \f

gD 2 gm a \ 1\0
K =l 0

(c"}[ ‘51" 2 5_5” * /

Yes
4

END

Figure 4. Flowchart.
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3. Comparative Analysis with Experimental Results

In this section, the predictions from the efficient RA-STM procedure for the envelope
T—y curves of RC panels under cyclic shear are compared with the experimental results
found in the literature. For this, the experimental results from twelve RC panels tested
under proportional cyclic shear with the Universal Panel Tester at the University of Houston
were used—namely, series CA, CB, CD, CE, and CF [23]. As referred to in the introduction
section, the number of tested RC panels under cyclic shear in the University of Houston
is much higher than the ones in the other referred facilities. In addition, the used testing
device incorporated a servo control system that was able to perform strain-controlled tests
with proportional loading, allowing them to record the post-yield hysteretic loops with
much more accuracy. This feature was considered to be important in this study in order
to draw with accuracy the envelope curves from the given experimental hysteretic T—y
loops. Furthermore, unlike the other referred studies [20,25], reference [23] reported the
numerical values related to the key points and properties of the experimental hysteretic
loops. It should also be mentioned that three additional RC panels were tested by Mansour
in 2001 [22] (Series CVE) under different loading conditions—namely, 1-D cyclic loading—
with the aim to study the effects of the loading stress state. The experimental results
of these panels were not used in this study, because the panels were not tested under
proportional loading.

Figure 5 illustrates the loading condition and reinforcement layout of the refer-
ence RC panels from reference [23]. Two variables were studied: the angle of steel
reinforcement with respect to the applied vertical stress (x7) and the reinforcement ra-
tios (o and pr), which can be symmetrical or not. The RC panels with #4 or #6 re-
bars were 1397 x 1397 x 178 mm in size, while the RC panels with #8 rebars mm were
1397 x 1397 x 203 mm in size. All the panels incorporated two layers of steel grids. The
steel reinforcements consisted of grade 60 deformed bars with cross-sectional areas of
129 mm? (#4 rebar), 284 mm? (#4 rebar), and 510 mm? (#8 rebar), with spacing ranging
from 188 to 267 mm in both the L and T directions. The concrete compressive strength was
maintained approximately constant with a target value of 42 MPa.

As illustrated in Figure 5, the panels were tested under symmetrical biaxial stresses
in the 1 and 2 reference frames (02 = —071). As a consequence, all the panels were tested
under pure cyclic shear (07, = o7 = 0) in the reference frame with an angle of 45° for the 1
and 2 reference frames (see Figure 5). Under cyclic loading, the shear stresses alternated
between positive and negative values with the increasing magnitude until failure of the
RC panels. More details about the RC panels and the loading procedure can be found in
reference [23].

Table 1 summarizes some of the main properties for each of the reference RC panels.
The Young’s modulus and the yielding strength for the steel reinforcements varied from
188.9 to 223.2 GPa and from 424 MPa and 453 MPa, respectively, depending on the used
rebars. Other properties for the materials not specified in reference [23] were computed in
this study from Eurocode 2 [38]—namely, by a correlation with f.’. This was done for the
tensile concrete strength under a biaxial state (f.;), and Young’s modulus for concrete (E.).

The monotonic response of each reference RC panel from Table 1—namely, the en-
velope 7—y curves—was computed with the efficient RA-STM procedure. For all tested
panels, the presented experimental 7—y loops in reference [23] refer to a reference frame
with the angle of 45° with respect to the 1 and 2 reference frames (see Figure 5). As referred
to before, in such reference frames, the panels were tested under pure cyclic shear. For
RC panels from the CA and CB series, such a 45° reference frame (called here the L'-T’
reference frame) coincides with the L-T reference frame, which coincides with the direction
of the longitudinal and transverse reinforcements (Figure 5). However, for RC panels from
CD, CE and CF series, the L’-T' reference frame does not coincide with the L-T reference
frame (Figure 5). In this study, the theoretical monotonic T—y curves for all the RC panels
were computed with respect to the L'-T’ reference frame and considering the RC panels
under pure monotonic shear (such curves are named “envelope T450—y45° curves” from
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now on). Hence, for the RC panels from CD, CE and CF series, an equivalent steel grid
reinforcement with equivalent ratios p,/ and p,» was computed by using the usual trans-
formation rules for reference frames under rotation by knowing p; and pr, and the angle
the L-T reference frame must rotate to coincides with the L'-T' reference frame. For such

panels, the equivalent reinforcements ratios p;» and p,» were considered as inputs in the
efficient RA-STM procedure.

CF-series CE-series

Figure 5. Loading condition and reinforcement layout of the reference RC panels.

Table 1. Main properties of the reference reinforced concrete (RC) panels [23].

/ 2 oL ® T 0
Panel  \ipa % % % o
CA2 45 025 0.77 0.77 45
CA3 445 0.24 17 17 45
CA4 45 0.28 27 27 45
CB3 48 0.26 17 0.77 45
CB4 47 0.24 27 0.67 15
CD2 445 0.25 059 0.59 68.2
CD3 47 0.26 13 13 68.2
CD4 43 0.24 2.0 2.0 68.2
CE2 49 0.23 054 0.54 90
CE3 50 0.24 12 12 90
CE4 47 0.22 19 19 90
CR2 44 0.25 56 56 79.8

mp L = Ar/Acand pr = At/ A. (Ac is the area of the concrete cross-section).
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Regarding the damage coefficient D to be incorporated in the monotonic o—¢ curve for
concrete in compression (Section 2.2.1, Equations (5) and (6)), in this study, the strain ¢'p
cannot be considered as Mansour and Hsu [24] defined it, i.e., the maximum compression
strain normal to the compression direction under consideration and which occurred in the
previous loading cycle. In this study, the strain ep was simply incremented monolithically
with small steps until the conventional failure of the RC panel was reached (Section 2.3.4).
Initially, a conventional definition of the strain ¢’p was adopted for this study—namely,
being the compression strain in concrete considered in the previous step of the numerical
calculation procedure. After some calculation attempts, the following was observed:

e  For RC panels whose failure was imposed by the steel reinforcement in tension, it was
observed that the incorporation of the damage coefficient had no noticeable effect on
the theoretical envelope Ty50—y450 curves.

e  For RC panels whose failure was imposed by the concrete in compression, the incor-
poration of the damage coefficient led to some convergence problems after the peak
shear stress.

Mansour in 2001 [22] studied the variation of the parameter ¢ in Equation (6) in
order to find which value better fitted his experimental results. From this analysis, it can
be observed that the incorporation and modification of the damage parameter mainly
influenced the post-peak part of the hysteretic Ty50—y45c loops. In fact, until the peak
shear stress is reached, no noticeable influence in the envelope c—¢ curve for concrete in
compression due to the incorporation of the damage coefficient is observed when compared
to the monotonic one. This explains the observation previously stated for RC panels whose
failure was imposed by the steel reinforcement in tension. For such panels, the envelope
T450—Y45° curves do not show a descending branch in the ultimate stage, since the ultimate
behavior is determined by the yielding of the reinforcement. Unlike RC panels whose
failure is imposed by the concrete in compression, the experimental curves usually show
a descending branch after the peak load. As discussed in the introduction section, the
RA-STM does not predict very well the post-peak behavior of RC panels under in-plane
loading. This can explain the convergence issues previously reported for such panels when
the damage coefficient is incorporated.

Based on the above, and since no noticeable influence is observed until the peak load is
reached in the envelope 1450 —y450 curves due to the incorporation of the damage coefficient,
it was decided to not incorporate such parameter in the monotonic c—e curve for concrete
in compression to compute the envelope T450—y45° curves of each reference RC panel from
Table 1 with the efficient RA-STM procedure.

In Figures 6 and 7, the theoretical envelope Ty50—y450 curves from the efficient RA-STM
procedure are drawn against the experimental ones for each reference RC panel. It should
be referred to that the experimental envelope curves were drawn from the experimental
hysteretic T450—y45° loops reported in reference [23], as illustrated in Figure 8. Figures
6 and 7 includes graphs with two envelope curves, the theoretical one computed with
the efficient RA-STM procedure (“eff RA-STM”) and the experimental one (“Exp.”). Both
envelope curves for positive (“(+)”) and negative (“(—)”) shear loading directions are
presented. Since only envelope T45:—Y4s5° curves are studied here, neither the experimental
hysteretic 7450 —y45° loops nor the theoretical hysteretic T450—y45° loops computed with the
CSMM and reported in references [22,23] are presented in Figures 6 and 7.

Figures 6 and 7 shows that, in general, the theoretical envelope Ty50—y450 curves
computed with the efficient RA-STM procedure are in reasonably good agreement with the
experimental ones, for both positive and negative shear loading. The results show that,
for most of the reference RC panels, the efficient RA-STM procedure captures well the
global response of the reference RC panels until the maximum shear stress, including the
transition from the uncracked to the cracked stage and, also, the yielding point. Regarding
the descending branch observed for some RC panels after the peak shear stress, the less
good results from the efficient RA-STM procedure were previously justified. However, for a
precheck analysis or a predesign, this feature of the envelope curves is not very important.
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For a quantitative comparative analysis, Tables 2-5 present, for each reference RC
panel, the experimental and theoretical coordinates for some important key points of
the envelope Ty50—y45° curves—namely, the points corresponding to concrete cracking,
reinforcement yielding, and maximum shear stress. Tables 2 and 3 present the referred
values associated with the positive (“+”) loading shear direction, while Tables 4 and 5
present the same values for the negative (“—") loading shear direction. In the referred
tables, the following experimental (“exp”) and theoretical (“th”) values are presented: the
cracking shear stresses (T¢y,exp and T, ;) and corresponding shear strains (Ycrexp and Yy 1),
the yielding shear stresses (7y,xp and Ty,th) and corresponding shear strains (yy,xp and
Yy,tn), and the peak shear stresses (Tinax,exp and Tygy 1) and corresponding shear strains
(Ymax,exp and Ypax ). For RC panels with asymmetrical reinforcement ratios, and for
each shear loading direction, the yielding point corresponds to the one where the first
reinforcement (longitudinal or transverse) yielded. In addition to the previous parameters,
the experimental and theoretical values for the envelope shear ductility factor (yg, ¢xp and
JE 1), as defined in reference [23], are also presented. Such a parameter, which constitutes
a measure of the ductility of the RC panels under shear, is calculated as follows:

Yu
= — 32
HEy 7y (32)

where 7, is the ultimate shear strain, which is defined as follows [23]: (1) When the
envelope Ty5e—y450 curve exhibits no descending branch, v, is simply the shear strain
corresponding to the last point of the curve; (2) when the envelope T45°—45° curve exhibits a
descending branch, v, is defined as the shear strain of the point in the curve corresponding
to 0.8Tyx in the descending branch.

The experimental values of the parameters referred previously and incorporated into
Tables 2 and 3 were reported in reference [23]. Finally, Table 2 also presents the ratios of the
experimental to the theoretical incorporated values and, also, for each of them, the mean
(x), the standard deviation (s), and the coefficient of variation (cv).

The results in Tables 2-5 show that the efficient RA-STM procedure predicts reasonably
well both the cracking shear stress 7., and the yielding shear stress (with X > 0.9) and with
a very acceptable degree of dispersion (cv < 10%). For the peak shear stress, Ty, the
predictions are better (x > 0.95 and cv < 6%).

For the shear strains corresponding to the cracking shear stress (7,;), the results show
that the model noticeably tends to underestimate this parameter (x ~ 0.5) and with a
high degree of dispersion (cv ~ 30%). This is probably because this parameter is very
small to be recorded experimentally or to be obtained from the experimental hysteretic
T450—Y45° loops with sufficient accuracy. This problem was also reported in previous
studies [33,34]. Regarding the shear strains corresponding to the yielding shear stress
(7y) and the peak shear stress (yuax), the results show that these parameters tend to
be somewhat underestimated (0.83 < X < 0.88) and with a high degree of dispersion
(cv > 30%). As observed in previous studies, smeared truss models, such as the RA-S5TM,
show a higher difficulty in predicting the deformation of RC panels at the ultimate stages
very well. A smeared truss model constitutes a discontinuous model that does not consider
with a very high accuracy the influence of the real stiffness of the member, even if it
incorporates a smeared constitutive law for tensile concrete. In addition, the used model in
this study did not incorporate cyclic constitutive laws that usually account for the stiffness
loss of the materials during the loading cycles, which influences the global stiffness of the
RC panel in the ultimate stage. This can explain why the predicted deformations at the
ultimate stage tend to be underestimated by the model. However, the previously referred
parameters related to the shear strains can be considered not very important for the design,
at least for the first check analysis.



Appl. Mech. 2021, 2

188

4.5
=~
[ CA2 __—
35 | S 7 ™~
N
2.5 o -/
1.5 T+
0.5 E
-0.5 T
15 1 (+) Exp.
: (+) Eff. RA-STM
2.5 L T OB
(-) Eff. RA-STM
3.5 \____/‘/ 1
Yise (x1079)
-4.5
-35 -25 -15 -5 5 15 25 35
12
—
o | £
| 2
6| &
4
2
0 t t t t t t t t t
-2
4 (+) Exp.
(+) Eff. RA-STM
-6 ——— (-) Exp.
3 (-) Eff. RA-STM
-10 1 _
Yase (x1079)
-12
-15 -12 9 6 -3 0 3 6 9 12 15 18
6
—
s | & CB4 ||
L2
3| & 1
2 y
1 -
0 t t t t t t } }
-1 L
2 (+) Exp.
(+) Eff. RA-STM
-3 T —— (-) Exp.
4 1 (-) Eff. RA-STM
5 10
) Vuse (X107)
25 20 -15 -10 -5 0 5 10 15 20 25

8
—
<
a CA3
6| T /
N—
4 | & 1
2 i
0 t t t t t t t
-2 i (+) Exp.
(+) Eff. RA-STM
-4 T —(-) Exp.
(-) Eff. RA-STM
-6 1
8 Yise (x109)
20 -15 -10 -5 0 5 10 15 20 25
6 —~
<
5 (a W) CB3 L RS
=S r
4 - T/
3| ¢ +
2 &+
1 .
0 t t t t t t t t t
-1 i
> j (+) Exp.
/ (+) Eff. RA-STM
-3 T (-) Exp.
4 / 1 (-) Eff. RA-STM
s \/// 1 -
6 Yoo (x107)
-30 25 20 -15 -10 -5 O 5 10 15 20 25
4 —~
<
& CD2 )
3| = /\
N
2 | & ]
1 -
0 t t t t t t t t
-1 I (+) Exp.
(+) Eff. RA-STM
-2 i (-) Exp.
/ (-) Eff. RA-STM
-3 \\// T
4 Yis (x107)
25 20 -15 -10 -5 0 5 10 15 20 25

Figure 6. Envelope T45-—Y45° curves for the reference RC panels (CA2, CA3, CA4, CB3, CB4 and CD2).
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Figure 8. Drawing the experimental envelope curve from the hysteretic loops.

Table 2. Comparative analysis: positive (+) loading shear direction (cracking and yielding points).

Panel Terexp Terth Teey  Yerexp Yerth  Yeew  Tyexp Tyth  Tyew  Vyexp Vyth  Yyew
MPa MPa Tt x1073 X103 7o MPa MPa o x1073 x1073 vy
CA2 246 232 106 016 044 037 355 353 101 394 313 126
CA3 276 271 102 019 028 068 670 680 099 450 4.07 1.10
CA4 271 284 095 014 026 053 1020 1071 095 570 586 097
CB3 230 240 09 011 033 034 452 427 106 480 424 113
CB4 195 217 09 014 022 062 472 483 098 520 482 1.08
Cbh2 251 228 110 012 046 026 315 28 110 270 232 1.16
CD3 267 273 098 014 031 045 591 640 092 260 397 065
CDh4 241 280 086 015 024 062 864 1000 08 300 569 053
CE2 175 207 08 015 042 036 231 301 077 200 273 073
CE3 195 222 08 017 027 063 531 611 087 220 396 056
CE4 240 270 08 016 021 076 811 875 093 190 456 042
CF2 198 215 092 018 039 046 343 353 097 210 3.16 0.66
X = 0.95 0.51 0.95 0.86
s = 0.08 0.16 0.09 0.29
v = 8.5% 31.3% 9.4% 34.2%

Regarding the shear ductility factor (g,), the results show that the model somewhat
tends to overestimate the shear ductility of the reference panels (1.35 < X < 1.4) and
with a high degree of dispersion (cv > 30%). This is mainly due to the reasons stated
in the previous paragraph and also because, as previously explained in this article, the
efficient RA-STM procedure shows difficulties to predict well the post-peak behavior of
the envelope T45:—Y45° curves—namely, the descending branch. The shear ductility factor
Jey depends on the shear strains at the ultimate stage.
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Table 3. Comparative analysis: positive (+) loading shear direction (peak point and ductility).
P T TR TRV U R e mew G
CA2 3.85 4.00 0.96 23.00 25.22 0.91 7.54 8.06 0.94
CA3 7.59 7.23 1.05 15.70 17.34 0.91 4.18 4.53 0.92
CA4 10.54 10.72 0.98 7.50 751 1.00 1.99 1.80 1.10
CB3 5.02 4.98 1.01 15.30 16.47 0.93 4.83 4.22 1.14
CB4 5.17 5.39 0.96 7.60 6.82 1.11 2.92 2.61 1.12
CD2 3.39 3.50 0.97 4.40 20.15 0.22 7.77 8.69 0.89
CD3 6.64 6.77 0.98 6.60 17.18 0.38 5.38 4.32 1.24
CD4 9.66 10.04 0.96 7.80 7.87 0.99 4.80 1.90 2.53
CE2 2.73 3.27 0.83 12.50 18.60 0.67 10.45 6.80 1.54
CE3 6.45 6.75 0.96 21.00 22.40 0.94 9.54 5.86 1.63
CE4 8.36 8.94 0.94 12.20 1147 1.06 6.42 2.74 2.34
CF2 3.81 3.72 1.03 14.00 16.16 0.87 6.66 5.11 1.30
X = 0.97 0.83 1.39
5= 0.05 0.27 0.54
v = 5.5% 32.8% 38.8%

Table 4. Comparative analysis: negative (—) loading shear direction (cracking and yielding points).

Panel ‘cvexp Terth  Toey  Verexp Verth  Yeew  Tyexp Tyth  Tyew  Vyexp  Vyth o Yuew
MPa MPa Tesn  x1073 x1073 Yen MPa MPa Ta  x1073 x1073 vym
CA2 -260 -233 112 -019 —-044 044 —-350 —-353 099 —-396 —-3.13 1.27
CA3 263 —-272 097 —-0.18 —-0.28 065 —6.61 —6.85 097 —480 —4.08 1.18
CA4 -281 -285 099 —-0.18 —-0.23 0.78 —10.10 -10.67 0.95 —5.60 —5.80 0.96
CB3 -—-210 —-240 088 —-013 —-033 040 —437 —426 103 —420 —414 1.01
CB4 -—-185 -—-218 085 —0.13 —-022 058 —465 —483 096 —530 —4.82 1.10
cb2 -—-212 -228 093 —-011 —-046 024 —-280 —-320 0.88 —2.67 —286 0.93
Ccb3 —-2.06 —-2.61 079 —-013 —-033 039 —-535 —641 084 —-270 —-397 0.68
Ccb4 —-250 —-280 089 —-0.16 —-024 067 —859 —10.00 0.86 —3.10 —5.69 0.54
CE2 -178 -207 086 —0.18 —-042 043 —-268 —-3.01 089 —-1.88 —2.74 0.69
CE3 —-196 -220 089 -012 —-028 044 —-510 —6.11 083 —198 —3.96 0.50
CE4 -198 -230 086 —0.14 -017 082 —-7.60 —-878 087 —230 —457 0.50
CF2 -197 -215 092 -021 -039 053 —-338 —359 094 —-230 -319 072
X = 0.91 0.53 0.92 0.84
5= 0.08 0.17 0.06 0.27
v = 9.2% 32.6% 7.0% 32.0%
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Table 5. Comparative analysis: negative (—) loading shear direction (peak point and ductility).
P T TR TRV U R e mew G
CA2 —3.91 —4.00 0.98 —26.40 —2524 1.05 8.15 8.07 1.01
CA3 —-683 —-7.23 0.94 —15.60 —17.34 0.90 3.66 4.53 0.81
CA4 —-10.20 —10.69 0.95 —7.70 —7.55 1.02 1.66 1.82 0.91
CB3 —5.10 —4.98 1.02 —14.00 —16.42 0.85 5.24 4.32 1.21
CB4 —5.18 -5.39 0.96 —12.00 —6.82 1.76 2.95 2.61 1.13
CD2 —-3.33 —3.50 0.95 -7.00 —=20.19 0.35 7.68 7.06 1.09
CD3 —5.92 —6.67 0.89 —440 1512 0.29 5.82 3.80 1.53
CD4 —9.10 —10.04 0.91 —4.50 —7.87 0.57 4.39 1.90 2.31
CE2 —3.60 —-3.27 1.10 —19.00 —18.65 1.02 10.53 6.81 1.55
CE3 —6.29 —6.75 0.93 —18.00 —22.40 0.80 9.10 5.85 1.55
CE4 —8.26 —8.96 0.92 —1140 —-11.25 1.01 4.96 2.68 1.85
CF2 -3.63 —-3.72 0.98 —-14.70 -16.19 0.91 6.39 5.07 1.26
X = 0.96 0.88 1.35
s = 0.06 0.38 0.43
v = 5.9% 43.3% 31.8%

4. Conclusions

In this study, the monotonic version of the efficient RA-STM procedure was used to
predict the envelope Ty50—Y450 curves of RC panels under cyclic shear. From the results
obtained through this study, the following main conclusions can be drawn:

e In spite of being a monotonic model, previously proposed and checked for RC panels
under monotonic shear, the efficient RA-STM procedure is able to predict with rea-
sonably good agreement the shape of the experimental envelope Ty50—Yy45c curves of
the studied RC panels under cyclic shear. This is true, at least, until the peak shear
stress is reached. The obtained theoretical curves capture well the global experimental
envelope response of the RC panels under cyclic shear, including the transition from
the uncracked to the cracked stage.

e In particular, the monotonic efficient RA-STM procedure predicts reasonably well
some key shear stresses that are important for the design—namely, the cracking shear
stress, the yielding shear stress, and the peak shear stress of the RC panels under
cyclic shear.

e  For the shear strains corresponding to the studied key shear stresses, the monotonic
efficient RA-STM procedure showed a higher difficulty in predicting well the experi-
mental values (they tend to be underestimated by the model). However, this drawback
can be considered less important, because such parameters are not very important for
the design, at least for a first check analysis.

e Asaconsequence of the stated in the previous point, the monotonic model also showed
a higher difficulty in predicting well the ductility of the RC panels under cyclic shear (it
tends to be overestimated by the model). This drawback can be considered somewhat
relevant, since ductility is a key parameter for the design—namely, for the structures
located in seismic areas.

The above-mentioned shows that the efficient RA-STM procedure, in spite of being a
model for RC panels under monotonic shear, can be considered a reliable model to predict
reasonably well the envelope Ty50—y450 curves for RC panels under cyclic shear, at least until
the peak shear stress is reached. In addition, it also predicts reasonably well important key
shear stresses—namely, the ones corresponding to the cracking, yielding, and maximum
shear capacities. These good results do not include the prediction of the shear ductility,
which tends to be overestimated. In spite of this last drawback, it can be concluded that
the monotonic efficient RA-STM procedure can be used at least for a precheck analysis
or a predesign of RC panels under cyclic shear before more complex and reliable models
are used.
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