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Abstract: The Generalized Softened Variable Angle Truss Model (GSVATM) allows one to compute the
global behavior of reinforced concrete (RC) beams under torsion, including the pre- and post-cracking
stage. In a previous study, such a model was successfully extended to cover prestressed concrete
beams under torsion with longitudinal and uniform prestress. In order to continue to extend the
theoretical model for other loading cases, in this article, the GSVATM is extended to cover RC
beams under torsion combined with external and centered axial forces. The changes in GSVATM
are presented, as well as the modified calculation solution procedure. Some theoretical predictions
from the extended GSVATM are compared with numerical results from the non-linear finite element
method (FEM), where good agreement is observed for the studied trends.
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1. Introduction

Theoretical models based in Space Truss Analogy (STA) has been widely used for the analysis
of the behavior of reinforced concrete (RC) beams under torsion. Currently, these models constitute
the basis of several design codes, such as the fib Model Code and the ACI (American Concrete
Institute) Code.

Over the last four decades, there has been a high focus on STA developments. One of the most
important development is the Variable Angle Truss Model (VATM) proposed in 1985 by Hsu and
Mo [1], which for the first time incorporated a softened stress (σ)–strain (ε) relationship for the concrete
in compression in the struts. Several studies shown that the VATM predicts well the ultimate behavior
of RC beams under torsion. However, neither the cracking torque nor the torsional stiffness in the
cracked stage are well predicted by the VATM. This is because the model does not account for the
concrete tensile strength [1,2]. Despite further refinements of the VATM [3–6], the model still remained
valid only to predict the ultimate behavior of beams under torsion.

In addition to the ultimate limit state, codes rules also refer the need to check the behavior of
the beams for low loading levels (serviceability limit states). For this reason, recent improvements
of theoretical models based on STA have aimed to also provide good estimates for low loading
levels. In 2009, Jeng and Hsu [7] proposed the Softened Membrane Model for Torsion (SMMT), which
constitutes an extension of the previous Softened Membrane Model (SMM) [8]. Bernardo et al. in
2012 proposed the Modified Variable Angle Truss Model (MVATM) [9] and, in 2015, the Generalized
Softened Variable Angle Truss Model (GSVATM) [10], both as an extension of the VATM. All these
improved models incorporate the influence of tensile concrete behavior through an appropriate σ− ε
relationship for concrete in tension in the perpendicular direction to the struts. For this reason, the
referred models give good predictions for the full behavior of RC beams under torsion, namely the
torque (MT)–twist (θ) curve, including the uncracked, cracked, and ultimate states.
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When compared to MVATM, both SMMT and GSVATM are theoretically more consistent because
they are based on one unique theory. VATM is recognized as an analytical model which provides
a simple physical understanding of how a RC beam behaves under torsion. For these reasons, the
GSVATM is used in this study.

In practice, torsion is usually combined with other internal forces. For this reason, theoretical
models need to be extended to cover combined loadings. In a previous study, the authors successfully
extended the GSVATM for prestressed concrete beams (with longitudinal and uniform prestress) under
torsion [11]. Until now, the GSVATM was mainly validated for beams under pure torsion. In this
article, the GSVATM is extended to the case of torsion combined with a uniform axial stress state due
to an axial centered force. Since torsion is considered to be the primary effect, only cases with low to
moderate axial stress states (both compression and tension) are considered. Although this particular
loading case is not widely used in current practice, its study will allow one to preliminarily calibrate
and check the GSVATM for this combined loading before it can be extended to more complex types.
Moreover, this study will also allow researchers to analyze and understand the influence of low to
moderate axial stress states on the behavior of RC beams under torsion.

In this article, these changes in the GSVATM formulation and calculation procedure are presented.
Since no experimental data leading with RC beams under torsion combined with constant axial force
were found in the literature, a reference RC beam was used for computation by using GSVATM, the
theoretical response under torsion combined with several levels of external axial centered forces (both
compression and tension). To validate the theoretical results, they are compared with the numerical
results from nonlinear finite element method (FEM) applied to the same reference beam and loading
cases. For convenience, the used reference beam is beam A2, tested under pure torsion by Bernardo
and Lopes [12] and also previously modeled under pure torsion with the non-linear FEM by Ferreira
in 2016 [13]. The adopted methodology to validate the results from GSVAM can be justified because, in
recent years, FEM software packages have proven to be reliable for nonlinear incremental analysis.
The comparative analysis was performed based on the theoretical and numerical MT − θ curves, namely
the shape and some of the key points.

2. Original GSVATM Formulation and Calculation Procedure

As also presented in the previous article from the authors [11], for the sake of this article and also
to help the reader to better understand Section 3, Table 1 illustrates the models and summarizes the
equations from GSVATM for RC beams under torsion. More details about the original GSAVTM can be
found in [10].



Appl. Mech. 2020, 1 81

Table 1. Equilibrium and Compatibility Models from the Generalized Softened Variable Angle Truss Model (GSVATM) for Reinforced Concrete (RC) Beams.
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As presented in Table 1, a plain truss analogy is assumed to model a RC thin beam element under
shear force V (which induces a shear flow q in the cross section), GSVATM incorporates an additional
tensile force T (concrete tie) perpendicular to the concrete strut with compressive force C, and angle
α to the longitudinal axis. The resultant force R, with an angle β (Formula (2)) to C and an angle γ
(Formula (3)) to the longitudinal axis, is computed from Formula (1). The forces C (Formula (4)) and
T (Formula (5)) are the resultants of the compressive and tensile stress fields in concrete (σc

2 and σc
1,

respectively), with dv being the distance between centers of the longitudinal bars and tc the width of
the cross section, which is assumed to be equal to the width of the compressive and tensile concrete
stress field (concrete strut and concrete tie, respectively).

The outer shell of a box beam element under a torque MT can be modeled as the union of four
thin beam elements under shear as previously presented (see Table 1). Bredt′s thin tube theory is
used to relate MT with the circulatory shear flow q. From the space truss analogy, three equilibrium
formulas are derived to compute MT (Formula (6)), the effective thickness tc of the concrete strut and
tie (Formula (7), which is multiplied by (-1) if γ = α+ β > 90◦), and the angle α of the concrete struts
(Formula (8)). In Formulas (6)–(8), A is the area enclosed by the center line of the shear flow (which
is assumed to coincide with the center line of the walls: A = (x− tc)(y− tc), with x and y being the
minor and major outer dimension of the rectangular section), p is the perimeter of the center line of the
shear flow (p = 2(x− tc) + 2(y− tc)), Asl is the total area of longitudinal steel, Ast is the area of one bar
of the transverse steel, s is the longitudinal spacing of the transverse reinforcement, and fsl and fst are
the stresses in the longitudinal and transverse reinforcement, respectively.

A set of three compatibility formulas (see Table 1) are also derived to compute the strain in the
transverse reinforcement εst (Formula (9)) and longitudinal reinforcement εsl (Formula (10)), as well
as the twist per unit length of the beam θ (Formula (11)). A useful invariant equation is also derived
from Mohr´s circle for strains (Formula (12)) in order to relate the strains. In Formulas (9) to (12), εc

2s is
the maximum compressive strain at the surface of the strut, εc

1 and εc
2 are the average strains in the

concrete tie and strut, respectively.
A smeared and softened σ− ε relationship must be adopted to model the nonlinear behavior of

the diagonal concrete struts. Smeared and stiffened σ− ε relationships must also be adopted to model
the nonlinear behavior of the diagonal concrete ties and steel bars. The following σ− ε relationships
were used for GSVATM [10,11]:

• For concrete in compression: σ− ε relationship proposed by Belarbi and Hsu in 1994 [14] (Formulas
(13) and (14), see Table 2) with softening factors (β∗ = βσ = βε, both for the peak stress and
corresponding strain) proposed by Zhang and Hsu in 1998 [15] (Formulas (15)–(18), see Table 2);

• For concrete in tension: σ− ε relationship proposed by Belarbi and Hsu in 1994 [14] and modified
by other authors for RC plain [7] and hollow [16] beams under torsion (Formulas (19)–(23), see
Table 2);

• For steel bars in tension: σ − ε relationship proposed by Belarbi and Hsu in 1994 [14]
(Formulas (30)–(32), see Table 2).
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Table 2. Relationships for Concrete and Steel.
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In Table 2, f ′c is the uniaxial concrete compressive strength, εo is the strain corresponding to f ′c , ρl
is the longitudinal reinforcement ratio (ρl = Asl/Ac, with Ac = xy), ρt is the transverse reinforcement
ratio (ρt = Astu/Acs, with u = 2x + 2y), fly and fty are the yielding stress for the longitudinal and
transverse reinforcement, respectively, Ec is the Young´s modulus for concrete, fcr is the concrete
cracking stress and εcr is the strain corresponding to fcr, fs and εs are the stress and strain in the steel
bars, respectively, Es is the Young´s Modulus for steel, fy is the yielding stress of steel bars, and ρ is the
reinforcement ratio.

Due to the bending of the walls, a strain gradient exists along the wall´s thickness. For this
reason, the stresses in the diagonal concrete strut σc

2 and in the diagonal concrete tie σc
1 are defined as

the average stress of non-uniform stress diagrams (Formulas (24) and (27), see Table 2). Parameters
kc

2 (Formulas (25) and (26)) and kc
1 (Formulas (28) and (29)) are the average compressive and tensile

stresses, respectively, and they can be obtained by integrating Formulas (13) and (14) and Formulas (19)
and (20).

The solution procedure to compute the MT − θ curve from GSVATM is based on a trial-and-error
technique, because unknowns and interdependent variables exist when calculations are initiated.
The calculations are initiated for each input value of the strain at the outer fiber of the concrete strut
(εc

2s = 2εc
2). Details of the solution algorithm for the GSVATM can be found in [10].

3. GSVATM for RC Beams under Torsion Combined with Axial Force

In this section, the GSVATM is extended to include the interaction of torque (MT) with an axial
external force (Next). For this latter, both tensile and compression forces are considered. It is assumed
that Next is positive for axial tensile forces and negative for axial compressive forces. The case with a
positive Next is chosen to present the changes in GSVATM.

It is assumed that Next simply imposes an additional and axial uniform stress state in the RC beam,
in addition to the one imposed by MT. Then, Next must be accounted for the longitudinal equilibrium
for the RC box beam under torsion (Figure 1). It is assumed that Next is carried by the longitudinal
reinforcement, so Next must be simply added to the tensile force in the longitudinal reinforcement
(Asl fsl) due to torsion in the longitudinal equilibrium equation from GSVATM [10]. This assumption
was also assumed by Hsu to extend the VATM for RC beams under torsion combined with an axial
force [17]. The new longitudinal equilibrium equation is as follows (which needs to be multiplied by
(−1) if γ = α+ β > 90◦):

Asl fsl =
MTp0

2A0
cotγ+ Next for γ = α+ β ≤ 90◦ (1)
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Figure 1. Reinforced concrete (RC) box beam under torsion combined with axial force. 
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Figure 1. Reinforced concrete (RC) box beam under torsion combined with axial force.
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From Equation (1), and among the set of equilibrium equations from GSVATM (Table 1), only
Formula (7) needs to be modified to compute the effective thickness tc for the concrete struts and ties.
The new equation is Equation (2), which also needs to be multiplied by (-1) if γ = α+ β > 90◦.

tc =
Asl fsl −Next

σc
2p0

cosβ
cosα cosγ

for γ = α+ β ≤ 90◦ (2)

Also, the equation to compute the angle α of the concrete struts (Formula (8)) needs to be modified
to include the additional stress state. Formula (6) from Table 1 remains unchanged.

α = arctan


√

F2(tanβ)2 + F(tanβ)4 + F(tanβ)2

F(tanβ)2 + 1

with F =
Ast fstp

(Asl fsl −Next)s
(3)

In addition to the axial stress state, Next also imposes an additional and initial strain state in the
longitudinal direction. The initial strain in the longitudinal reinforcement due to Next and εsl,i can be
computed from Equation (4), where Ac is the area bounded by the outer perimeter of the cross section
and Ah is the hollow area of the box section (Ah = 0 for plain sections). This initial strain must be
added to the strain in the longitudinal reinforcement due to torsion εsl,MT , which is computed from
Formula (10) (Table 1). Thus, for RC beams under torsion combined with an axial force, the effective
strain in the longitudinal reinforcement, εsl is the sum of the two previous strains (Equation (5)).

εsl,i =
Next

Ec(Ac −Ah) + Asl(Es − Ec)
(4)

εsl = εsl,MT + εsl,i (5)

The remaining compatibility equations from Table 1 remain unchanged. Invariant Formula (12) in
Table 1 also remains valid because the contribution of Next is incorporated through εsl.

It should also be noted that, for RC beams under torsion combined with an axial compressive force,
a pre-decompression stage, similar to the one for beams under torsion with longitudinal prestress [11],
also exists. At this stage, the shape of the curve MT − θ is perfectly linear because the stress levels are
still very low. Thus, it is assumed that the modified GSVATM will only start the calculations at the
end of the decompression stage. This simplification allows for the simplification of the calculation
procedure, because it avoids modeling and computing the evolution of the initial compressive stresses
in the truss elements, which tends to be in tension due to torsion (concrete tie and longitudinal bars).
This procedure was also adopted by Hsu and Mo in 1985 [3] and Bernardo et al. in 2018 [11] when they
extended the VATM and the GSVATM for prestressed concrete (PC) beams under torsion, respectively.

To compute the stresses from the strains, the same smeared σ− ε relationships used in the original
GSVATM to model the nonlinear behavior of the materials are also used here (Table 2).

For RC beams under torsion combined with axial force, the calculation procedure to compute
the theoretical MT − θ curve is similar to the one from the original GSVATM [10]. The calculation
procedure starts with an initial assumed value for the strain at the outer fiber of the concrete strut εc

2s
and also with initial estimates for some of the other variables. Then, a trial-and-error methodology is
used to converge to the solution point, which corresponds to the first point of the MT − θ curve with
coordinates (θ; MT). Hereafter, εc

2s is incremented and a new iterative cycle is started until the next
solution point is obtained. The calculation procedure ends when the theoretical failure of the RC beam
is reached. It is assumed that the theoretical failure occurs when the strain in the outer fiber of the
concrete strut, εc

2s, reaches the ultimate conventional value εcu, or when the strain in the longitudinal,
εsl, and/or transverse, εst, reinforcement reaches the ultimate conventional value εsu. In this study,
the conventional ultimate strains for the materials defined by Eurocode 2 [18] has been considered.
Figure 2 presents the flowchart for the iterative calculation algorithm used in this study to compute the



Appl. Mech. 2020, 1 86

theoretical MT − θ curve of RC beams under torsion combined with axial force. For the computational
implementation of GSVATM, the Delphi programming language has been used.

 

 

Select ε2s
c

Estimate ε1s
c, tc, α, β

Calculate εsl,i (Eq. (4))
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c (F.(27))

Calculate C (F. (4)), T (F. (5)), R, (F. (1)),
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Figure 2. Flowchart to compute the MT − θ curve.

4. Comparative Analysis with Numerical Results

In order to validate the extended GSVATM for RC beams under torsion combined with axial force,
this section presents a comparative analysis between some theoretical results from GSVATM with the
numerical ones using nonlinear finite element analysis (FEA) by using Abaqus software [19]. For this,
and as referred to in Section 1, the RC hollow beam A2 (beam A-47.3-0.76 in the original notation)
tested under torsion by Bernardo and Lopes in 2009 [12] is used as reference beam. Beam A2 has the
following relevant characteristics: a hollow squared cross section (0.60 × 0.60 m) with wall thickness
10.7 cm, symmetrical longitudinal reinforcement with 4ϕ12 mm (one rebar in each corner) + 12ϕ10
mm (3 rebars in each wall), transverse reinforcement ϕ8 mm with longitudinal spacing 8 cm, balanced
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longitudinal and transverse reinforcement ratios (ρl = 0.39% and ρt = 0.37%), concrete cover 2.9 cm,
average compressive concrete strength f ′c = 47.3 MPa, average steel yielding strength fy = 686 MPa,
and ductile failure mode.

4.1. FEA Modelling

Beam A2 was modeled with continuous solid hexahedral finite elements with linear geometry
C3D8R [19], with eight nodes and with three degrees of freedom per node. The nonlinear behavior of
the concrete was considered through the Concrete Damaged Plasticity (CDP) model, which models
the concrete behavior both for compression and tension. CDP uses the concept of isotropic damaged
elasticity in combination with isotropic tensile and compressive plasticity to model the inelastic
behavior of concrete. For the failure criteria, CDP assumes two mechanisms: the cracking of concrete
in tension and the crushing of concrete in compression. Tensile concrete damage is quantified by
dissipation of the fracture energy G f required to create microcracks, which is computed as the area
under the σ− ε curve for concrete in tension. The cracks propagation is modeled based on a mechanism
of continuous damage, called stiffness degradation.

For this study, the concrete of Beam A2 was characterized using the same criteria used by
Jankowiak and Łodygowski in 2005 [20] to define the parameters for the CDP model for a very similar
concrete with compressive strength equal to 50 MPa. Figures 3 and 4 present the adopted σ− ε and
plastic stress (σp)–plastic strain (εp) relationships for concrete in compression and tension.

Appl. Mech. 2020, 1, 6 

each corner) + 12φ10 mm (3 rebars in each wall), transverse reinforcement φ8 mm with longitudinal 
spacing 8 cm, balanced longitudinal and transverse reinforcement ratios ( 0.39%lρ =  and 

0.37%tρ = ), concrete cover 2.9 cm, average compressive concrete strength 47.3 MPacf ′ = , average 
steel yielding strength 686 MPayf = , and ductile failure mode. 

4.1. FEA Modelling 

Beam A2 was modeled with continuous solid hexahedral finite elements with linear geometry 
C3D8R [19], with eight nodes and with three degrees of freedom per node. The nonlinear behavior of 
the concrete was considered through the Concrete Damaged Plasticity (CDP) model, which models 
the concrete behavior both for compression and tension. CDP uses the concept of isotropic damaged 
elasticity in combination with isotropic tensile and compressive plasticity to model the inelastic 
behavior of concrete. For the failure criteria, CDP assumes two mechanisms: the cracking of concrete 
in tension and the crushing of concrete in compression. Tensile concrete damage is quantified by 
dissipation of the fracture energy fG  required to create microcracks, which is computed as the area 

under the σ − ε  curve for concrete in tension. The cracks propagation is modeled based on a 
mechanism of continuous damage, called stiffness degradation. 

For this study, the concrete of Beam A2 was characterized using the same criteria used by 
Jankowiak and Łodygowski in 2005 [20] to define the parameters for the CDP model for a very 
similar concrete with compressive strength equal to 50 MPa. Figures 3 and 4 present the adopted 
σ − ε  and plastic stress ( pσ )–plastic strain ( pε ) relationships for concrete in compression and 

tension. 

 

(a) 

 

(b) 

Figure 3. σ − ε  curves for concrete: (a) in compression and (b) in tension. Figure 3. σ− ε curves for concrete: (a) in compression and (b) in tension.



Appl. Mech. 2020, 1 88Appl. Mech. 2020, 1, 6 

 

(a) 

 

(b) 

Figure 4. p pσ − ε  curves for concrete: (a) in compression and (b) in tension. 

The following values for concrete parameters incorporated into the CDP [18] were considered: 
Young´s modulus 36.1 GPaE = , Poisson´s coefficient 0.2ν = , dilatation angle ( ), 38ifΨ θ = ° , 

eccentricity ( ), 1ifε θ = , ratio between the initial equibiaxial compressive yield stress to the initial 

uniaxial compressive yield stress 0 0 1.16b cσ σ = , ratio between the second stress invariant to the 
tensile meridian and the compressive meridian 0.666cK =  ( 0.5 1.0cK< < ), and viscoplastic 

regularization parameter 510−μ = . Most of these values were calibrated by using recommendations 
from the literature [21]. Details about these parameters can be found in Abaqus manuals. 

Longitudinal and transverse rebars were modeled with T3D2 FE bar type elements [19], which 
is a straight bar element with 3D linear geometry and two nodes. Each node has three degrees of 
freedom, which make this element compatible with the three-dimensional C3D8R FE used to model 
the concrete. 

To describe the elastic-plastic behavior of the reinforcement in tension, the uniaxial bilinear 
σ − ε  constitutive relationship from Eurocode 2 (EC2) [18] was adopted. The limit for the elastic 
strain (0.0025) was calculated based on the ratio of the yielding strength to the Young’s modulus (200 
GPa). The ultimate limit for the strain was considered to be 0.010. Parameter K  in Abaqus, which is 
defined as the ratio between the tensile strength to the yielding strength, was assumed to be 1.05 
(corresponding to a ductility Class A steel according to EC2 [18]). The Poisson´s ratio was considered 
equal to 0.3ν = . For the reinforcement, a linear and elastic behavior was assumed up to the elastic 
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The following values for concrete parameters incorporated into the CDP [18] were considered:
Young´s modulus E = 36.1 GPa, Poisson´s coefficient ν = 0.2, dilatation angle Ψ(θ, fi) = 38◦,
eccentricity ε(θ, fi) = 1, ratio between the initial equibiaxial compressive yield stress to the initial
uniaxial compressive yield stress σb0/σc0 = 1.16, ratio between the second stress invariant to the tensile
meridian and the compressive meridian Kc = 0.666 (0.5 < Kc < 1.0), and viscoplastic regularization
parameter µ = 10−5. Most of these values were calibrated by using recommendations from the
literature [21]. Details about these parameters can be found in Abaqus manuals.

Longitudinal and transverse rebars were modeled with T3D2 FE bar type elements [19], which is a
straight bar element with 3D linear geometry and two nodes. Each node has three degrees of freedom,
which make this element compatible with the three-dimensional C3D8R FE used to model the concrete.

To describe the elastic-plastic behavior of the reinforcement in tension, the uniaxial bilinear σ− ε
constitutive relationship from Eurocode 2 (EC2) [18] was adopted. The limit for the elastic strain
(0.0025) was calculated based on the ratio of the yielding strength to the Young’s modulus (200 GPa).
The ultimate limit for the strain was considered to be 0.010. Parameter K in Abaqus, which is defined as
the ratio between the tensile strength to the yielding strength, was assumed to be 1.05 (corresponding
to a ductility Class A steel according to EC2 [18]). The Poisson´s ratio was considered equal to ν = 0.3.
For the reinforcement, a linear and elastic behavior was assumed up to the elastic limit strain, followed
by a plastic behavior until failure. To model the plastic behavior, the Classic Metal Plastic (CMP)
model incorporated into Abaqus [19] was adopted. In this model, after the yielding stress is reached,
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the standard definitions of metal plasticity govern the properties of the bar elements. This model is
basically defined by the plastic σ − ε relationship, where the initial stress value corresponds to the
maximum stress for which the plastic strain is zero, which is equal to the tensile stress limit value. CMP
only requires the σ− ε relationship for the plastic zone, that is, σp − εp. Figure 5 shows the adopted
σ− ε curves for rebar ϕ10 mm, as example.
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the Embedded Regions technique incorporated into Abaqus [19]. In such a technique, the 
translational degrees of freedom of the embedded element nodes are interpolated from the degrees 
of freedom of the host element nodes by using geometrical relationships between the embedded and 
host elements, while the rotational degrees of freedom are kept free. To minimize convergence 
problems, the nodes of the bar elements are located inside the host elements (the nodes of the 
embedded and host elements have different coordinates in the longitudinal direction) [21]. 

In order to obtain good accuracy, the FEM mesh must be as refined as possible and also must 
follow the geometry of the cross section with a uniform pattern [22]. The mesh creation was 
performed independently for each component (concrete and reinforcement). After several 
simulations, Figure 6c shows the adopted FEM mesh. The final size and the geometry of the FEM 
mesh were chosen as function of the wall´s thickness. After some simulations and to reduce the 
calculation time, it was possible to reduce the length of the FE model to 1.5 m (the real length of 
beam A2 is almost 6.0 m), see Figure 7. 

Figure 5. Constitutive relationships for rebar ϕ10 mm: (a) σ− ε and (b) σp − εp.

Nodal restrictions were adopted in the top cross sections of the beam model, namely to simulate
the full restrained twist condition in one top cross section and the equivalent action to the external
torque (imposed twists) in the other one. In order to avoid premature failure and convergence problems
at the ends of the beam model due to stress concentrations, the endings of the beam (with 25 cm
thickness in the longitudinal direction) were modeled as if they were made with purely elastic concrete
without strength limit. To model these zones, the same C3D8R element was used.

To simplify the modeling of the beam’s reinforcement (Figure 6a), it was considered that the axes
of both longitudinal and transverse rebars lie in the same plane (Figure 6b).
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To materialize both the supports and load application points, coupling restrictions were 
introduced in the model with respect to two created reference points (RP1 and RP2). In RP1, the 
transverse translations and the twist were blocked. The longitudinal translations were not impeded 
in order to allow the warping of the cross sections. However, to minimize convergence problems, the 
longitudinal translation was blocked at one single point along the model. In RP2, an upper limit of 
0.07 rad was imposed for the imposed twist. This value was defined based on the maximum value 
experimentally recorded for beam A2 [12]. 

4.2. Numerical Results and Comparative Analysis with GSVATM 

By using the numerical model presented in the previous section, the behavior of reference beam 
A2 was simulated under increasing torques combined with different levels of constant axial forces, 
both compressive and tensile. The aim is to validate the extended GSVATM, as presented in Section 
3, based on a comparative analysis between the predictions from GSVATM for beam A2 and the 
numerical results from FEM. 

Figure 6. Beam A2: (a) real cross section, (b) cross section model and (c) non-linear finite element
method (FEM) mesh.

The interconnection between steel bar and concrete finite elements (FE) was simulated using the
Embedded Regions technique incorporated into Abaqus [19]. In such a technique, the translational
degrees of freedom of the embedded element nodes are interpolated from the degrees of freedom of
the host element nodes by using geometrical relationships between the embedded and host elements,
while the rotational degrees of freedom are kept free. To minimize convergence problems, the nodes of
the bar elements are located inside the host elements (the nodes of the embedded and host elements
have different coordinates in the longitudinal direction) [21].

In order to obtain good accuracy, the FEM mesh must be as refined as possible and also must
follow the geometry of the cross section with a uniform pattern [22]. The mesh creation was performed
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independently for each component (concrete and reinforcement). After several simulations, Figure 6c
shows the adopted FEM mesh. The final size and the geometry of the FEM mesh were chosen as
function of the wall´s thickness. After some simulations and to reduce the calculation time, it was
possible to reduce the length of the FE model to 1.5 m (the real length of beam A2 is almost 6.0 m), see
Figure 7.
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Figure 7. Finite element (FE) model of beam A2: (a) embedded reinforcement, (b) location of reference
point 1 (RP1) and (c) imposed axial stress.

Figure 7 shows the model of the reinforcement embedded in the concrete (Figure 7a), the location
of RP1 in one of the top beam (Figure 7b), and the axial stress state acting on one top of the model
(Figure 7c).

To materialize both the supports and load application points, coupling restrictions were introduced
in the model with respect to two created reference points (RP1 and RP2). In RP1, the transverse
translations and the twist were blocked. The longitudinal translations were not impeded in order to
allow the warping of the cross sections. However, to minimize convergence problems, the longitudinal
translation was blocked at one single point along the model. In RP2, an upper limit of 0.07 rad was
imposed for the imposed twist. This value was defined based on the maximum value experimentally
recorded for beam A2 [12].

4.2. Numerical Results and Comparative Analysis with GSVATM

By using the numerical model presented in the previous section, the behavior of reference beam
A2 was simulated under increasing torques combined with different levels of constant axial forces, both
compressive and tensile. The aim is to validate the extended GSVATM, as presented in Section 3, based
on a comparative analysis between the predictions from GSVATM for beam A2 and the numerical
results from FEM.

The chosen uniform axial stresses induced by the axial forces, both compressive σci and tensile
σti stresses, are limited to low to moderate levels. This is to ensure that torsion remains the primary
internal force and that the global behavior of the beam is mainly governed by torsion, including the
failure mode. The chosen criterion is that the maximum level for the stresses induced by the axial
forces, when acting alone (without torsion), do not lead to concrete behaving nonlinearly. For this,
EC2 [18] was used to establish the limit values of the axial stress states induced by the axial force.
According to EC2, it can be assumed that concrete in compression shows a linear behavior up to 45%
of its characteristic compressive strength fck, thus the limit for the compressive stress was assumed to
be σci,max = 0.45 fck = 0.45( fcm − 8 MPa), where fcm is the average compressive strength (same as f ′c ).
The rules from EC2 were used to compute fck from fcm. To limit the tensile stress, the average tensile
strength of concrete fctm was considered as the maximum allowed value, in order to avoid cracking
due to the tensile axial force. Thus, from EC2, the limit for the tensile stress is σti,max = 0.30 fck

2/3.
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Based on the above, five levels of compressive stress σci, and four levels of tensile stress σti, were
considered to simulate beam A2 under torsion. Table 3 presents the considered levels of axial stresses
for beam A2, as well as their corresponding axial forces Next.

Table 3. Levels of Axial Stresses and Forces Applied on Beam A2.

Compression Tension

Stress Level σci [MPa] Next [kN] Stress Level σti [MPa] Next [kN]

0.05 fck −1.97 −427.1 0.4 fctm 1.44 311.8
0.15 fck −5.90 −1279.1 0.6 fctm 2.16 467.6
0.25 fck −9.84 −2133.3 0.8 fctm 2.86 623.5
0.35 fck −13.77 −2958.3 1.0 fctm 3.59 779.4
0.45 fck −17.70 −3837.4

Figure 8 presents the theoretical MT − θ curves computed from GSVATM for beam A2 under
torsion combined with the different compressive axial stress states σci, presented in Table 3. From
Figure 8, it can be observed that both the resistant torque and the torsional stiffness in the cracked state
increase as σci increases. The increase of the stiffness leads to a decrease in the twist corresponding to
the resistant torque. These tendencies agree with the results from previous studies on RC beams with
compressive axial stress states, namely from Bernardo et al. in 2015 [23] for RC beams in torsion that are
axially restrained and Lopes et al. in 2017 [24] for RC beams in bending that are also axially restrained.
From their studies, the authors concluded that the existence of a moderate axial compression state due
to a confinement effect is favorable for both the resistance and stiffness of the RC beam, since it reduces
the tensile state imposed by the torque or bending moment.Appl. Mech. 2020, 1, 6 
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expected that the cracking torque slightly increases as ciσ  increases and decreases as tiσ  increases. 
In fact, a small increase in the cracking torque still can be observed for the lowest levels of ciσ  
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Figure 8. MT − θ curves for beam A2 with different σci levels (GSVATM).

Figure 9 presents the theoretical MT − θ curves computed from GSVATM for beam A2 under
torsion combined with the different tensile axial stress states σti, presented in Table 3. From Figure 9, it
can be observed that, unlike for σci, as σti increases, both the resistant torque and the torsional stiffness
in the cracked state tend to decrease.
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Figure 9. MT − θ curves for beam A2 with different σti levels (GSVATM).

Regarding the cracking torque, reliable conclusions cannot be drawn, since GSVATM showed some
convergence problems while computing the solution points for the theoretical MT − θ curves near the
cracking point, in particular for torsion combined with the highest tensile stresses. For σti = 3.59 MPa
(Figure 9) this issue led to an atypical shape for the post-cracking curve, which must be regarded with
some caution. However, for the level of axial stresses considered in this study, it is expected that the
cracking torque slightly increases as σci increases and decreases as σti increases. In fact, a small increase
in the cracking torque still can be observed for the lowest levels of σci (Figure 8). These convergence
problems were reported in the literature [11] and are related to the shape of the used σ− ε relationship
to characterize the stiffened tensile concrete behavior (Table 2), which incorporates a discontinuity in
the peak stress point.

Figures 10 and 11 present the numerical MT − θ curves from FEM simulations for beam A2 under
torsion combined with the same levels of uniform axial stress state considered in Figures 8 and 9,
respectively. From Figures 10 and 11, it can be stated that the observed tendencies with respect to the
resistant torque and corresponding twists, and also with the stiffness in the cracked stage, are similar
to the ones previously reported from the results with GSVATM. With respect to the cracking torque, it
is observed that it increases slightly as σci increases and decreases slightly as σti increases, as expected.

Appl. Mech. 2020, 1, 6 

and 9, respectively. From Figures 10 and 11, it can be stated that the observed tendencies with 
respect to the resistant torque and corresponding twists, and also with the stiffness in the cracked 
stage, are similar to the ones previously reported from the results with GSVATM. With respect to the 
cracking torque, it is observed that it increases slightly as ciσ  increases and decreases slightly as tiσ  
increases, as expected. 

0

50

100

150

200

250

300

350

0.0 1.0 2.0 3.0 4.0

M
T

[K
N

m
]

θ [º/m]

σci = 0 MPa

σci = 5.90 MPa

σci = 9.84 MPa

σci = 13.77 MPa

σci = 17.70 MPa

 
Figure 10. TM − θ  curves for beam A2 with different ciσ  levels (FEM). 

0

50

100

150

200

250

300

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

M
T
(K
Nm

)

θ (º/m)

σti = 0 MPa

σti = 1.44 MPa

σti = 2.16 MPa

σti = 3.59 MPa

 
Figure 11. TM − θ  curves for beam A2 with different tiσ  levels (FEM). 

Figure 12a,b compare the variations of the theoretical and numerical resistant torques, which 
are summarized in Table 4, for the different compressive and tensile stress states, respectively. From 
Table 4 it is possible to observe and compare, for each simulation and for each level of axial stress 
state, the percentage variation of the resistant torque with respect to the same experimental one for 
beam A2 without axial stress state. Although some differences can be observed between the values 
for the theoretical predictions from GSVATM and FEM, the general trends agree. The observed 
differences result from the used base model to simulate the reference beam. While GSVATM is based 
on a 3D truss model, and is therefore a “non-continuous” model, the numerical model is based on a 
FEM model, which is a “continuous” model. Moreover, as previously stated, the FEM model was 
calibrated with beam A2 under pure torsion, since no experimental data of RC beams under torsion 
combined with axial forces was found in the literature. Despite this, the FEM results agree with the 
GSVATM ones as far as the general observed trends are concerned. 

Figure 10. MT − θ curves for beam A2 with different σci levels (FEM).
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Figure 12a,b compare the variations of the theoretical and numerical resistant torques, which
are summarized in Table 4, for the different compressive and tensile stress states, respectively. From
Table 4 it is possible to observe and compare, for each simulation and for each level of axial stress state,
the percentage variation of the resistant torque with respect to the same experimental one for beam
A2 without axial stress state. Although some differences can be observed between the values for the
theoretical predictions from GSVATM and FEM, the general trends agree. The observed differences
result from the used base model to simulate the reference beam. While GSVATM is based on a 3D truss
model, and is therefore a “non-continuous” model, the numerical model is based on a FEM model,
which is a “continuous” model. Moreover, as previously stated, the FEM model was calibrated with
beam A2 under pure torsion, since no experimental data of RC beams under torsion combined with
axial forces was found in the literature. Despite this, the FEM results agree with the GSVATM ones as
far as the general observed trends are concerned.

Table 4. Percentage Variation of Resistance Torque.

Compression Tension

Range Percentage Variation Range Percentage Variation

FEM GSVATM FEM GSVATM

0–5.90 MPa 9.12 30.42 0–1.44 MPa −6.61 −16.03
0–9.84 MPa 16.58 43.64 0–2.16 MPa −9.02 −27.67

0–13.77 MPa 23.36 52.97 0–3.60 MPa −13.39 −48.02
0–17.70 MPa 28.21 57.27
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Figure 12. Variation of the resistance torques with axial stress states: (a) compressive, (b) tensile. Figure 12. Variation of the resistance torques with axial stress states: (a) compressive, (b) tensile.

5. Conclusions

In this article, the GSVATM was extended to cover RC beams under torsion combined with
external axial and centered force. The changes in the original GSVATM and the modified solution
calculation procedure were presented. The theoretical predictions of the global behavior (MT − θ

curves) of a reference RC beam under torsion combined with several external axial stress states,
including compressive and tensile, where presented. The results were compared with the numerical
results from FEM for the same reference beam and for the same loading cases.

From the obtained results, it can be stated that the trends related to the global behavior of the
studied reference beam, either theoretically from GSVATM or numerically from FEM, agree.

The GSVATM for RC beams under torsion combined with external axial forces for RC beams
constitutes a contribution to generalize the Space Truss Analogy. Research must continue in order to
generalize the GSVATM for more general loading cases.
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