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Abstract: Pile punching (or driving) affects the surrounding area where piles and adjacent piles can
be displaced out of their original positions, due to horizontal loads, thereby leading to hazardous
outcomes. This paper presents a three-dimensional (3D) coupled Smoothed Particle Hydrodynamics
and Finite Element Method (SPH-FEM) model, which was established to investigate pile punching
and its impact on adjacent piles subjected to lateral loads. This approach handles the large distortions
by avoiding mesh tangling and remeshing, contributing greatly high computational efficiency.
The SPH-FEM model was validated against field measurements. The results of this study indicated
that the soil type in which piles were embedded affected the interaction between piles during the
pile punching. A comprehensive parametric study was carried out to evaluate the impact of soil
properties on the displacement of piles due to the punching of an adjacent pile. It was found that the
interaction between piles was comparatively weak when the piles were driven in stiff clays; while the
pile-soil interactions were much more significant in sandy soils and soft clays.

Keywords: pile punching; field measurement; smoothed particle hydrodynamics; finite element
method; lateral displacement

1. Introduction

Piles are commonly used as foundations for many major structures in civil engineering to transfer
the heavy loads, for which shallow foundations may not be economical and feasible. In engineering
practice, piles are often designed only for carrying vertical loading, as typically the vertical loads are
significantly larger than the horizontal loads such as wind loading. However, piles can also be subjected
to the lateral loads from the surrounding soil due to construction activities [1,2]. The lateral soil
movement generated by the installation of a pile close to exiting piles will induce additional deflection
and bending moment to the adjacent existing pile. Thus, the lateral response of pile foundation is
also essential in the designing of structures where lateral dynamic loads exist. Unlike the axial load
capacity of a pile, the determination of its lateral load capacity is much more complicated because the
soil-pile interaction affects the pile deflection [3,4].

When the punching hammer strikes a pile head, a stress wave is generated within the pile that
travels along the pile, during which a part of the energy is transmitted into the soil at the soil-pile
interface [5–8]. Thus, the pile punching affects the surrounding area where piles are installed, and
the adjacent piles can be displaced from their original positions. Additionally, the vibrations induced
by pile punching can damage structures and cause discomfort to the people in the proximity of pile
punching. Thus, the prediction of ground vibration from pile punching, and the study of its impact on
adjacent piles, are crucial in preventing potential damage on the nearby environment and structures.
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Previous studies have focused on the driving efficiency of piles, and only few investigations
of vibrations due to pile punching, and their effects on the nearby structures, are available [9–13].
Nowadays, Finite Element Method (FEM) analysis has become a promising approach for studying the
problems in soil-pile interaction. It is known that the soil in the vicinity of the pile can be subjected to
large deformations (as a result of pile penetration), and FEM analysis, therefore, should have the ability
to consider large deformations [14]. Thus, researchers have used different techniques to simulate the
pile driving, such as lumped parameter models, Material Point Method (MPM), and continuum FEM
models using Arbitrary Lagrangian-Eulerian (ALE) method. However, in most previous FEM analysis,
the installation of piles has not been explicitly modeled and two-dimensional (2D) axisymmetric
models are often used [8,15–19].

Apparently, these 2D analyses could not incorporate the radial and three-dimensional
componentinteractions. Thus, they are not well-suitedfor understanding the pile-soil-pile interaction
in a real environment. As such, a 3D FEM analysis is needed to unveil the real interaction mechanism.
However, these 3D models have rarely been available in literature, given the 3D FEM analysis requires
a considerable computational effort for generating input and interpretation of results. Also, the impact
mechanism underlying the dynamic interaction between adjacent piles in the process of pile punching
is still not clear, although some investigations are available [20,21].

Another limitation of FEM in the application of large deformation problems is that the use of
conventional Lagrangian meshes will result in mesh tangling, leading to severe numerical instabilities.
Smoothed Particle Hydrodynamics (SPH) method has a strong ability to solve dynamic problems
involving large deformation. On the other hand, it is not as good as the FEM in terms of computational
time and boundary conditions. In this regard, coupled SPH-FEM method can be effectively used of two
kinds of algorithms for the simulation of large deformation problems by eliminating the limitations
in those two algorithms. Today, vast number of FE codes are available that are capable of analyzing
challenging engineering problems. The selection of an appropriate FE code is dependent on the type
of problem and computational cost. LS-DYNA R10.0 (Livermore Software Technology Corporation,
LSTC, Livermore, CA, USA) is an explicit code developed for the dynamic analysis of non-linear
problems, which requires small time steps. LS-DYNA R10.0 was found to be the most preferred choice
for this kind of analysis due to the capability of solving the problems involving large deformation, easy
application of SPH method and the vast variety of material models availabale for concrete and soil.

The objective of this study is to develop an efficient 3D coupled numerical model to probe the
impact of pile punching on adjacent piles. The 3D coupled SPH-FEM model was generated based
on the particle approximation approach and calibrated against field experiments. The established
SPH-FEM model was then used to investigate the mechanism underlying pile interactions arising from
the impact of pile punching.

2. Establishment of the 3D SPH-FEM Model for Pile Punching

SPH is a mesh-free Lagrangian method which employs a finite number of particles that carry
individual mass to represent the material and form the computational domain [22]. the SPH method
can be efficiently used for the simulation of dynamic problems involving large deformation due of its
ability to handle large distortions by avoiding mesh tangling and remeshing, [23]. Although, SPH has
great advantages in simulating many problems in engineering and science, SPH is highly expensive
in terms of computation time (especially for 3D model), as a large number of small particles would
be required and the time step would become very small. Thus, coupling the SPH and Lagrangian
FEM mesh is a potentially good solution in overcoming element distortion, and in maintaining good
computational efficiency. In this study, SPH particles are used to model the soil domain at near field,
while the conventional FEM is used to model the intermediate and far-field soil medium and the piles.

In the SPH formulation, two basic steps are involved, namely kernel approximation and particle
approximation. The first step is kernel approximation, where a spatial distance between particles is
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covered by a smooth length over which their properties are smoothed by a smoothing kernel function.
The integral representation of smoothing kernel function and its derivative are described as [24],

f (x) =
∫
Ω

f (x′)W(x− x′, h)dx′ (1)

∇ f (x) = −
∫
Ω

f (x′)∇W(x− x′, h)dx′ (2)

where W is the smoothing kernel function, h is the smoothing length, Ω is the problem domain and f is
a field function.

The commercial software LS-DYNA R10.0 was used for simulations throughout this study.
It employs following cubic B-spline smoothing function, and it has been proven to be accurate and
efficient [24]:

W(x, h) =
C
hn


1− 3

2 x2 + 3
4 x3
→ x ≤ 1

1
4 (2− x)3

→ 1 < x ≤ 2
0 → x > 2

(3)

Smoothing length, h, is an important parameter in the SPH method because it determines the
influence area of the smoothing function, W, for each particle [24]. Since the mass of particle in SPH is
assumed to be constant, the smoothing length associated with particles should vary accordingly with
density. Although using variable smoothing length increase the accuracy of the results, it will increase
the computational time. In this study, the smoothing length coefficient was set to be 1.05.

In the second step, being the particle approximation step, the computational domain is discretized
with a set of initial distribution of particles that carry an individual mass. The field variables on a
particle are estimated by a summation of the values over the nearest neighbor particles [24].

In the study, the particle approximation was used to generate the SPH-FEM model. The governing
equations for SPH particles can be written as,

dρi

dt
= ρi

N∑
j=1

m j

ρ j

(
vαi − vαj

) ∂Wi j
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i

(4)
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(5)

where m is the mass, ρ is the density and v is the velocity. σαβ is the total stress tensor, X is the spatial
coordinate of the particle, t is the time, W is the smoothing kernel function and Π is the Monaghan
artificial viscosity.

The study first simulated and validated the experiment conducted by Nilson [25]. Nilson [25]
recorded series of ground vibration measurements using the vibration sensors arranged at 10, 20 and
40 m distance from a pile drive. A reinforced concrete pile with a square cross-section of 270 mm ×
270 mm and the length of 29.3 m were used in his experiment. The soil profile in the test area was
3 m of surface fill deposited on 12 m thick layer of medium stiff clay and a layer of 7 m thick sand on
glacial till. Figure 1 shows the generated 3D SPH-FEM model for pile punching, which consists of piles
and soils. Symmetric modelling capabilities play an important role in numerical analysis to save the
computational effort [26,27]. However, in certain cases, the symmetric boundary conditions cannot
be applied due to the presence of non-symmetries in loading, material and boundary conditions [28].
Considering the symmetries of the boundary conditions and applied loadings, only a quarter of the
model was developed to reduce the computational cost in this study.
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in the symmetry boundaries were fixed against translational displacements normal to the symmetry 
plane. The bottom of the mesh was modeled as fixed in all directions to prevent the boundary from 
moving in any direction. Non-reflecting boundaries were applied to the other surfaces, except the top 
surface which has the free boundary condition. A symmetry boundary was applied to those SPH 
particles at the symmetry planes using *BOUNDARY_SPH_SYMMETRY_PLANE. 

Four different soil layers were simulated in this SPH-FEM model. Thus, the model consisted of 
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Figure 1. A quarter symmetrical 3D SPH-FEM model for pile punching.

The domain of the soil was modelled with four different layers of soil to simulate the geotechnical
soil profile at the test site and then was set to be 80 m long, 40 m wide and 40 m high. SPH particles were
used to model the soils where large deformation is expected to occur near the driven pile. A preliminary
analysis was carried out to determine the best size of the soil domain to model with SPH particles.
It was found that numerical instabilities occurred due to a large element distortion when the domain
as too small. In contrast, larger domain for SPH soil domain led to high computational cost. Higher
accuracy of the analysis was ensured by using 0.5 m × 0.5 m size of the SPH soil domain around the
pile. Eight-node solid elements with reduced integration and hourglass control were used to model
the pile and soils in the far-field.

The soil, close to the driven pile, was modeled with SPH particles and the rest of the model was
modeled with the conventional Lagrangian meshes. With an equal distance of 10 mm between SPH
particles at all axes, 270,000 particles were created to model the soils in the near field. The driven pile
was modeled with solid elements with 25 mm edge length. The rest of the model was created using
solid elements with the 250 mm mesh. The developed model has 437,090 solid elements. The nodes
in the symmetry boundaries were fixed against translational displacements normal to the symmetry
plane. The bottom of the mesh was modeled as fixed in all directions to prevent the boundary from
moving in any direction. Non-reflecting boundaries were applied to the other surfaces, except the
top surface which has the free boundary condition. A symmetry boundary was applied to those SPH
particles at the symmetry planes using *BOUNDARY_SPH_SYMMETRY_PLANE.

Four different soil layers were simulated in this SPH-FEM model. Thus, the model consisted of
four different SPH parts with different soil densities. Various methods exist which could handle the
interactions between different SPH parts. The standard SPH interpolation functions can be used to
handle the interaction between SPH parts. No contact definitions are needed and multiple SPH parts
are treated as one part in the standard SPH interpolation. However, when the densities and masses
of neighboring particles vary largely within the smoothing length, the standard SPH interpolation
gives false values on the smoothing quantities of a particle. Muller et al. [29] showed that when the
density ratio larger than 10, the interaction between SPH parts cannot be realistically simulated using
the standard SPH interpolation. The instabilities, due to large density ratios across the interfaces, can
be avoided by introducing a penalty based node to node contact algorithm for the interaction between
two SPH parts. However, when the two SPH parts have similar density and material properties,
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the standard SPH interpolation method has better accuracy around the interfaces [30]. Since the soil
densities do not vary significantly, the standard SPH interpolation interaction was used in the present
study. To activate this, CONT parameter in *CONTROL _SPH was set to 0, and no contacts were
defined between those SPH parts.

Three different methods have been involved in the coupling of SPH particles and conventional
FEM meshes [26,31]. The first method is SPH particles tied to the corresponding surfaces of FEM
meshes as shown in Figure 2a. If the SPH particles are not tied to the FEM mesh as shown in Figure 2b,
the interaction between them is achieved by the penalty based nodes to surface contact. The third
method uses hybrid elements as transit layers between SPH particles and FEM meshes as shown in
Figure 2c. The tied interfaces between SPH particles and FEM elements (Figure 2a) were employed in
this study to couple the soil model with SPH particles and FEM elements.
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The interaction between the SPH and FEM elements of the driven pile was defined using penalty
based algorithms, *CONTACT_AUTOMATIC_NODES_TO_SURFACE in LS-DYNA R10.0. The slave
part was defined with SPH particles and the master part was defined with finite elements (i.e., the
driven pile). In this method, when a slave node is in contact with the master surface, a restoring force
is applied to prevent the penetration, which is directly proportional to the penetration into the solid
element. Thus, when solid elements interacted with SPH particles, the SPH-FEM coupling enabled the
stress transfer at the interface without penetration of SPH particles. The restoring force, F, is defined
by in Equation (6),

F = k·d·n (6)

where k is the linear spring constant, d is the penetration distance and n is the surface normal vector.
The impact of the hammer was applied on the pile head as an impulse using a rectangle function

for force versus time. The applied load on the top surface of the pile was derived from the mass of the
hammer, m, and the height of the fall, h, as given in Equation (7),

I =
√

2gh ·m·η (7)

where I is the impact momentum, g is the gravitational acceleration and η is the effective ratio due to
the damping of the cushion. In this study, η was taken as 0.9 for the calculations.

In this study, *MAT_CONCRETE_DAMAGE_REL3 (MAT_72R3) material model was used to
model the concrete pile. The advantage of this model is that the unconfined compressive strength and
density are the two parameters that are required in the automatic parameter generation to simulate
the concrete behavior [4]. The concrete density, compressive strength of concrete, and Poisson’s ratio
were considered as 2400 kg/m3, 25 MPa, and 0.3, respectively. Each soil layer was modelled with
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*MAT_MOHR_COULOMB (MAT_173) material model and the material parameters for each soil layer
are listed in Table 1.

Table 1. Material parameters for each soil layer.

Soil Type Layer
Thickness (m)

Density
(kg/m3)

Elastic Shear
Modulus (MPa)

Poisson’s
Ratio

Friction
Angle (◦)

Cohesion
(kPa)

Fill (slag and sand) 3 1900 76 0.3 35 14
Clay 12 1600 36 0.495 20 30

Sand and gravel 7 1800 112.5 0.3 40 10
Glacial till 18 1900 304 0.3 40 10

3. Model Calibration

In the calibration process, the SPH-FEM model was run in two steps. The first step
was stress initialization to induce steady initial in-situ gravity stresses in the soils using the
*CONTROL_DYNAMIC_RELAXATION option in LS-DYNA R10.0. The impact load on the pile
was then applied as the second phase after the dynamic relaxation phase. The soil-pile interactions
and ground vibrations were analysed in the second phase.

Calibration of the coupled SPH-FEM modelling technique was carried out against field tests [7,25].
Massarsch and Fellenius [7] presented the results of punching one test pile obtained from a series
of field test carried out by Nilson [25] in Sweden. The test pile was a reinforced concrete pile with
a square cross-section of 270 mm × 270 mm. The bulk density and the impedance of the pile were
2400 kg/m3 and 714 kNs/m, respectively. The total length of the pile was 29.3 m. The pile punching
involved a 4000 kg weight hammer falling 0.4 m per blow. Ground vibrations were measured at a
horizontal distance of 10, 20 and 40 m from the driven pile as shown in Figure 3. In the field test by
Nilson [25], the geophones were used to measure the particle velocities vertically (V1, V2 and V3) and
horizontally in the radial (H4) and transverse (H5) directions of wave propagation.
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Figure 3. The arrangement of geophones during punching of the test pile [7].

Three monitoring points on the soil surface at 10, 20 and 40 m distances from the driven pile were
defined using the *DATABASE_HISTORY_NODE option in LS-DYNA R10.0. LS-DYNA R10.0 offers
options to extract the all nodal time history data from the nodal output. Velocity-time histories of
the ground vibration at these monitoring points were extracted to compare with the experimental
results. Figure 4 shows a comparison of the ground vibration results from the 3D SPH-FEM analysis
and field measurements (at the pile depth of 3 m). The plots show broad agreements of the results (in
terms of waveforms at the monitoring points) from the calibrated SPH-FEM model and the experiment.
A common observation is that the numerical results for peak velocities at the monitoring points are
slightly lower than the field test results, which is probably due to the fact that a simplified ground
profile was used in the SPH-FEM model. Moreover, due to the lack of information on the hammer
impact function, a rectangular function was used in the SPH-FEM analysis to apply the hammer
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impact on the pile head. This might be another reason for the discrepancies observed between the
numerical results and field test results. Although, the results from the calibrated SPH-FEM model
are somewhat lower than the field measurements, it still can be seen that the simulated results are in
good agreement with the field monitoring results, which provides adequate confidence for using the
established SPH-FEM model, in order to study the pile punching effects on adjacent piles.
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4. Case Study: Impact of Pile Punching on an Adjacent Pile

The impact of pile punching on an adjacent pile was investigated using the established 3D
SPH-FEM model. In the model, a 5 m long pile with 200 mm diameter circular cross-section was
additionally generated (Figure 5). The pile punching in clayey soil and sandy soil were considered
in the study. The soil was idealised as homogeneous and isotropic material. Note that the influence
of water table was not considered. The driven and the adjacent piles as well as soil were modelled
using the same material models described in Section 2. The material properties for the clay, sand and
concrete piles are given in Section 2. The interaction between the adjacent pile and surrounding soil
was modelled by using AUTOMATIC_SURFACE_TO_SURFACE contact option in LS-DYNA R10.0.
This assumes contact at the surface and enables transfer of stresses between solid elements.

A parametric study was carried out to investigate the lateral response of an adjacent pile in clayey
soil and sandy soil due to pile punching, by varying the clear spacing between the piles from 1.5 to 10d
(d is the pile diameter). The impact of the hammer was applied on the pile head as an impulse using a
rectangle force function with time. A load of amplitude 3285 kPa and duration 0.1 s was applied to the
pile head. The period of the hammer blow was considered as 0.5 s.
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Figure 6 depicts the numerical results for lateral displacement of the head of the adjacent pile
against the penetration depth of the driven pile when the clear spacing is 4 times the pile diameter.
It can be seen from Figure 6 that the lateral displacement at the head of the adjacent pile initially
increased, followed by a slight decrease as the penetration depth of the driven pile increased. Also,
note that the lateral displacement of the head of the adjacent pile was smaller for a driven pile in a
clayey soil compared to sandy soil. In sandy soil, the displacement of the soil was larger due to the
weak bond between the soil particles. Thus, it might be the reason why the adjacent piles are expected
to have a larger displacement when the piles are driven in sandy soil.Appl. Mech. 2020, 1, FOR PEER REVIEW 8 
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Figure 7 shows the impact of the pile spacing on the lateral displacement of the head of the
adjacent pile. As expected, as the clear spacing between piles increased, lateral displacement of the
adjacent pile decreased. It was also observed that the lateral pile head displacement decreased from 16
to 2 mm as the clear spacing between piles increased from 1.5 to 10d when the pile were embedded in
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the clayey soil. However, in sandy soil, the pile displacement decreased from 54 to 8 mm as the clear
spacing between piles increased from 1.5 to 10d. Thus, the interaction between piles was considerably
higher in sandy soil than that in clayey soil.
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A parametric sensitivity study was further carried out for different soil elastic modulus and soil
density. Soil density was varied from 1600 to 2200 kg/m3, while the elastic modulus of soil was varied
from 10 to 100 MPa to represent very soft to stiff clay soil. Figure 8 shows the lateral displacement
at the head of the adjacent pile against the clear spacing between piles for different soil densities.
As can be seen, the density of the soil affected the lateral displacement of the adjacent pile. As the soil
density increased, the lateral displacement of the head of the adjacent pile resulted from pile punching
decreased. This is because the pile is subjected to higher inertial force when it is driven in the soil
which has high density.
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Figure 9 shows lateral displacement at the head of the adjacent pile against the clear spacing
between piles for different soil elastic modulus. The elastic modulus of the soil also significantly
affected the lateral displacement of the adjacent pile during the pile punching. The lateral displacement
of the head of the adjacent pile caused by pile punching increased as the elastic modulus of soil
decreased. Although there is some match in the initial slopes of the lateral displacement curves, it
indicates a considerable difference when the pile spacing to diameter ratio greater than 3. In stiff clays,
it was observed that the impact of pile punching on adjacent existing pile is comparatively less. Thus,
it is clear that the interaction between piles reduces when the piles are driven in stiff soils.

Appl. Mech. 2020, 1, FOR PEER REVIEW 10 

Also, it is clear that the installation of a pile close to an existing pile will induce an overall lateral 
displacement of the adjacent pile rather than tilting. 

 
Figure 8. Pile head lateral displacement of the adjacent pile against pile spacing for different soil 
densities. 

 
Figure 9. Pile head lateral displacement of the adjacent pile against pile spacing for different soil 
elastic modulus. 

Table 2. Lateral displacement of the head and tip of the adjacent pile (The clear spacing is 3 times the 
pile diameter). 

Analyses Case 
Pile Head Displacement (mm) Pile Tip Displacement (mm) Tilt of Pile 

Varied Parameter Value 

Soil density (kg/m3) 
1600 12.8 4.3 0.00170 
1800 12.5 4.5 0.00160 
2000 11.5 4.8 0.00134 

Figure 9. Pile head lateral displacement of the adjacent pile against pile spacing for different soil
elastic modulus.

Moreover, Table 2 summarises the numerical results for the lateral displacement of the head and
tip of the adjacent pile when the clear spacing is 3 times the pile diameter. Tilt of the adjacent pile was
calculated as the ratio of head displacement relative to the tip displacement of the pile to pile length.
In all the cases, it was observed that the tilt of the adjacent pile is insignificant. The maximum tilt of
0.00304 (i.e., about 1/329) was obtained for the very loose sand which has elastic modulus of 10 MPa.
The results show that tilt of pile decreases when the pile is installed in a dense or hard soil. Also, it is
clear that the installation of a pile close to an existing pile will induce an overall lateral displacement of
the adjacent pile rather than tilting.

Table 2. Lateral displacement of the head and tip of the adjacent pile (The clear spacing is 3 times the
pile diameter).

Analyses Case Pile Head
Displacement (mm)

Pile Tip
Displacement (mm) Tilt of Pile

Varied Parameter Value

Soil density (kg/m3)

1600 12.8 4.3 0.00170
1800 12.5 4.5 0.00160
2000 11.5 4.8 0.00134
2200 10.1 4.9 0.00104

Elastic modulus (MPa)

10 18.4 3.2 0.00304
25 17.6 2.9 0.00294
50 15.8 3.5 0.00246
100 12.8 4.3 0.00170
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5. Conclusions

In this study, the impact caused by pile punching on an adjacent pile was investigated using
a 3D well-established SPH-FEM model; the model was calibrated against field measurements.
A comprehensive parametric sensitivity study was performed to evaluate the impact of soil properties
on the displacement of a pile, due to the punching of an adjacent pile, by varying the elastic modulus
of the soil, soil density and spacing between piles. It was found that the lateral displacement of an
adjacent pile (due to pile punching) increased with the decrease in soil elastic modulus, soil density
and the spacing between the piles. The interaction between piles became weaker when the piles are
driven in stiff soils. The results also show that the lateral displacement at the head of an adjacent pile
was fairly significant for piles driven into sandy soil.
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