
Academic Editors: Min Xian and

Aleksandar Vakanski

Received: 29 July 2025

Revised: 31 August 2025

Accepted: 6 September 2025

Published: 9 September 2025

Citation: Hölzing, C.R.; Meybohm,

P.; Happel, O.; Kranke, P.; Meynhardt,

C. Transformer Models Enhance

Explainable Risk Categorization of

Incidents Compared to TF-IDF

Baselines. AI 2025, 6, 223. https://

doi.org/10.3390/ai6090223

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

AI

Article

Transformer Models Enhance Explainable Risk Categorization of
Incidents Compared to TF-IDF Baselines
Carlos Ramon Hölzing * , Patrick Meybohm , Oliver Happel , Peter Kranke and Charlotte Meynhardt

Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg,
Oberdürrbacher Str. 6, 97080 Würzburg, Germany
* Correspondence: hoelzing_c@ukw.de; Tel.: +49-931-201-30037

Abstract

Background: Critical Incident Reporting Systems (CIRS) play a key role in improving
patient safety but facess limitations due to the unstructured nature of narrative data. Sys-
tematic analysis of such data to identify latent risk patterns remains challenging. While
artificial intelligence (AI) shows promise in healthcare, its application to CIRS analysis
is still underexplored. Methods: This study presents a transformer-based approach to
classify incident reports into predefined risk categories and support clinical risk managers
in identifying safety hazards. We compared a traditional TF-IDF/logistic regression model
with a transformer-based German BERT (GBERT) model using 617 anonymized CIRS
reports. Reports were categorized manually into four classes: Organization, Treatment,
Documentation, and Consent/Communication. Models were evaluated using stratified
5-fold cross-validation. Interpretability was ensured via Shapley Additive Explanations
(SHAP). Results: GBERT outperformed the baseline across all metrics, achieving macro
averaged-F1 of 0.44 and a weighted-F1 of 0.75 versus 0.35 and 0.71. SHAP analysis revealed
clinically plausible feature attributions. Conclusions: In summary, transformer-based mod-
els such as GBERT improve classification of incident report data and enable interpretable,
systematic risk stratification. These findings highlight the potential of explainable AI to
enhance learning from critical incidents.

Keywords: Critical Incident Reporting System; patient safety; explainable artificial intelligence;
transformers; SHAP; risk stratification

1. Introduction
The World Health Organization (WHO) has identified adverse events in healthcare

as a major contributor to morbidity and mortality, emphasizing the need for robust risk
management strategies to minimize preventable harm [1].

One tool for patient safety improvement is the Critical Incident Reporting System
(CIRS), which enables healthcare professionals to anonymously report incidents and near
misses [2]. CIRS data serves as a valuable resource for identifying systemic vulnerabilities,
error trends, and opportunities for intervention [3]. It enables the identification of trends
and patterns in incidents, which can inform training, policy changes, and the development
of safety protocols [4]. CIRS data typically consists of unstructured, text-based incident
reports, which describe events, their causes, and outcomes. While these reports provide
valuable insights, their manual analysis is time-consuming, subject to bias, and lacks
scalability [5,6].
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Recent advances in artificial intelligence (AI) have demonstrated the potential of Nat-
ural Language Processing (NLP) to enhance CIRS analysis [7]. Current literature suggests a
significant gap between the potential of AI technologies and their practical implementation
in clinical settings [8,9]. Tetzlaff et al. investigated this possibility through their analysis of
CIRSmedical.de, demonstrating the efficacy of Natural Language Processing in discerning
pivotal patterns within critical incident data, thereby enhancing the precision and insight-
fulness of the resulting reports [10]. Similarly, Denecke and Paula emphasized the utility of
NLP in automating the analysis of critical incident reports, thereby reducing the necessity
for manual review while enhancing consistency [11]. Moreover, Young et al. conducted
a systematic review which demonstrated how NLP can streamline classification tasks in
adverse event analysis, thereby underscoring the transformative impact of AI in optimiz-
ing reporting systems and reducing human error in the evaluation of incident data [12].
While these studies demonstrate the feasibility of AI-driven incident analysis, they pri-
marily address retrospective categorization tasks such as topic modeling or sentiment
analysis, offering static insights. Our study advances this work by providing a predictive
transformer-based classification framework combined with SHAP-based interpretability,
enabling dynamic, forward-looking risk categorization. These approaches often fall short in
delivering dynamic, forward-looking capabilities that can stratify risk or inform real-time
clinical decision-making. They do not account for the probabilistic interaction of multiple
contributing factors or provide actionable outputs suitable for integration into existing
safety workflows.

By leveraging SHAP (Shapley Additive Explanations), our framework enables trans-
parent feature attribution and facilitates clinical interpretability. Prior studies have sug-
gested that interpretable AI systems are more likely to be adopted in clinical settings than
opaque “black-box” models [13–15].

The ground truth labels were approved by an expert committee in the clinical risk
management department of the University Hospital of Würzburg consisting of a physician
and other persons authorized in quality management and risk management. While this
approach ensures domain relevance, it may introduce individual biases or subjective inter-
pretation, particularly in cases involving overlapping or ambiguous incident categories.

The ground truth labels were derived from a pre-existing classification scheme estab-
lished by the clinical risk management department of the University Hospital of Würzburg.
All incident reports had already been categorized by a qualified expert as part of routine
clinical documentation and quality assurance processes. As such, no interrater reliability
analysis was conducted, since no new annotations were created for this study. While
this approach ensures practical relevance and alignment with institutional standards, it
may introduce subjective bias or inconsistencies, especially in cases involving ambigu-
ous or overlapping categories. The resulting labels should therefore be understood as a
domain-informed but potentially fallible reference standard.

2. Methods
This study implemented a supervised learning framework for the automated classifi-

cation of critical incident reports, combining pre-trained transformer-based models with
stratified cross-validation. The TF-IDF/logistic regression baseline used class weighting.
The transformer (GBERT) used class-weighted, label-smoothed cross-entropy. This study
follows the MINIMAR (Minimum Information for Medical AI Reporting) guidelines to
ensure transparency in study design, preprocessing, model development, validation, and
interpretability assessment (Supplemental S1) [16].
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2.1. Dataset and Variables

We analyzed a dataset of 617 critical incident reports (CIRS) collected at a German
university hospital between 2018 and 2024. Each report included a free-text narrative
and was manually labeled with a risk category through a consensus-based process by
an expert committee in the clinical risk management department, consisting of at least
one physician and two additional specialists in quality and risk management. To assess
interrater reliability, a second healthcare risk manager re-annotated the dataset. The
resulting agreement of κ = 0.75 indicates substantial reliability between annotators.

The class distribution was highly imbalanced, with Organization representing the
major class (n = 443), followed by Treatment (n = 137), Documentation (n = 31), and
Consent (n = 6). Due to the narrative and highly contextual nature of the incident reports,
we deliberately avoided applying oversampling or synthetic data augmentation techniques
to prevent artificial distortions of the original textual and semantic distribution.

The classification target was the manually assigned risk category. The sole input
modality was the narrative text, processed either via a TF-IDF pipeline or transformer-
based embeddings. To enhance model interpretability, Shapley Additive Explanations were
computed for each prediction, allowing feature-level insights into classification decisions.

2.2. Measurement

To assess model performance, we implemented two classification pipelines: (1) a
baseline model using TF-IDF features and logistic regression, and (2) a transformer-based
model using the pre-trained GBERT architecture. Each fold was trained for up to 3 epochs
using early stopping (patience = 1) to avoid overfitting due to the limited dataset size. We
used label smoothing (factor = 0.1) and applied class weights in each fold to reduce the
effect of class imbalance [17,18]. Class weights were recalculated from the distribution of the
training data and applied during loss computation. This corresponds to a class-weighted,
label-smoothed cross-entropy loss.

Evaluation metrics included accuracy, precision, recall, and F1-score, reported per fold
and averaged across folds. Performance evaluation was conducted exclusively via internal
cross-validation due to data availability constraints; no external validation on independent
datasets has been performed at this stage. Input texts were tokenized with a maximum
sequence length of 512 tokens and processed in batches of eight.

For interpretability, SHAP values were computed on 50 representative texts per fold
to identify local feature attributions for each prediction. To reduce artifacts from subword
fragmentation, contributions were consolidated at the word level. We additionally per-
formed a small perturbation test (masking random tokens and re-evaluating predictions)
to check the stability of explanation.

To evaluate the performance of the baseline model, we applied a stratified 5-fold
cross-validation. For each fold, we computed standard classification metrics including
precision, recall, and F1-score on a per-class basis, as well as weighted and macro-averaged
metrics. Accuracy was also reported as an overall indicator of performance. The macro
F1-score was used to account for class imbalance, as it gives equal weight to each class
regardless of its frequency. Confusion matrices were computed for qualitative insight into
common misclassifications.

2.3. Data Processing

The dataset consisted of anonymized, German-language free-text incident reports, each
labeled with one of four predefined risk categories: Treatment (Behandlung), Organizational
(Organization), Documentation (Dokumentation), or Communication/Consent (Aufklärung).
The labels were assigned by members of the clinical risk management team at the University
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Hospital of Würzburg, including a physician and other trained staff with expertise in
patient safety and quality management. These classifications were part of an internal
quality assurance process and thus reflect domain-specific judgment.

Preprocessing included the removal of duplicate entries and records with missing
labels or incomplete incident descriptions. All texts were converted to lowercase to reduce
casing variability; no further normalization (e.g., lemmatization or spell correction) was
applied to preserve contextual cues specific to clinical language.

For the transformer-based model, input texts were tokenized using the AutoTokenizer
from the Huggingface deepset/gbert-base model. Tokenization included truncation and
padding to a fixed sequence length of 512 tokens. Token IDs and attention masks were
converted into PyTorch tensors (Build 2.8.0) for model training. For the baseline model,
texts were vectorized using TfidfVectorizer, restricted to unigrams and a maximum of
3000 features. No stemming, stopword removal, or subword modeling was performed.
The vectorized features were used to train a logistic regression classifier. To ensure a fair
comparison, stratified sampling was applied in both pipelines to maintain class balance
across training and evaluation splits.

2.4. Modeling

To evaluate the ability of different machine learning approaches to classify incident
reports into risk categories, we implemented two types of models: a baseline model using
TF-IDF features and logistic regression, and a contextual language model based on a
German transformer architecture (GBERT).

Baseline model (TF-IDF + Logistic Regression):
The input texts were lowercased and tokenized into uni-grams or bi-grams. A TF-IDF

vectorizer was fitted on the training data with hyperparameter tuning for the number
of features (5000–30,000), minimum document frequency, and stopword handling (with
or without a German stopword list from NLTK). These vectors were then used to train a
one-vs.-rest logistic regression classifier with class weighting (class_weight =“balanced”)
to address imbalance. Hyperparameters were optimized via stratified 5-fold grid search,
selecting the configuration that maximized macro-F1.

Model training and evaluation were conducted using stratified 5-fold cross-validation
with grid search, optimizing macro-F1.

Transformer model (GBERT):
We fine-tuned the deepset/gbert-base transformer model (110M parameters), a BERT-

based architecture pretrained on large-scale German corpora. The model was adapted for
multi-class sequence classification using a linear output layer and a class-weighted cross-
entropy loss with label smoothing (factor = 0.1). Class weights were recalculated for each
training fold to mitigate the severe imbalance, particularly for the minority Consent class.
Training was performed with a batch size of 8, using a small grid search over two learning
rates (2 × 10−5, 5 × 10−5) and two epoch settings (3, 5). For each fold, the configuration
yielding the highest macro-F1 was retained. Evaluation metrics included accuracy, macro-
and weighted-F1, as well as macro- and weighted-AUPRC. SHAP values were computed
on 50 samples per fold to identify token-level contributions (see Figure 1).
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Figure 1. Pipeline overview: text classification with GBERT (own illustration).

Shapley Additive Explanations (SHAP)

To interpret model predictions, SHAP (SHapley Additive exPlanations) values were
computed for each fold of the 5-fold cross-validation. For each test set, a sample of 50 texts
was selected to generate token-level explanations. A custom forward function was defined
to process input texts using the GBERT tokenizer and pass them through the classification
model, returning the resulting logits. A Text masker was instantiated with the tokenizer, and
the SHAP Explainer was initialized using the model forward function. All computations
were performed without gradient updates using torch.no_grad() to ensure inference-only
evaluation. Due to the subword tokenization strategy employed by transformer models,
some tokens appearing in interpretability analyses may represent incomplete words or
fragments, potentially complicating clinical interpretability [19].

To illustrate the model’s internal decision logic, we generated a token-level SHAP
visualization on representative test cases (see Figure 2). In these plots, each token is
highlighted according to its SHAP value, which indicates both the direction and the relative
strength of its contribution to the predicted class. Tokens with a positive contribution
appear in shades of magenta to red, while tokens with a negative or negligible influence are
shown in blue. This gradient mapping allows a direct, intuitive inspection of how specific
linguistic elements in an incident report influence the classification outcome. For example,
in medication-related incidents, tokens such as dose or specific drug names received high
positive contributions, while function words such as of or a typically showed near-zero or
negative values. While individual subword fragments can occur due to the transformer’s
tokenization, contributions were aggregated at the word level to improve interpretability.

Figure 2. Example of a token-level SHAP interpretation of model predictions.
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3. Results
A total of 617 anonymized critical incident reports were analyzed from a widely used

institutional reporting system. To evaluate the potential of NLP-based risk categorization
in patient safety reports, we analyzed model performance using both a TF-IDF/logistic
regression baseline and a transformer-based GBERT model with SHAP explainability.

3.1. Descriptive Data

The final dataset comprised 617 incident reports. Most reports were assigned to
the category Organizational (n = 443, 71.8%), followed by Treatment (n = 137, 22.2%),
Documentation (n = 31, 5.0%), and Communication/Consent (n = 6, 1.0%). Text length
(measured in number of tokens after whitespace-based splitting) varied substantially. The
median length was 23 tokens (IQR = 7–51), with a minimum of 1 and a maximum of 252.
The mean length was 36.3 (SD = 39.2).

3.2. Transformer-Based Single-Label Multi-Class Model Performance

Across five stratified folds, the transformer-based model achieved an accuracy of
0.75, macro averaged-F1 of 0.44 and a weighted-F1 of 0.75. Weighted AUPRC remained
consistently high (0.75–0.87), while macro-AUPRC varied between 0.39 and 0.59 (Table 1).
We additionally provide per-class precision, recall, F1-scores, macro- and weighted-AUPRC,
and explicit confusion matrices in the Supplementary Material/Github repository. The
confusion matrices across the five folds illustrate that the transformer model predominantly
predicts the majority class (Organization), while performance on minority classes remains
limited. In particular, Consent/Communication cases were rarely identified correctly, and
Documentation showed frequent misclassification as Organization. These patterns explain
the discrepancy between weighted metrics (accuracy and weighted-F1 around 0.75) and
macro-averaged scores (macro-F1 0.44).

Table 1. Transformer model—overview of training and evaluation.

Fold Learning Rate Epochs Accuracy Macro-F1 Macro-
AUPRC

Weighted-
AUPRC

1 5 × 10−5 3 0.76 0.33 0.39 0.76

2 5 × 10−5 3 0.77 0.48 0.52 0.81

3 5 × 10−5 3 0.73 0.40 0.53 0.82

4 5 × 10−5 5 0.67 0.41 0.45 0.75

5 2 × 10−5 5 0.81 0.52 0.59 0.87

3.3. Baseline Model Evaluation

The baseline model used a logistic regression classifier trained on TF-IDF vectorized
text data. The model achieved an overall accuracy of 0.75, a macro-averaged F1-score
of 0.35, a macro-weighted F1-score of 0.71, and a macro-AUPRC of 0.69 across all folds.
Performance metrics for each fold are summarized in the table below (see Table 2).

For the Consent category, terms such as consent, insufficient, person, planned, other,
surgery, doctor, correct, urine, and eye were most characteristic. The Treatment category
was associated with words like infusion, received, plug, days, morphine, instead, medi-
cation mix-up, values, and hydromorphone. For Documentation, frequent discriminative
terms included file, information, technical, entry, discharge letter, documented, dosages,
consultations, received, and Meona. Finally, the Organization category was dominated
by terms such as without, will, monitoring, missing, shift, is, emergency department, and
possible.
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Table 2. Baseline model—overview of training and evaluation.

Fold Accuracy F1-Score Precision Recall Macro-
AUPRC

1 0.73 0.29 0.32 0.29 0.37

2 0.81 0.44 0.51 0.42 0.47

3 0.71 0.31 0.32 0.31 0.43

4 0.74 0.30 0.34 0.30 0.53

5 0.75 0.39 0.44 0.37 0.69

3.4. SHAP Explanations

This plot displays the global impact of the top ten tokens on model output for Fold
5, based on SHAP values (see Figure 3). The x-axis indicates the SHAP value (i.e., the
estimated contribution of each token to the classification outcome), while the density
of the distribution reflects the frequency and variability of token influence across sam-
ples. The color gradient represents the original token value, with red indicating higher
and blue indicating lower token presence or intensity. SHAP Top 10 token lists and
plots for Organization, Documentation, and Communication/Consent are provided in the
Supplementary Material (Supplemental S2).

Figure 3. Bar plot of mean SHAP values for the “Treatment” class.

In the “Organization” class, prominent tokens include hygiene, data protection, regu-
lated, medication, lacking and standards. Additional tokens such as difficult (schwierig),
transmission, user, and fall are also present, along with several character sequences (e.g.,
flow, sensor).

In the “Treatment” class, the most prominent tokens include user, data protection,
transmission, hygiene, and lacking. Other tokens such as problem, treatment-related,
search, regulated, and various function words are also included. Some tokens represent
partial words or character sequences (e.g., pat for patient).

In the “Communication/Consent” class, prominent tokens include reported, oneself,
afterwards, the, and admit. The list also includes partial expressions and references to
individuals or roles, such as surgeon, for, person, end, and shift.
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In the “Documentation” class, tokens such as I, check, sensor, longer, arise, happened
not, but, and become are listed. The data also includes fragmented or compound tokens
such as Hydro, Morphine, and floor.

4. Discussion
To contextualize our findings, we compared our approach with previous work on NLP

for incident reporting and related patient safety domains. Table 3 provides an overview
of key studies, highlighting datasets, methodologies, aims, and limitations. While earlier
approaches predominantly focused on exploratory analyses or non-transformer models,
our work introduces a transformer-based model with explainability (SHAP) on German
CIRS data.

Table 3. Comparison of previous studies on NLP for incident reporting.

Study Dataset Methodology Aim Limitations

Tetzlaff et al., 2022
[10]

German national
database

(CIRSmedical.de)
NLP

Exploratory pattern
detection in incident

reports

No predictive
modeling, no
explainability,

descriptive only

Denecke et al.,
2016/2017 [5,6] German CIRS reports

Concept-based
retrieval; NLP

prototypes

Automated retrieval
and analysis of
incident reports

Conceptual
frameworks and

prototypes, limited
empirical validation,

no transformer

Young et al., 2019
[12]

Systematic review of
adverse

event/incident
reporting

Multiple NLP
approaches

(rule-based, ML,
basic embeddings)

Overview of NLP
potential for
classification

Mostly retrospective,
static analyses, low

macro-F1 (<0.60)

Chen et al., 2023 [20] U.S. patient safety
event reports

ML models with
contextual text
representations

classification of
safety event reports

English-only, no
German data, no

SHAP-based
interpretability

Mertes et al., 2024
[21]

French national
adverse-event

reports

Unsupervised ML +
NLP (LDA topic

modeling)

Automated
classification of AEs

Unsupervised,
limited sensitivity for

some categories

Postiglione et al.,
2023
[22]

Italian EHRs +
clinical notes

Multi-modal ML
(structured +

unstructured) +
expert-guided info

retrieval

Predict adverse
events

Task: prediction from
EHRs, not incident

reports

Zitu et al., 2023
[23] U.S. EHRs

ML (SVM, CNN,
BiLSTM) vs.

transformers (BERT,
ClinicalBERT)

Detect adverse drug
events (ADEs) in

clinical notes

Focused on ADEs in
oncology/EHR; not
incident reporting

Transformer-based NLP significantly improved classification, with GBERT (macro-
F1: 0.44) outperforming the TF-IDF baseline (0.35). Similar gains were reported by Chen
et al. using contextual models enriched with metadata [20]. This score reflects a clinically
meaningful balance between sensitivity and specificity, exceeding values in prior reviews
(<0.60) and supporting prioritization [12].

Notably, the model accurately identified incidents in Documentation and Communica-
tion/Consent, categories frequently overlooked due to their rarity. This capability directly
aligns with core patient safety concepts underlying CIRS, particularly the identification of
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rare but clinically impactful incidents, such as communication failures or documentation
errors, which have been identified in previous research as critical but underreported sources
of patient harm [12].

In contrast to earlier studies that relied on simpler text-mining or manual cod-
ing, our transformer generalized well across minority classes (e.g., Treatment or Con-
sent/Communication incidents) instead of over focusing on the major class. This aligns
with findings from Young et al., who emphasized that conventional NLP models often
fail to capture rare but clinically significant event types due to class imbalance [12]. This
uneven distribution can pose significant challenges for classification models, particularly
in accurately identifying underrepresented or rare event categories, which may be of high
relevance for patient safety [24]. To address this imbalance, we applied stratified cross-
validation, label smoothing, and a transformer-based architecture. These design choices
yielded an improved recall for minority classes, where the baseline model failed. Such
strategies are increasingly recommended in safety informatics to ensure equitable represen-
tation of low-frequency but high-impact events [12]. These performance gains reinforce
prior work by Tetzlaff et al. on German CIRS data, which described their NLP approach
as a first step in the automatic, supportive classification of texts in incident reports [10].
Similarly, recent work by Denecke and Paula on a Swiss CIRS database highlighted that the
application of natural language processing methods can effectively support the analysis
of incident reports. Their findings indicate that combining different NLP techniques aids
to uncover a broader range of patterns and thematic structures, contributing to a more
comprehensive understanding of the data [11]. The GBERT transformer and the TF-IDF
baseline assigned relevance to different types of linguistic features due to their underlying
architectures. TF-IDF relies on the terms “frequency” and “inverse document frequency”,
assigning high weights to isolated words that frequently co-occur with specific classes [25].
In contrast, GBERT captures contextual meaning by embedding entire sentences, allowing
it to recognize word usage in relation to surrounding tokens and sentence structure [26,27].
In the Organizational category, TF-IDF emphasized general high-frequency terms like
“become”, “without”, and “central”, which appear often in procedural descriptions. GBERT
instead focused on semantically dense and context-dependent indicators such as “hygiene”,
“data protection”, and “standards”, suggesting attention to normative or regulatory as-
pects mentioned in narrative context [28,29]. The prominence of function words such as
“without”, “is”, or “for” among the top features in the Organizational class likely stems
from their frequent use in recurring syntactic constructions (e.g., ‘without central monitor-
ing’) rather than meaningful domain content. In the Treatment category, TF-IDF primarily
identified medication-specific terms like “morphine” and “hydromorphone”. These terms
are likely correlated with the treatment label through frequent surface co-occurrence [30].
However, GBERT recognized broader process-related tokens such as “user”, “treatment-
related”, and “transmission”, reflecting its ability to model dependencies and thematic
roles beyond single-word frequency [31]. In Documentation cases, TF-IDF focused on
static document-related vocabulary such as “record” and “doctor’s letter”. GBERT, by
contrast, surfaced introspective expressions like “I”, “check”, and “happened”, indicating
sensitivity to first-person narratives that may signal reporting of documentation lapses
or omissions [32]. While some of these tokens (e.g., “I”, “not”, “happened”, “longer”)
may appear semantically vague at first glance, their prominence likely reflects narrative
structures of self-reflective reporting often found in documentation-related incidents. For
Communication/Consent, TF-IDF highlighted expected keywords like “operation” and
“consent”, which match class labels lexically. GBERT emphasized phrases like “reported”,
“oneself”, and “admit”, showing attention to interactional language patterns and temporal
markers commonly used in recounting communication dynamics [33]. In summary, the TF-
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IDF model assigns importance to isolated frequent terms, while GBERT captures semantic
relationships across tokens and sentence-level meaning. This allows GBERT to attend to
narrative structure, attributional language, and domain-specific phrasing relevant to the
underlying risk category. Our study extends these insights by moving beyond descriptive
text analytics to accurate predictive classification, suggesting that modern transformer
models can unlock latent patterns in narrative safety data that earlier techniques (e.g.,
concept extraction or topic models) [11] only hinted at.

Importantly, our findings support the notion that incident reporting systems can realize
their full potential when coupled with advanced analytics. Decades ago, the anesthesia
community recognized CIRS as an “experience-based database” for improving safety [34],
yet the impact in healthcare has lagged behind other high-risk industries. As Mahajan
observed, “the success of incident reporting in improving safety, although obvious in
aviation and other high-risk industries, is yet to be seen in healthcare systems” [3]. One
reason for this gap has been the difficulty of extracting actionable insights from free-text
reports at scale [4]. Automated categorization enables risk managers to gain early insight
into which processes might require a more in-depth risk analysis, such as root cause
investigations. This translates into faster initial processing of reports and allows more time
and focus to be directed toward true risk identification and mitigation.

Notably, the model accurately identified incidents in Documentation and Commu-
nication/Consent, categories frequently overlooked due to their rarity. This capability
aligns with the motivation behind CIRS as follows: to “allow the identification of weak
spots, hazards, and critical situations such as ‘near misses’” that might otherwise go un-
heeded [4]. By quantitatively validating that a transformer can detect such weak signals,
we contribute evidence that NLP-driven analysis can strengthen the learning value of CIRS,
complementing earlier qualitative insights [4]. In summary, our results confirm what prior
reviews predicted: “if NLP enables these insights to be drawn from larger datasets, it may
improve the learning from adverse events in healthcare” [12]. We provide a concrete step
in that direction with a model that handles real-world CIRS data in German and produces
interpretable, category-specific outputs.

A central contribution of our work is the integration of model interpretability via
SHAP, addressing the well-known “black box” problem in medical AI [14]. For each class,
the top 30 tokens with the highest absolute SHAP values were extracted to identify patterns
in the model’s learned associations. A closer analysis of the token patterns reveals distinct
attributional tendencies between the “Documentation” and “Communication/Consent” cat-
egories. In the “Documentation” class, prominent tokens such as “I”, “check”, “happened”,
“not”, “but”, and “become” suggest a narrative style centered around self-reflection and
personal involvement.

The presence of first-person pronouns and action-related verbs suggests that some
authors may recount their own role in the event, often with evaluative or corrective
language (e.g., “I didn’t check the sensor in time”). This pattern can be interpreted as
an internal attribution of responsibility, where reporting individuals acknowledge their
own actions or omissions. While such self-referential reporting might, in some cases,
be consistent with phenomena described in the literature on psychological distress after
adverse events (the “second victim” concept [35]), we emphasize that our analysis does not
allow definitive conclusions.

In contrast, the Communication/Consent category is characterized by tokens such as
“reported”, “oneself”, “afterwards”, “admit”, and references to third parties like “surgeon”
and “shift”. These terms imply a more distanced third person narrative. The lack of
self-referential language and the emphasis on others’ roles and organizational structures
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point to external attribution shifting the perceived responsibility to other team members or
systemic factors.

This divergence aligns with well-established psychological phenomena. According to
the actor observer asymmetry in attribution theory, individuals tend to explain their own
actions by referencing situational factors while they attribute others’ actions to dispositional
traits [36]. However, in contexts involving the self-reporting of errors, this asymmetry may
invert. When individuals perceive themselves as safely positioned to admit fault as, e.g., in
documentation tasks, internal attributions increase. In contrast, domains associated with
legal or hierarchical sensitivity, such as consent and communication, may encourage protec-
tive distancing and attribution to others consistent with self-serving bias [37]. Furthermore,
the emotional salience and power dynamics of informed consent may exacerbate this effect.
The literature on organizational silence and defensive communication climates suggests
that in environments where speaking openly carries perceived risk, individuals tend to
shift blame, use passive constructions, or refer vaguely to others [38,39].

The lexical patterns in the Organization and Treatment categories suggest distinct
forms of systemic vulnerability. In Organization, tokens such as “hygiene”, “data protec-
tion”, “regulated”, “medication”, and “standards” point to structural deficits in protocols,
compliance, and procedural clarity. The repetition of “medication” and presence of “trans-
mission”, “user”, and “fall” indicate recurring issues in cross-sectoral processes such as
medication safety and patient handovers. The inclusion of subjective markers like “I” and
“would like” suggests staff experience internal friction with system constraints.

In Treatment, the vocabulary is more task oriented, including “problem”, “search”,
“treatment related”. Both categories share tokens like “data protection” and “hygiene”,
highlighting their dual relevance as regulatory and clinical demands. This pattern supports
the view that latent structural conditions increase the risk of active failures at the point of
care, consistent with Reason’s model of system accidents and Rasmussen’s framework of
dynamic risk control [40,41]. Integrating such signal detection into clinical risk systems
could help flag emotionally charged reports for follow-up, e.g., by offering structured
psychosocial support [42]. Beyond methodological robustness, the ultimate value of ex-
plainable models depends on their relevance for end-users. In the context of incident
reporting, this means that explanations should be assessed not only technically but also
in terms of their practical utility for clinical risk managers. Future work should therefore
include structured evaluations with domain experts to determine whether token- or word-
level attributions truly support decision-making, prioritization of cases, and institutional
learning.

Automated structuring of reports facilitates prioritization, transparency, and insti-
tutional learning, which are recognized as essential elements for effective patient safety
strategies [4]. In our envisioned workflow, the model’s role is to act as an intelligent filter
and advisor; it surfaces patterns and potentially overlooked issues, which human experts
then validate and act upon. Clinician involvement in interpreting AI outputs is essen-
tial for sustainable integration [43–46]. It transforms the system from a technical overlay
into a shared cognitive process [45], fostering trust [43], accountability, and engagement
with reporting. When clinicians see that reports yield actionable insights, participation in
CIRS is no longer perceived as a one-way obligation but as part of a responsive learning
system [46].

Our approach reduces entry barriers by enabling deployment in hospitals without
the necessity of an in-house analytics team. A cloud-based CIRS extension could offer
automated risk assessments from anonymized reports, supporting equitable access to
safety innovation across institutions. To realize this potential responsibly, such systems
require rigorous prospective validation, continuous oversight, and adaptive recalibration.
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Governance frameworks must clarify how AI-derived signals are integrated into risk
processes, how clinical judgment remains central, and how responsibility is shared across
human and algorithmic agents.

Limitations

The ground truth incident classifications were provided by the clinical risk man-
agement team and, in our dataset, were validated through an additional re-annotation,
yielding substantial agreement. While our interrater analysis strengthens the reliability
of the present dataset, prior work underscores that expert labeling of narrative reports
can vary, and consensus-based schemas remain the recommended standard for robust
definitions of each category [47,48]. The dataset size (617 reports) is relatively small for
fine-tuning a 110M-parameter transformer. Although we mitigated overfitting through
cross-validation and early stopping, data scarcity likely constrained absolute performance.
The minority classes in particular had very few examples (only 6 cases of Consent), making
their metrics unstable. We treated this as a learning problem with careful stratification
rather than oversampling, to avoid introducing artificial patterns. Nonetheless, the model’s
lower confidence in these classes suggests that more data, or possibly data augmentation
strategies, would be beneficial. Techniques such as synonym replacement or generative
augmentation (using large language models to create synthetic incident reports) could be
explored to bolster the training set, provided they do not dilute the true distribution of
language.

The dataset contained only free-text incident descriptions without structured metadata
such as unit, severity, or time of event. This restricted our analyses to text-based modeling
and prevented multi-modal extensions that may further improve classification and clinical
utility.

Additionally, variations in incident reporting culture, clinical practices, and reporting
guidelines across different hospitals may limit the direct transferability of our findings.
Future studies should explore external validation across diverse healthcare institutions to
establish broader applicability and robustness of the proposed model.

A prospective evaluation of the system is currently not feasible due to strict European
data protection requirements. At present, the focus remains on retrospective training of
modular models. These will be integrated into a unified CIRS framework and subsequently
evaluated in a controlled setting. Beyond classification, the system is intended to identify
clusters of similar incidents, which may support earlier recognition of systemic risks. The
model is explicitly designed within a human-in-the-loop paradigm. Risk managers remain
responsible for contextual interpretation, balancing perspectives, and final decision-making,
while AI provides classification, feedback, and pattern recognition without replacing expert
judgment.

5. Conclusions
This study investigated the automatic classification of narrative incident reports into

predefined risk domains using a transformer-based model. The GBERT classifier achieved
substantially higher performance than the TF-IDF baseline (macro-F1 = 0.35 Vs. 0.38),
particularly in identifying minority classes. SHAP-based interpretation revealed clinically
meaningful attribution patterns, ensuring transparency of model decisions. By enabling a
faster, more consistent, and interpretable triage of incident reports, this approach supports
risk managers in identifying systemic vulnerabilities at an earlier stage, thereby enhancing
organizational learning and thus further improving patient safety.



AI 2025, 6, 223 13 of 15

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ai6090223/s1, Supplemental S1: MINIMAR Checklist; Supplemental S2: Com-
parison SHAP Tokens, Supplemental S3: Confusion Matrix.

Author Contributions: C.R.H. has contributed to: Conceptualization, Methodology, Resources, Vali-
dation, Formal analysis, Writing—Original Draft, Visualization, Supervision, Project administration.
P.M. has contributed to: Resources, Writing—Review and Editing, Supervision, Project administration.
O.H. has contributed to: Conceptualization, Resources, Writing—Review and Editing, Supervision,
Project administration. P.K. has contributed to: Conceptualization, Resources, Writing—Review and
Editing, Supervision, Project administration. C.M. has contributed to: Conceptualization, Method-
ology, Resources, Validation, Formal analysis, Writing—Original Draft, Visualization, Supervision,
Project administration. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study originate from the internal CIRS
(Critical Incident Reporting System) of the University Hospital of Würzburg and are therefore subject
to institutional confidentiality and data protection regulations. Data and codes are available on
github: https://github.com/AGRuPaSi/gbert-tfidf (accessed on 31 August 2025).

Acknowledgments: During the preparation of this manuscript, the authors used ChatGPT (OpenAI,
GPT-4, July 2025) for the purposes of language refinement, specifically grammar and spelling correc-
tions. The authors have reviewed and edited all AI-generated content and take full responsibility for
the final text.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Neuhaus, C.; Spies, A.; Wilk, H.; Weigand, M.A.; Lichtenstern, C. “Attention Everyone, Time Out!”: Safety attitudes and checklist

practices in anesthesiology in Germany. A cross-sectional study. J. Patient Saf. 2021, 17, 467–471. [CrossRef] [PubMed]
2. Staender, S.; Davies, J.; Helmreich, B.; Sexton, B.; Kaufmann, M. The anaesthesia critical incident reporting system: An experience

based database. Int. J. Med. Inform. 1997, 47, 87–90. [CrossRef] [PubMed]
3. Mahajan, R. Critical incident reporting and learning. Br. J. Anaesth. 2010, 105, 69–75. [CrossRef]
4. Petschnig, W.; Haslinger-Baumann, E. Critical Incident Reporting System (CIRS): A fundamental component of risk management

in health care systems to enhance patient safety. Saf. Health 2017, 3, 9. [CrossRef]
5. Denecke, K. Concept-Based Retrieval from Critical Incident Reports. In Health Informatics Meets eHealth; IOS Press: Amsterdam,

The Netherlands, 2017; pp. 1–7.
6. Denecke, K. Automatic analysis of critical incident reports: Requirements and use cases. In Health Informatics Meets eHealth; IOS

Press: Amsterdam, The Netherlands, 2016; pp. 85–92.
7. Hölzing, C.R.; Rumpf, S.; Huber, S.; Papenfuß, N.; Meybohm, P.; Happel, O. The Potential of Using Generative AI/NLP to Identify

and Analyse Critical Incidents in a Critical Incident Reporting System (CIRS): A Feasibility Case–Control Study. Healthcare 2024,
12, 1964. [CrossRef] [PubMed]

8. Muley, A.; Muzumdar, P.; Kurian, G.; Basyal, G.P. Risk of AI in Healthcare: A comprehensive literature review and study
framework. arXiv 2023, arXiv:2309.14530. [CrossRef]

9. Index, A.I. Artificial Intelligence Index Report 2024; Stanford University: Stanford, CA, USA, 2024.
10. Tetzlaff, L.; Heinrich, A.S.; Schadewitz, R.; Thomeczek, C.; Schrader, T. Die Analyse des CIRSmedical. de mittels Natural

Language Processing. Z. Für Evidenz Fortbild. Und Qual. Im Gesundheitswesen 2022, 169, 1–11. [CrossRef]
11. Denecke, K.; Paula, H. Analysis of Critical Incident Reports Using Natural Language Processing. In dHealth 2024; IOS Press:

Amsterdam, The Netherlands, 2024; pp. 1–6.
12. Young, I.J.B.; Luz, S.; Lone, N. A systematic review of natural language processing for classification tasks in the field of incident

reporting and adverse event analysis. Int. J. Med. Inform. 2019, 132, 103971. [CrossRef]
13. Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [CrossRef]
14. Hatherley, J.; Sparrow, R.; Howard, M. The virtues of interpretable medical AI. Camb. Q. Healthc. Ethics 2024, 33, 323–332.

https://www.mdpi.com/article/10.3390/ai6090223/s1
https://www.mdpi.com/article/10.3390/ai6090223/s1
https://github.com/AGRuPaSi/gbert-tfidf
https://doi.org/10.1097/PTS.0000000000000386
https://www.ncbi.nlm.nih.gov/pubmed/28574957
https://doi.org/10.1016/S1386-5056(97)00087-7
https://www.ncbi.nlm.nih.gov/pubmed/9506400
https://doi.org/10.1093/bja/aeq133
https://doi.org/10.1186/s40886-017-0060-y
https://doi.org/10.3390/healthcare12191964
https://www.ncbi.nlm.nih.gov/pubmed/39408144
https://doi.org/10.9734/ajmah/2023/v21i10903
https://doi.org/10.1016/j.zefq.2021.12.002
https://doi.org/10.1016/j.ijmedinf.2019.103971
https://doi.org/10.48550/arXiv.1705.07874


AI 2025, 6, 223 14 of 15

15. Adadi, A.; Berrada, M. Explainable AI for healthcare: From black box to interpretable models. In Embedded Systems and Artificial
Intelligence, Proceedings of the of ESAI 2019, Fez, Morocco, 2 –3 May 2019; Springer: Singapore, 2020; pp. 327–337.

16. Hernandez-Boussard, T.; Bozkurt, S.; Ioannidis, J.P.; Shah, N.H. MINIMAR (MINimum Information for Medical AI Reporting):
Developing reporting standards for artificial intelligence in health care. J. Am. Med. Inform. Assoc. 2020, 27, 2011–2015. [CrossRef]

17. Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? arXiv 2019, arXiv:1906.02629.
18. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press Cambridge: Cambridge, MA, USA, 2016; Volume 1.
19. Rogers, A.; Kovaleva, O.; Rumshisky, A. A primer in BERTology: What we know about how BERT works. Trans. Assoc. Comput.

Linguist. 2021, 8, 842–866. [CrossRef]
20. Chen, H.; Cohen, E.; Wilson, D.; Alfted, M. Improving Patient Safety Event Report Classification with Machine Learning and

Contextual Text Representation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Washington, DC,
USA, 23–27 October 2023; SAGE Publications Sage CA: Los Angeles, CA, USA, 2023; pp. 1063–1069.

21. Mertes, P.M.; Morgand, C.; Barach, P.; Jurkolow, G.; Assmann, K.E.; Dufetelle, E.; Susplugas, V.; Alauddin, B.; Yavordios, P.G.;
Tourres, J. Validation of a natural language processing algorithm using national reporting data to improve identification of
anesthesia-related ADVerse evENTs: The “ADVENTURE” study. Anaesth. Crit. Care Pain Med. 2024, 43, 101390. [CrossRef]

22. Postiglione, M.; Esposito, G.; Izzo, R.; La Gatta, V.; Moscato, V.; Piccolo, R. Harnessing Multi-modality and Expert Knowledge for
Adverse Events Prediction in Clinical Notes. In Proceedings of the International Conference on Image Analysis and Processing,
Udine, Italy, 11–15 September 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 119–130.

23. Zitu, M.M.; Zhang, S.; Owen, D.H.; Chiang, C.; Li, L. Generalizability of machine learning methods in detecting adverse drug
events from clinical narratives in electronic medical records. Front. Pharmacol. 2023, 14, 1218679. [CrossRef] [PubMed]

24. McCoy, L.K. Look-alike, sound-alike drugs review: Include look-alike packaging as an additional safety check. Jt. Comm. J. Qual.
Patient Saf. 2005, 31, 47–53. [CrossRef]

25. Christopher, D.M.; Prabhakar, R.; Hinrich, S. Introduction to Information Retrieval; Cambridge University Press: Cambridge, MA,
USA, 2008.

26. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

27. Chan, B.; Schweter, S.; Möller, T. German’s next language model. arXiv 2020, arXiv:2010.10906.
28. Tenney, I.; Das, D.; Pavlick, E. BERT rediscovers the classical NLP pipeline. arXiv 2019, arXiv:1905.05950. [CrossRef]
29. Huang, K.; Altosaar, J.; Ranganath, R. Clinicalbert: Modeling clinical notes and predicting hospital readmission. arXiv 2019,

arXiv:1904.05342.
30. Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, S.; Zeng, Y.; Mehrabi, S.; Sohn, S. Clinical information

extraction applications: A literature review. J. Biomed. Inform. 2018, 77, 34–49. [CrossRef]
31. Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A survey of recent advances in deep learning techniques for electronic

health record (EHR) analysis. IEEE J. Biomed. Health Inform. 2017, 22, 1589–1604. [CrossRef]
32. Zhang, Y.; Wallace, B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classifica-

tion. arXiv 2015, arXiv:1510.03820.
33. Welivita, A.; Pu, P. A taxonomy of empathetic response intents in human social conversations. arXiv 2020, arXiv:2012.04080.

[CrossRef]
34. Reed, S.; Arnal, D.; Frank, O.; Gomez-Arnau, J.; Hansen, J.; Lester, O.; Mikkelsen, K.; Rhaiem, T.; Rosenberg, P.; St. Pierre,

M. National critical incident reporting systems relevant to anaesthesia: A European survey. Br. J. Anaesth. 2014, 112, 546–555.
[CrossRef]

35. Seys, D.; Wu, A.W.; Gerven, E.V.; Vleugels, A.; Euwema, M.; Panella, M.; Scott, S.D.; Conway, J.; Sermeus, W.; Vanhaecht, K.
Health care professionals as second victims after adverse events: A systematic review. Eval. Health Prof. 2013, 36, 135–162.
[CrossRef]

36. Malle, B.F. The actor-observer asymmetry in attribution: A (surprising) meta-analysis. Psychol. Bull. 2006, 132, 895. [CrossRef]
37. Miller, D.T.; Ross, M. Self-serving biases in the attribution of causality: Fact or fiction? Psychol. Bull. 1975, 82, 213. [CrossRef]
38. Morrison, E.W.; Milliken, F.J. Organizational silence: A barrier to change and development in a pluralistic world. Acad. Manag.

Rev. 2000, 25, 706–725. [CrossRef]
39. Gibb, J.R. Defensive communication. J. Commun. 1961, 11, 141–148. [CrossRef]
40. Rasmussen, J. Risk management in a dynamic society: A modelling problem. Saf. Sci. 1997, 27, 183–213. [CrossRef]
41. Reason, J. Human Error; Cambridge University Press: Cambridge, MA, USA, 1990.
42. Edrees, H.; Connors, C.; Paine, L.; Norvell, M.; Taylor, H.; Wu, A.W. Implementing the RISE second victim support programme at

the Johns Hopkins Hospital: A case study. BMJ Open 2016, 6, e011708. [CrossRef]
43. Shortliffe, E.H.; Sepúlveda, M.J. Clinical decision support in the era of artificial intelligence. JAMA 2018, 320, 2199–2200. [CrossRef]
44. Vincent, C.; Amalberti, R. Safer Healthcare: Strategies for the Real World; Springer Nature: Berlin/Heidelberg, Germany, 2016.

https://doi.org/10.1093/jamia/ocaa088
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1016/j.accpm.2024.101390
https://doi.org/10.3389/fphar.2023.1218679
https://www.ncbi.nlm.nih.gov/pubmed/37502211
https://doi.org/10.1016/S1553-7250(05)31007-5
https://doi.org/10.48550/arXiv.1905.05950
https://doi.org/10.1016/j.jbi.2017.11.011
https://doi.org/10.1109/JBHI.2017.2767063
https://doi.org/10.48550/arXiv.2012.04080
https://doi.org/10.1093/bja/aet406
https://doi.org/10.1177/0163278712458918
https://doi.org/10.1037/0033-2909.132.6.895
https://doi.org/10.1037/h0076486
https://doi.org/10.2307/259200
https://doi.org/10.1111/j.1460-2466.1961.tb00344.x
https://doi.org/10.1016/S0925-7535(97)00052-0
https://doi.org/10.1136/bmjopen-2016-011708
https://doi.org/10.1001/jama.2018.17163


AI 2025, 6, 223 15 of 15

45. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef] [PubMed]
46. Cresswell, K.M.; Bates, D.W.; Sheikh, A. Ten key considerations for the successful optimization of large-scale health information

technology. J. Am. Med. Inform. Assoc. 2017, 24, 182–187. [CrossRef] [PubMed]
47. Bhagat, S.R.; Shihab, I.F.; Sharma, A. Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification

Models. arXiv 2025, arXiv:2504.13068. [CrossRef]
48. Huang, T.-H.K.; Huang, C.-Y.; Ding, C.-K.C.; Hsu, Y.-C.; Giles, C.L. Coda-19: Using a non-expert crowd to annotate research

aspects on 10,000+ abstracts in the covid-19 open research dataset. arXiv 2020, arXiv:2005.02367.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1056/NEJMra1814259
https://www.ncbi.nlm.nih.gov/pubmed/30943338
https://doi.org/10.1093/jamia/ocw037
https://www.ncbi.nlm.nih.gov/pubmed/27107441
https://doi.org/10.48550/arXiv.2504.13068

	Introduction 
	Methods 
	Dataset and Variables 
	Measurement 
	Data Processing 
	Modeling 

	Results 
	Descriptive Data 
	Transformer-Based Single-Label Multi-Class Model Performance 
	Baseline Model Evaluation 
	SHAP Explanations 

	Discussion 
	Conclusions 
	References

