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Abstract

Background/Objectives: Knee osteoarthritis (KOA) is a prevalent disorder affecting both
older adults and younger individuals, leading to compromised joint function and mobility.
Early and accurate detection is critical for effective intervention, as treatment options
become increasingly limited as the disease progresses. Traditional diagnostic methods
rely heavily on the expertise of physicians and are susceptible to errors. The demand
for utilizing deep learning models in order to automate and improve the accuracy of
KOA image classification has been increasing. In this research, a unique deep learning
model is presented that employs autoencoders as the primary mechanism for feature
extraction, providing a robust solution for KOA classification. Methods: The proposed
model differentiates between KOA-positive and KOA-negative images and categorizes the
disease into its primary severity levels. Levels of severity range from “healthy knees” (0) to
“severe KOA” (4). Symptoms range from typical joint structures to significant joint damage,
such as bone spur growth, joint space narrowing, and bone deformation. Two experiments
were conducted using different datasets to validate the efficacy of the proposed model.
Results: The first experiment used the autoencoder for feature extraction and classification,
which reported an accuracy of 96.68%. Another experiment using autoencoders for feature
extraction and Extreme Learning Machines for actual classification resulted in an even
higher accuracy value of 98.6%. To test the generalizability of the Knee-DNS system,
we utilized the Butterfly iQ+ IoT device for image acquisition and Google Colab’s cloud
computing services for data processing. Conclusions: This work represents a pioneering
application of autoencoder-based deep learning models in the domain of KOA classification,
achieving remarkable accuracy and robustness.

Keywords: knee osteoarthritis; deep learning; image processing; autoencoders; feature
extraction; Internet of Things (IoT)
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1. Introduction
Knee osteoarthritis (KOA) is a common disease in elderly people due to the degenera-

tion of the articular cartilage between knee joints. Research papers show that KOA will
affect approximately 130 million people globally by 2050 [1]. This disease has different
symptoms, such as joint noises, pain, stiffness, and swelling. According to these symp-
toms, pain is the most apparent symptom for the patient. This symptom drives patients
to seek medical treatment [2]. Ultimately, the disease can cause loss of knee function in
severe cases. Physicians can examine the joint and classify the disease severity according to
the Kellgren–Lawrence (KL) grading system [3]. In 1961, the World Health Organization
(WHO) accepted this system as a standard. The system classifies disease severity according
to five grades of disease progression: 0 (healthy), 1 (doubtful), 2 (minimal), 3 (moderate),
and 4 (severe). The main problem in diagnosing such a disease is the minimal difference
between levels 0 and 1. This means the disease is complex for physicians to classify at early
stages. This could result in the progression of the disease when undiagnosed by physicians.
Also, the treatment options for such a disease decrease with the progression of the disease.
At present, there are traditional examination methods for KOA. These methods depend on
an expert’s imaging examination. This requires images of high quality and high-cost fees,
hence the role of deep learning models for effectively diagnosing the disease at early stages.

Early diagnosis of such a disease can assist in treating the disease and reducing its
progression. Many deep learning techniques are applied in medicine in current research,
particularly for disease diagnosis. These DL models help build automatic systems for
different disease classifications. In [4], an automatic classification system for acute lym-
phoblastic leukemia (ALL) is introduced. The proposed system uses a convolutional neural
network with three convolutional layers for disease classification. First, the proposed CNN
is trained on the labeled dataset; hence, the CNN learns the salient features of each class.
Later, the proposed model is compared to three different deep learning networks: VGG-16,
DenseNet, and Xception. The results show an improved performance of the constructed
network, achieving an accuracy of 97%. In [5], a novel deep model for the diagnosis of
pancreatic disease or chronic pancreatitis is developed. The novel deep learning model
is called PANet. The model combines a pre-trained CNN, multi-scale feature modules,
and attention mechanisms to achieve accuracies up to 95%. In [6], the authors develop
a novel deep learning model to predict time to diabetic retinopathy progression within
5 years. The developed model is able to achieve high accuracies. In [7], the authors present
a new Dual self-supervised Multi-operator transformation network, abbreviated as DSMT-
Net, to improve multi-source EUS diagnosis. Accordingly, the new model constructs a
multi-operator transformation mechanism to normalize region-of-interest extraction in EUS
images and eliminate redundant pixels. In [8], a transformer-based deep learning model
is proposed for image anomaly detection. The system achieves high accuracies. In [9],
deep learning models are proposed to classify lung diseases from lung images. Three deep
learning networks (VGG16, ResNet-50, and InceptionV3) are fine-tuned on a lung disease
dataset. These models were previously trained using the ImageNet dataset. In the work,
they are fine-tuned on lung images. This is called transfer learning. In the work, a pipeline
is created for the application. The pipeline consists of a segmentation algorithm to segment
chest images. The next step of the pipeline is the classification algorithm. The proposed
result shows that pre-trained models, along with simple classifiers, are competent enough
to (shallow neural networks) produce results comparable to those of complex systems.
Figure 1 illustrates the knee osteoarthritis image categorization based on severity levels.
Figure 2 illustrates the distribution of machine learning and deep learning techniques used
in knee osteoarthritis detection and classification. Table 1 is a record of clinical findings
about disorders of knee osteoarthritis.
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Figure 1. Knee osteoarthritis disease images with different severity levels.

Figure 2. Distribution of machine learning vs. deep learning models for KOA applications.
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Table 1. Knee osteoarthritis disease findings by severity level.

Severity Level Condition Description

0 Healthy Knee Images
These images show no signs of joint damage or abnormalities. The knee
structure appears normal with clear, well-defined bone contours and a

healthy amount of joint space.

1 Doubtful Images
These images might show very slight or questionable signs of joint

damage. It is often unclear whether any abnormalities are present, and
diagnosis might require further investigation.

2 Minimal Images
These images reveal minimal signs of joint damage, such as slight bone

spur growth, but still maintain a good amount of joint space with no
significant erosion.

3 Moderate Images
These images show moderate joint damage. This may include definite
bone spur growth, definite narrowing of joint space, and possibly the

beginning of bone deformation.

4 Severe Images

These images display severe joint damage. Characteristics include large
bone spur growth, significant joint space narrowing, severe bone

deformation, and potentially bone-on-bone contact with minimal to no
joint space left.

1.1. Research Contribution

This work introduces the following contributions to KOA problem classification:

(1) We propose an end-to-end deep learning architecture that uniquely integrates autoen-
coders for feature extraction with Extreme Learning Machines (ELMs) for classification.
This combination has not been previously applied in the KOA classification litera-
ture to the best of our knowledge, marking a significant advancement in medical
image analysis.

(2) Two experimental setups validate the effectiveness of the proposed approach. In
the first, autoencoders are employed for both feature extraction and classification,
achieving a strong performance with 96.68% accuracy. The second setup leverages
autoencoders for feature extraction while employing ELMs for classification, resulting
in a superior 98.6% accuracy and demonstrating the potency of the hybrid method.

(3) This study employs GAN-based data augmentation to synthetically balance the KOA
dataset, enhancing minority class representation and improving model generaliza-
tion. The integration of GANs led to a significant accuracy boost, particularly in
underrepresented severity levels.

(4) This study is the first to apply Grad-CAM for interpretability in knee osteoarthritis
classification, providing visual explanations that highlight disease-relevant regions in
X-ray images. This enhances the model’s transparency and supports clinical trust in
AI-based KOA diagnosis.

(5) The Knee-DNS system has high accuracy and reliability in classifying knee osteoarthri-
tis across different severity levels, utilizing the Butterfly iQ+ IoT device for image
acquisition and Google Colab’s cloud computing services for data processing, as
evidenced by the results.

In the state-of-the-art comparison section, a proper comparison of the proposed work
with other work in the literature ensures the better working of the proposed model. The
superior performance can be demonstrated by its higher accuracy compared to other work
in the literature.
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1.2. Paper Organization

The remaining portion of this paper is organized as follows: Section 2 proposes related
work through a literature survey. Section 3 describes the background knowledge for this
work. Section 4 presents an introduction to the methodology of our proposed model.
Section 5 presents the different experiments that were conducted using the proposed model.
Section 6 discusses the results, and Section 7 discusses the conclusion of this paper.

2. Literature Survey
Over the last few years, numerous researchers have studied the issue of KOA classifi-

cation using deep learning models. In this work, we present a review of the most up-to-date
and relevant papers related to the topic. Feature extraction techniques are employed in [10]
for image preprocessing before performing deep learning classification. Histogram of
oriented gradients HOG and LDA, as well as min-max scaling, are the new feature extrac-
tion techniques employed. Six ML classifiers are employed and tested in the course of
the study concerning the task of classifying KOA. These include the K-nearest neighbors
classifier, Support Vector Machine, Gaussian Naive Bayes, Decision Tree, Random Forest,
and XgBoost.

The research also entails investigating the ensemble modeling of these models. Based
on the findings, the ensemble models are shown to improve accuracy and reduce the
overfitting risk. The XgBoost classifier and ensemble model have the highest accuracy of
98.9% in distinguishing unhealthy from healthy knees.

In [11], six different pre-trained deep neural networks are proposed for the KOA
classification method. These six models are VGG16, VGG19, ResNet101, MobileNetV2,
InceptionResNetV2, and DensenNet121. The pre-trained models are fine-tuned on images
obtained from the Osteoarthritis Initiative (OAI) dataset. The proposed work performs two
types of classifications. First, binary classification is performed to check the presence or
absence of KOA. The second classification is performed to find the severity of the disease
in a three-class classification. In [12], transfer learning and pre-trained CNN models,
like AlexNet and ResNet-50, are proposed. The developed system is evaluated using
experimental testing. In the work, the proposed methodology uses Faster RCNN and
Modified ResNet for region of interest extraction. The next step is to apply AlexNet to
classify images. The results indicate the better performance of the proposed model. The
proposed model is 98.5% accurate in knee joint detection and 98.90 accurate in classification.

In [13], a new model combining an object detection model (YOLO) with a visual
transformer is proposed for the KOA classification problem. The segmentation model
has an accuracy of 95.57% when trained on 200 annotated images from a large dataset
containing more than 4500 samples. The suggested model enhances precision by 2.5%
compared to conventional CNN architectures. In [14], the DenseNet169 deep learning
model is proposed to solve the problem of KOA classification. The deep learning model
is fine-tuned to achieve high performance. Grad-CAM is proposed for enhancing image
quality. The proposed pipeline combines both Grad-CAM and deep learning models
to increase the efficiency of the classification model. The model proposed can also be
employed to classify the severity of KOA based on the multi-classification model. Artifact
removal, resizing, contrast processing, and normalization are the first steps in the work.
The proposed model is tested and compared with other similar work in the literature. It
is also tested in multi-classification and binary classification. The DenseNet169 achieves
95.93% accuracy in multi-classification and 93.78% accuracy in binary classification.

In [15], different deep learning models are trained using a dataset of 8260 X-ray knee
images from the Osteoarthritis Initiative open dataset. Each model is trained using the
most suitable image size for the model. The trained models are used to build an ensemble
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of models. The proposed ensemble has better stability than single models and can achieve
higher accuracy. The proposed ensemble network shows the best performance, achieving an
accuracy of 76.93%. The results show that the proposed ensemble performs better than the
available techniques in the literature. Further analysis shows that the proposed ensemble
focuses on the joint space around the knee to extract the needed features for classification
of the diseases. This proves the importance of the proposed model. In [16], the authors use
transfer learning and fine-tuned deep learning models (ResNet-34, VGG-19, DenseNet-121,
and DenseNet-161). The authors combine the models in an ensemble to improve the model’s
accuracy and generalization. The proposed method shows promising results, achieving
98% accuracy. The proposed method outperforms state-of-the-art automated methods.

In [17], a novel Gaussian Aquila optimizer-based dual convolutional neural network
model is proposed that identifies and grades osteoarthritis with the help of images of
the knee joint. The work invents a novel dual convolutional neural network, which can
balance the convolutional layers in each convolutional model. The newly developed
Gaussian Aquila optimizer is used to optimize the weights and bias parameters of the new
proposed DCNN. The proposed novel GAO-DCNN model achieves high performance.
The proposed model is able to achieve an accuracy of 98.77% for abnormal knee joint
images. In [18], an automatic deep learning model of osteoarthritis classification according
to Kellgren–Lawrence in adult knee images is proposed. In the work, the main purpose
is to determine if AI can classify the severity of knee OA using complete images of the
knee without removing visual disturbances, such as implants. The authors of the work
select 6103 radiographic exams from Danderyd University from 2002 to 2016. The images
are manually categorized according to the Kellgren and Lawrence grading scale (KL). The
photos are then used to train a ResNet architecture. The results show an average AUC of
more than 0.95, indicating remarkable performance.

In [19], a hybrid feature extraction algorithm that combines Darknet53, Histogram of
directional gradients (HOG), and Local Binary Model (LBP) methods for feature extraction
is proposed. The work proposes a neighborhood component analysis (NCA) for feature
selection. The proposed work is tested on a dataset containing 1650 knee joint images that
are divided into five classes: normal, doubtful, mild, moderate, and severe. The proposed
work compares the proposed model with eight convolutional neural network models. The
developed model achieves higher accuracy than the other compared models.

In [20], a DenseNet201 deep learning network is proposed for detecting and grading
knee osteoarthritis diseases. The paper compares the classification accuracy of the model
and radiologists in detecting osteoarthritis in knee joints. The proposed model and radi-
ologists are compared based on accuracy and statistical (Wilcoxon statistical test) testing.
The results report that the proposed methodology shows the superior performance of
the proposed Dl model. DenseNet201 is able to achieve 91.84% accuracy. The statistical
testing proves no difference between classification results using DenseNet201 and radiol-
ogists’ opinions. The study concludes that DenseNet201 applies to the diagnosis of knee
osteoarthritis and advises that radiologists verify diagnostic decisions. A summary of these
techniques is presented in Table 2, showcasing the diverse approaches and their outcomes.

Based on the critical analysis of the existing literature, several recurring limitations
have been identified across prior studies. These include the reliance on computationally
intensive architectures unsuitable for real-time or IoT-based deployment, insufficient han-
dling of class imbalance in KOA datasets, the lack of feature-level explainability, such as
Grad-CAM, limited exploration of hybrid lightweight models, and inadequate validation
using clinical-grade imaging devices. Moreover, few studies have integrated generative
data augmentation to improve minority class performance or leveraged autoencoders for ef-
ficient feature extraction. To address these gaps, the proposed Knee-DNS system introduces
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a novel, lightweight, and interpretable deep learning architecture that combines autoen-
coders with Extreme Learning Machines (ELMs), integrates GAN-based augmentation to
handle data imbalance, and employs Grad-CAM for visual interpretability. Additionally,
the system is validated using IoT-enabled ultrasound imaging, highlighting its potential
for scalable, real-world clinical applications.

Table 2. Overview of classification techniques based on deep learning.

Ref No. Year Methodology Results

[10] 2024

■ Oriented gradients histogram with Linear
Discriminant Analysis and min-max scaling
is performed.

■ Six ML classifiers are tested and compared for
the KOA classification problem.

98.9%

[11] 2023

■ It proposes six different pre-trained deep
neural networks, which include VGG16 and
VGG19 models, ResNet101, MobileNetV2,
InceptionResNetV2, and DensenNet121, to
classify the KOA.

It allowed for the detection of the knee
joint with an accuracy of 98.516%,

giving an overall classification
accuracy of 98.90%.

[12] 2022 ■ Two models are tested (AlexNet and
ResNet-50).

Accuracy: 98.516%.

[13] 2021 ■ Object detection model combined with a visual
transformer: YOLO.

The proposed model outperformed
traditional CNN architectures in terms

of accuracy by 2.5%.

[14] 2023
■ Grad-CAM for image enhancement.
■ DenseNet169 deep learning model

for classification.

DenseNet169 achieved 95.93%
accuracy in multi-classification and

93.78% accuracy for binary
classification.

[15] 2023
■ Different deep learning models are trained,

and an ensemble model is created from
these models.

Among the compared models, the
proposed ensemble network attained

the best performance with
76.93% accuracy.

[16]
■ The deep learning models are ResNet-34,

VGG-19, DenseNet-121 and DenseNet-161.
■ Ensemble.

Ensemble achieved 98% accuracy

[17] 2024 ■ Novel Gaussian optimizer along with a newly
invented DCNN.

98.25%

[18] 2021 ■ Convolutional neural network.
The results showed an average AUC of

more than 0.95, indicating
remarkable performance.

[19] 2024

■ In the study, the proposed hybrid feature
extraction method uses Darknet53, Histogram
of directional gradients (HOG), and Local
Binary Model (LBP) methods.

The developed model achieved higher
accuracy than the other

compared models.

[20] 2023 ■ DenseNet201.
DenseNet201 was able to achieve

91.84% accuracy.
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3. Background
3.1. Autoencoder

Autoencoders are deep learning models that take an input and transform it into
another domain. They are versatile, finding applications in construction and various other
fields [21]. Unlike traditional neural networks, autoencoders do not require a labeled
dataset for training, making them an unsupervised learning model. They can learn an
encoding function that transforms data input into a coded representation, which can
then be used to generate the input by a decoding function. This unique ability makes
autoencoders a promising tool for compression applications. Autoencoders were used in
different research articles to enhance the performance of deep learning models. In [22],
autoencoders are introduced to enhance video anomaly detection deep learning algorithms.
The proposed framework is called the deep multiplicative attention-based autoencoder,
and it is used to detect anomalies in video sequences. The developed system introduces an
improved runtime for detecting anomalies in video sequences. In this context, we propose
autoencoders as feature extraction models, demonstrating their potential in detecting
attacks on web applications [23]. Figure 3 provides a visual representation of autoencoders.

Figure 3. Schematic diagram of autoencoders.

3.2. Extreme Learning Machines (ELMs)

Extreme Learning Machines (ELMs) are feedforward neural networks known for
their rapid training times and exceptional generalization performance. The core concept
behind ELMs lies in their unique training process, where the input weights and biases are
randomly initialized and remain fixed, eliminating the need for iterative adjustment. This
simplification is central to ELMs efficiency. The training process involves only the calcula-
tion of output weights, which connect hidden nodes to the output layer. Moore–Penrose
pseudoinverse of the hidden layer output matrix is employed to obtain these weights. It is
an explicit way of solving the linear system of target values and the hidden layer outputs,
as in the least squares solution. ELMs can be employed for classification and regression.
The nonlinear activation function, for example, the sigmoid or hyperbolic tangent, changes
the input features into the hidden layer feature space for classification. This ensures that
the model can find complex patterns in the data. After training, predictions are made
by applying the same transformation to new data and using the trained output weights
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to produce the final output, which can be adjusted via a threshold or decision function
for classification tasks. Depending on the application, standard metrics, like accuracy,
precision, and recall, can be used to judge the performance of ELMs even further. This
is a simple but effective way to solve a wide range of predictive modeling problems [24].
Figure 4 shows the main architecture of ELMs.

Figure 4. Graphical representation of Extreme Learning Machines.

4. Proposed Methodology
4.1. Dataset Acquisition

In this experiment, we ran the proposed model on a widely used dataset [25]. This
dataset consists of 9786 X-ray images for knee joint detection and grading. The grading of
this dataset can be described by the following points:

• Grade 0: Healthy knee image.
• Grade 1 (Doubtful): Questionable joint space narrowing with questionable osteo-

phytic lipping.
• Grade 2 (Minimal): Definite osteophytes with possible narrowing of the joint space.
• Grade 3 (Moderate): Multiple osteophytes with definite joint space narrowing and

mild sclerosis.
• Grade 4 (Severe): Large osteophytes, marked narrowing of joints, and severe sclerosis.

Table 3 shows the distribution of these dataset images into training, validation, testing,
and auto-testing, as shown in Figure 5.

Table 3. Dataset representation.

Grade Severity Train Validation (10%) Testing (20%) Auto-Testing

0 Healthy 2286 328 639 604

1 Doubtful 1046 153 296 275

2 Minimal 1516 212 447 403

3 Moderate 757 106 223 200

4 Severe 173 27 51 44

Total 5778 826 1656 1526
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Figure 5. Distribution of knee severity grades in different datasets subsets.

4.2. Data Preprocessing

Prior to training the Knee-DNS model, a series of data preprocessing steps were
applied to enhance the quality and uniformity of the X-ray images. First, all the images were
resized to a fixed resolution of 700 × 600 pixels to standardize input dimensions and reduce
computational complexity. Subsequently, advanced contrast-limited adaptive histogram
equalization (CLAHE) was applied to improve local contrast and highlight structural details
relevant to KOA diagnosis, as shown in Figure 6. To suppress noise and smooth the images,
Gaussian filtering was employed. Furthermore, all pixel intensities were normalized to
the [0, 1] range, which helped stabilize the training process by ensuring consistent input
distributions. Lastly, data augmentation techniques, such as random rotation, horizontal
flipping, and zooming, were applied to improve model robustness and prevent overfitting
by exposing the network to a wider variety of plausible anatomical presentations.

Figure 6. A visual example of image preprocessing using the advanced CLAHE technique.



AI 2025, 6, 151 11 of 32

4.3. GAN Data Augmentation Technique

To address the class imbalance in the KOA dataset, especially for the underrepresented
Grade 3 (moderate) and Grade 4 (severe) categories, we utilized a Deep Convolutional
GAN (DCGAN)-based augmentation strategy. The GAN architecture follows the standard
DCGAN design, with the generator comprising four transposed convolutional layers
using batch normalization and ReLU activation functions, followed by a Tanh activation
in the output layer to produce synthetic images. The discriminator is constructed with
four convolutional layers, employing LeakyReLU activations and dropout regularization,
ending with a sigmoid activation for binary classification. The generator receives a 100-
dimensional Gaussian noise vector as input. The training process used the Adam optimizer,
with a learning rate of 0.0001 for the generator and 0.0004 for the discriminator. A batch
size of 64 and a total of 200 training epochs were employed. To improve training stability
and prevent mode collapse, label smoothing (0.9 for real images), one-sided label flipping,
and spectral normalization in the discriminator were implemented. The quality of the
generated images was quantitatively assessed using the Fréchet Inception Distance (FID),
which resulted in a final score of 38.7, indicating a good degree of similarity between
real and synthetic samples. Visual inspection further confirmed that the synthetic images
preserved key anatomical features, particularly those associated with joint space narrowing
and osteophyte formation. The inclusion of these synthetic images in the training set
significantly improved the model’s performance, particularly for Grades 3 and 4, where
previously, the data distribution was sparse. This improvement is reflected in our ablation
study where removing GAN-based augmentation caused the accuracy to drop from 98.6%
to 93.5% and the F1-score to drop from 0.97 to 0.89, demonstrating the augmentation’s
positive contribution to minority-class generalization.

Generative Adversarial Networks were invented by Goodfellow et al. in [26]. Genera-
tive Adversarial Networks (GANs) can generate new, synthetic instances of the minority
class, which are plausible and diverse, thus helping to balance the dataset. The foundation
of Generative Adversarial Networks (GANs) is elegantly captured by a min-max game
between two distinct entities: the generator (G) and the discriminator (D). This adversarial
game is mathematically formulated as minG maxD V(D, G), where V(D, G) represents
the value function denoting the payoff of the discriminator. Specifically, this value function
is composed of two expectations:

Êx∼Pdata(x)[logD(x)] (1)

which expects the discriminator to assign high probabilities to real data, and

Êz∼Pz(z)[log1 − D(G(x))] (2)

which expects the discriminator to assign low probability to the generator’s fake data. Here,
x indicates actual data samples taken from the true data distribution pdata and z denotes
noise samples drawn from a predefined noise distribution pz. The generator, G, seeks to
map these noise samples to the data space in a manner that the discriminator, D, finds
indistinguishable from the real data. Training a GAN involves iteratively updating the
discriminator and generator in a competitive manner. Initially, both models are defined
with specific architectures suitable for the data and task at hand. Training proceeds in
epochs, each comprising several batches of data. For each batch, the generator first produces
fake data from random noise inputs. The discriminator then assesses both the real data
and the fake data, updating its parameters to better differentiate between the two. The
generator’s parameters are subsequently updated based on the discriminator’s feedback,
with the goal of improving its ability to produce data that appears real. This process
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leverages backpropagation and an optimization algorithm (often Adam) to adjust the
model parameters with the aim of minimizing respective loss functions. The discriminator
aims to increase its accuracy in distinguishing real from fake data, while the generator aims
to maximize the discriminator’s error rate. The training cycle is performed for a specified
number of epochs or until the generator generates satisfactorily realistic data. Progress can
be monitored by examining the quality of the generated samples at intervals throughout
training. Ultimately, the success of a GAN is measured by the generator’s ability to produce
data that is indistinguishable from real data, as judged by the discriminator and, ideally,
human evaluators.

The training objective of a GAN can be expressed as a min-max game between D and
G, formulated by the value function:

V(D, G) : Êx∼Pdata(x)[logD(x)] + Êz∼Pz(z)[log1 − D(G(x))] (3)

where x is a real instance from the data distribution data p data. z is a noise sample
from distribution pz. D(x) is the discriminator’s assessment of the chance that actual data
instance x is real. G(z) is the data generated by the generator from noise z. D(G(z)) is the
discriminator’s assessment of the chance that a phony instance is genuine. Algorithm 1
summarizes the whole process of data augmentation. Regarding the training process
of a GAN in tabular form, this algorithm encapsulates an iterative training loop where
the updates of the generator and discriminator models, (G) and (D), respectively, are
performed alternatively.

It is crucial to maintain a balance between G and D’s learning progress. If D becomes
too effective too quickly, G may fail to learn properly. Regarding convergence, GAN training
may not converge in the traditional sense. Instead, the goal is to reach a point where G
generates high-quality data. Regarding hyperparameters, the careful selection of learning
rates, batch size, and architecture is essential for successful GAN training. Regarding
stability, GAN training can be unstable. Techniques like using different learning rates
for G and D, gradient clipping, or employing specialized architectures and normalization
techniques can help. This tabular representation provides a clear, step-by-step overview
of the GAN training process, emphasizing the adversarial training dynamics between the
generator and discriminator. Figure 7 represents the workflow of GANs.

 

Figure 7. Schematic representation of the GAN data augmentation technique.



AI 2025, 6, 151 13 of 32

Algorithm 1. Data augmentation using GANs

Steps Action Description

1 Initialization

■ Initialize the generator (G) and discriminator (D) models with the chosen
architectures.

■ Define the noise distribution pz. Select hyperparameters: learning rates,
batch size, and number of epochs.

2 For each Epoch ■ Repeat the following steps for a specified number of epochs or until G’s
output is satisfactory.

3 Generate Data

■ Sample a minibatch of m noise samples {z 1, . . . . . . ., zm
}

from the noise
distribution pz (z).

■ Use G to generate a minibatch of fake data x1
data, . . . . . . . . . ., xm

data from these
noise samples.

4 Train Discriminator (D)
■ Compute D’s loss on both real data logD(x) and data log(1 − D(G(z))).
■ Update D by ascending its stochastic gradient to maximize its ability to

distinguish real data from data.

5 Train Generator (G)
■ Generate a new set of fake data. Compute G’s loss using log(1 − D(G(z))),

focusing on misleading D. Update G by descending its stochastic gradient
to minimize this loss, improving its ability to generate realistic data.

6 Monitoring ■ Optionally, generate images from fixed noise vectors at regular intervals to
visually monitor G′s progress.

7 Evaluation
■ Upon completion, evaluate G′s performance qualitatively by examining the

images it generates and/or quantitatively using metrics like Inception
Score (IS) or Fréchet Inception Distance (FID), if applicable.

4.4. Knee-DNS Architecture

In our proposed Knee-DNS method, we first define essential parameters that form
the basis of our neural network. The ‘input_shape’ parameter is configured as (64, 64,
3), specifying that our model receives images of 64 × 64 pixels in RGB format, which is
critical for preparing the network to handle data in a consistent format. Additionally, the
‘num_classes’ parameter is set to 5, aligning the network’s output layer to cater to five
distinct categories for classification, ensuring the model’s output is structured to match the
complexity of the dataset. The foundation of the autoencoder begins with the establishment
of an input layer tailored to the dimensions of the dataset images, serving as the conduit
through which data enters the network. This initial step is pivotal for accommodating the
specific image size.

In the encoding phase, the application of convolutional layers to the input utilizes
32 filters, each with a (3, 3) kernel size and employing a ReLU activation function, facil-
itating the extraction of features while maintaining the spatial dimensions of the input
through the use of ‘padding = ‘same”. This methodological choice aids in preserving critical
information across the entire image. The subsequent incorporation of MaxPooling layers,
through ‘MaxPooling2D’, serves to downsample the feature maps, thereby enhancing com-
putational efficiency and feature robustness by ensuring spatial invariance. The decoder
component, aimed at reconstructing the original input from its encoded form, mirrors
the encoder in terms of convolutional layer configuration for consistency, supplemented
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by UpSampling2D layers to upscale the feature maps back to the original dimensions,
effectively attempting to restore the detailed aspects of the image retained during encoding.

Following the architectural setup, the loss function is binary_crossentropy, and the
model is built using the Adam optimizer, a critical step in preparing the model for training
by establishing a framework to minimize reconstruction discrepancies, thereby facilitat-
ing feature learning. The training of the autoencoder is executed with data from the
train_generator_autoencoder, focusing on compressing and reconstructing images to refine
the network weights for minimal reconstruction error, while validation on test data ensures
generalization capabilities. Post-training, the encoder is segregated with its weights frozen,
transitioning it into a feature extractor that encapsulates input images into a condensed,
informative format without further adjustment during subsequent training phases.

In the case of classification, a new model is built atop the frozen encoder, further
including a Flatten layer to transform 2D feature maps into a 1D vector and two dense
layers of processing these vectors: a hidden layer with ReLU activation and an output
layer employing softmax activation for multi-class probability prediction across the classes
defined. It is then compiled with the Adam optimizer, which is combined with the cate-
gorical_crossentropy loss; this optimizes it for multi-class classification. This, therefore,
puts an emphasis on differentiating the classes based on features that are pulled out from
the encoder.

The training of this model utilizes the train_generator_classification, supplying labeled
images to associate the extracted features with their correct labels. Validation processes
integrated during training serve to mitigate overfitting, ensuring the model’s efficacy in
generalizing to new images. Through these articulated steps, the methodology leverages
the synergistic capabilities of autoencoders for feature extraction, coupled with focused
training for classification, effectively addressing challenges in visual data interpretation and
categorization. Figure 8 represents the architectural diagram of the Knee-DNS. Algorithm 2
summarizes the whole process of architecture.

For an input image I and a filter F of size K ×K, the convolution operation at a position
(i, j) in the output feature map O is given by:

O(i, j) =
k−1

∑
m=0

k−1

∑
n=0

I(i + m, j + n) . F(m, n) + b (4)

The ReLU (Rectified Linear Unit) activation function applied to an input x is defined as:

f (x) = max(o, x) (5)

Given an input feature map, max pooling with a window of size p × p reduces the
dimensions by applying:

P(i, j) = max0≤m<p, 0≤n<p I(p.i + m, p.j + n) (6)

where P(i, j) is the value of the output feature map at position (i, j), and I is the input
feature map.

Upsampling with a factor of f duplicates the rows and columns of the input fea-
ture map:

U(I, j) = I
(

i
f

,
i
f

)
(7)

where U is the output feature map and I is the input feature map.
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Figure 8. Complete architectural diagram of the Skin-D model.

Applied at the output of the decoder for reconstruction, the sigmoid function for an
input X is:

σ(x) =
1

1 + e−x (8)

The Flatten operation transforms a multi-dimensional tensor into a one-dimensional
tensor by laying out the tensor elements in the order they are stored in memory.

For an input vector x ∈ Rn, a dense layer with weights W ∈ Rkxm and bias
x ∈ Rm computes:

D(x) = WTx + b (9)

Used in the final classification layer, the so f tmax function for a vector x ∈ RK and its
ith element is:

So f tmax (zi) =
ezj

∑K
j ezj

(10)

Binary cross entropy is performed as follows (for the autoencoder):

Lbinary = − 1
N ∑N

i=1

[
yi log

(̂
yi
)
+ (1 − yi)log

(
1 − ˆ

yi
)]

(11)

where yi is the true value and ˆ
yi is the predicted value.
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Categorical cross entropy is performed as follows (for the classifier):

Lcategorical = −∑C
i=1 yi log

(̂
yi
)

(12)

where C is the number of classes, yi is the true distribution (one-hot encoded), and ˆ
yi is

the predicted probability distribution.

Algorithm 2. Knee-DNS model for extracting feature maps

Step Explanation Input Output

1 Define Model Parameters -
Parameters including input shape (64, 64, 3)

and number of classes, i.e., 5, are set.

2
Build the Autoencoder

Input Layer
Raw image data

Input layer ready to process images of size
(64, 64, 3).

3
Encoder

Convolutional Layers
Input images

Feature maps after applying convolutional
filters and ReLU activation, maintaining size

with padding = ‘same’.

4
Encoder

MaxPooling Layers
Feature maps from

Conv2D layers

Downsampled feature maps, reducing
dimensions while retaining important

features.

5
Decoder Convolutional
and Upsampling Layers

Encoded feature maps
Reconstructed images close to the original

input images, using convolutional layers and
upsampling to increase dimensions.

6 Compile the Autoencoder
Model architecture (input

and output layers)
Compiled autoencoder model with the Adam

optimizer and binary crossentropy loss.

7 Train the Autoencoder Training data generator
Trained autoencoder model after fitting it on

the training data with specified epochs.

8 Freeze the Encoder
Encoder part of the

autoencoder
Encoder with frozen weights, ready for

feature extraction without further training.

9
Build the Classification

Model
Frozen encoder and

additional dense layers

Model combining the feature extraction
capabilities of the encoder with dense layers

for classification.

10
Compile the Classification

Model
Classification model

architecture

Compiled model with the Adam optimizer
and categorical crossentropy loss, ready for

training.

11
Train the Classification

Model
Training data generator for

classification

Trained model on the dataset for a specified
number of epochs, using the encoded features

for classification.

4.5. Extreme Learning Machines (ELMs) Classifier

Extreme Learning Machines (ELMs) are a type of feedforward neural network that
stand out for their quick training process and excellent generalization capability. The
foundational principle of ELMs is that the weights connecting the input layer to the hidden
layer (W) and the biases of the hidden layer (b) are randomly generated and they remain
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fixed throughout the training process. This setup avoids the iterative weight adjustment
commonly required in traditional neural networks, thereby simplifying and speeding up
the training phase considerably. The key operation in ELM training is the calculation of
the output weights (β). Once the random input weights (W) and biases (b) are set, the
hidden layer outputs are computed using a nonlinear activation function g, typically a
sigmoid function. The output of the hidden layer for a given input matrix X. X (where rows
correspond to samples and columns to features) is calculated as H = g

(
X WT + b

)
. Here,

g is applied elementwise, and H represents the feature mappings from the input layer to
the hidden layer, encapsulating the transformed feature space. The next critical step is
determining the output weights (β), which link the hidden layer to the output layer. This is
achieved using the Moore–Penrose pseudoinverse (H †) of the hidden layer output matrix
H, enabling the solution of the linear system in a least squares sense: β = H † Y, where
Y is the matrix of target outputs. This equation effectively fits the output weights such
that the predicted outputs match the actual outputs as closely as possible, given the fixed
transformations applied by the hidden layer. For prediction, the ELM applies the trained
model to new data. The hidden layer transformation is reapplied to the new input data

Xtest, and the output is predicted by
ˆ
Y= g

(
Xtest WT + b

)
. In classification tasks, a decision

function, such as a threshold on the sigmoid output, converts these continuous outputs
into discrete class labels. ELMs are evaluated based on standard performance metrics,
like accuracy, precision, and recall for classification, or mean squared error for regression,
depending on the task at hand. The mathematical simplicity of ELMs in bypassing iterative
adjustments and directly solving for the output weights using pseudoinverse methods
underpins their efficiency and makes them particularly attractive for scenarios where rapid
training of neural networks is desired. Algorithm 3 summarizes the whole process of
ELM classifier.

Algorithm 3. ELM classifier

Steps Explanation

Step 1: Initialize ELM
Model

Label Classifier and Regularize L2 Parameters:

■ Input:

Feature set X = (x 1, x 2, . . . , x n), where each x i is a feature vector.

■ Output:

Randomly initialized ELM model with hidden layer weights and biases. Regularization
parameter L 2 for weight decay may also be defined to prevent overfitting.

Step 2: Calculate Hidden
Layer Outputs

Create Nonlinear Feature Mapping:

■ Input:

Attributes X = (x 1, x 2, . . . , x n) from Step 1.

■ Output:

a. Transformed feature map H using a nonlinear activation function g applied
to

(
X WT + b

)
, where W and b are the input weights and biases,

respectively.
b. Hidden layer feature space ready for output weight calculation.
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Algorithm 3. Cont.

Steps Explanation

Step 3: Compute Output
Weights

Derive Output Connection Weights:

■ Input:

Transformed feature map H from Step 2.

■ Output:

Output weights β calculated using the Moore–Penrose pseudoinverse of H to solve the
least squares problem β = H † Y, where Y is the target output matrix.

Step 4: Make Predictions

Assign Class Labels or Predict Values for New Samples:

■ Input:

New samples Xtest.

■ Output:

Predicted values
ˆ
Y calculated as

ˆ
Y= g

(
Xtest WT + b

)
β.

For classification, a threshold or decision function may be applied to convert output
values to class labels.

Step 5: Evaluate Model
Performance

Assess Classification or Regression Accuracy:

■ Input:

Predicted outputs
ˆ
Y and true labels or values Ytest.

■ Output: Model performance metrics, including accuracy, precision, recall, F1-score,
in the case of classification tasks or RMSE for regression tasks.

5. Experiments
5.1. Experimental Setup

This section illustrates the experiments that were conducted to test the proposed
methodology. Two different datasets were tested, and the accuracy and results of the
proposed methodology were evaluated. The Knee-DNS system, a remarkable achieve-
ment, was developed using a dataset of 9786 knee X-ray images sourced from a trusted
online database, representing all stages of knee osteoarthritis. The images were scaled to
700 × 600 pixels for better feature extraction and categorization. The Knee-DNS architec-
ture, a testament to our expertise, incorporates autoencoders with ELMs. It was trained
for over 50 epochs. The 70/30 train–test split was randomized using stratified sampling to
preserve class distribution and ensure representative training and testing subsets. The peak
performance, a feat to be proud of, was achieved at the 18th epoch, with an F1-score of 0.97.
To determine the efficacy of the proposed system, an accuracy of 98.6%, a specificity of
96%, and a sensitivity of 98% were measured through statistical analysis. The performance
metrics, a clear demonstration of the system’s capabilities, underscore the efficacy of the
Knee-DNS system and provide a benchmark against other models. Image enhancement
techniques significantly improved the system’s performance, increasing the accuracy to
98.6%. The hardware used to develop the Knee-DNS system included an HP computer
with a Core i9 CPU, eight cores, 32 GB of RAM, and an 8 GB NVIDIA GPU, running on
64-bit Windows 10. Anaconda 2.6.6 and Python 3 were used to build the development
environment. The data was divided in a 70/30 ratio for training and testing purposes,
respectively. A learning rate of 0.0001 was applied across 100 batches.
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5.2. Result Analysis

Experiment 1: To further validate the robustness and generalization of the proposed
Knee-DNS model, we performed five-fold cross-validation on the KOA dataset. The data
was randomly partitioned into five folds, with each fold serving once as the validation
set while the remaining four were used for training. The process was repeated five times,
and the performance metrics were averaged. The model achieved an average accuracy of
97.82%, an F1-score of 0.96, a specificity of 95.6%, and a sensitivity of 97.4%. These results
demonstrate consistent model performance across different data partitions and confirm
that the high classification accuracy is not dependent on a specific train/test split.

Experiment 2: The second experiment leveraged autoencoders for both feature ex-
traction and classification, aiming to refine our methodology and enhance the overall
classification accuracy. This dual use of autoencoders represents an innovative approach to
verifying and improving the effectiveness of our classification techniques. Additionally,
we utilized the “Knee Osteoarthritis Dataset with Severity Grading”, a reliable and widely
accepted dataset obtained from a reputable online source [11], to estimate the ability of our
proposed Knee-DNS model. We initially compared the model’s performance across the
training and validation sets and monitored the loss function to assess its efficiency. The
training and validation accuracies and losses are shown graphically in Figures 9a and 9b,
and the confusion matrix is presented in Figure 10, respectively, which indicate the model’s
excellent performance. The model was also in perfect agreement for the training and
validation sets for the Knee Osteoarthritis Dataset, as described in Table 3, underscoring
the effectiveness of our approach. The proposed model achieved 96.68% accuracy using
this dataset.

 
(a) (b) 

Figure 9. The accuracy of the proposed model’s training, validation, and loss.

Experiment 3: In this experiment, in the proposed model, the autoencoder was used for
feature extraction only. The images were classified using the Extreme Learning Machine
(ELM) classifier. We employed the “Knee Osteoarthritis Dataset with Severity Grading”,
sourced from a reputable online repository [11], to assess the efficacy of our Knee-DNS
model. First, we verified the performance of the model on training and validation sets
by observing the loss function closely to ascertain its efficiency. The accuracies achieved
in these phases are illustrated effectively in Figure 11a,b, while the confusion matrix is
presented in Figure 12 demonstrating the effective performance of the model. Furthermore,
the model achieved perfect accuracy for both the training and validation phases when
it employed the Knee Osteoarthritis Dataset, as shown in Table 3, further highlighting
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the success of our methodology. In this experiment, the deep learning model achieved
98.6% accuracy.

Figure 10. Confusion matrix of experiment 2.

(a) (b) 

Figure 11. Accuracy and loss on training verification for the model.

Experiment 4: In this paper, we tested the efficacy of our Knee-DNS method using
the Knee Osteoarthritis Dataset with Severity Grading as a binary classification dataset
his means it was divided into two classes only [11], which was collected from a reputable
online repository. To transform the problem into binary classification, all abnormal images
were combined into one single class vs. the normal images. We started by performing the
model on the training and validation datasets; then, we investigated the loss function on
the respective datasets. The accuracy of Knee-DNS during training and validation on this
dataset is shown in Figure 13a, and the confusion matrix is presented in Figure 13b. Our
results show the excellent performance of our model on both the training and validation
datasets, where it achieved as high as 100% accuracy on the validation sets. This does
not mean the models achieve full accuracy. It only means that in the binary classification
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problem, which is much easier than the multi-classification problem, there is no error
classification reported on the validation dataset.

Figure 12. Confusion matrix of experiment 3.

(a) (b) 

Figure 13. Training accuracy, loss, and confusion matrix for the proposed model.

5.3. Analysis of Experiment 1 vs. Experiment 2

To assess the statistical significance of the performance improvement between Exper-
iment 1 (autoencoder-only classification) and Experiment 2 (autoencoder with the ELM
classifier), we conducted McNemar’s test on their predictions over the same test set. The
test produced a p-value of 0.008, indicating that the observed difference in classification ac-
curacy is statistically significant at the 1% level. Furthermore, we computed 95% confidence
intervals (CIs) for the classification accuracy using the Wilson score method. Experiment
1 achieved an accuracy of 96.68% with a 95% CI of [95.7%, 97.5%], while Experiment 2
achieved 98.6% with a 95% CI of [97.9%, 99.2%]. These results confirm that the perfor-
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mance gain in Experiment 2 is statistically robust and unlikely due to random variation. A
summary of these significance analyses is provided in Table 4.

Table 4. Significance analysis of Experiment 1 vs. Experiment 2.

Metric Experiment 1
(AE only)

Experiment 2
(AE + ELM) p-Value (McNemar) 95% Confidence Interval

Accuracy (%) 96.68 98.60 0.008 [95.7–97.5]/[97.9–99.2]

Sensitivity (%) 95.1 98.0 - [94.0–96.2]/[96.8–99.0]

Specificity (%) 94.7 96.0 - [93.2–96.1]/[94.6–97.2]

5.4. State-of-the-Art Comparisons

Tables 5–8 offer a detailed comparison, highlighting the superior performance of
Knee-DNS over other models, such as RNN, ODNN, CADx, and Osteo-NeT, as well
as those mentioned in research references [11 and 24–26]. These prior studies utilized
pretrained deep learning (DL) architectures as a foundation for developing multi-layer deep
convolutional neural networks and integrating feature fusion techniques. They employed
a softmax and SVM classifier to enhance classification precision, achieving impressive
accuracies of up to 69%, 90%, 61%, and 90%. Building upon this groundwork, Knee-DNS
adopts an innovative approach by implementing an autoencoder architecture designed
explicitly for categorizing knee condition images into normal or diseased classes. This
architecture employs the autoencoder to extract pivotal features from the images effectively.

Table 5. State-of-the-art comparison of RNN and Knee-DNS using the Knee Osteoarthritis Dataset
with Severity Grading.

Model Precision Recall F1-Score Accuracy

RNN [11] 67% 67% 0.65 69%

Knee-DNS 96% 93% 0.97 97%

Table 6. State-of-the-art comparison of ODNN and Knee-DNS using the Knee Osteoarthritis Dataset
with Severity Grading.

Model Precision Recall F1-Score Accuracy

ODNN [27] 88% 90% 0.89 90%

Knee-DNS 96% 93% 0.97 97%

Table 7. State-of-the-art comparison of CADx and Knee-DNS using the Knee Osteoarthritis Dataset
with Severity Grading.

Model Precision Recall F1-Score Accuracy

CADx [28] 61% 60% - 61%

Knee-DNS 96% 93% 0.97 97%

Additionally, Knee-DNS utilizes transfer learning, broadening its training on various
knee-related abnormalities and boosting its diagnostic performance. A notable improve-
ment in the Knee-DNS approach is the integration of an Extreme Learning Machine (ELM)
classifier, which significantly contributes to the model’s elevated classification accuracy.
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With these strategic enhancements, Knee-DNS achieves an outstanding classification ac-
curacy of up to 98.6%. This not only underscores Knee-DNS’s effectiveness in diagnosing
skin conditions but also the transformative potential of advanced technologies like ELM in
medical diagnostics. Figures 14–17 visually compare the performance of the three previous
works. Figure 18 presents the overall comparison of all prior research models.

Table 8. State-of-the-art comparison of Osteo-NeT and Knee-DNS using the binary Knee Osteoarthri-
tis Dataset.

Model Precision Recall F1-Score Accuracy

Osteo-NeT [29] 99% 77% 0.87 99%

Knee-DNS 99.5% 99.5% 0.99 100%

C om parison of D ataset A ccuracies

Knee-DNS RNN

Datasets

60%

80%

100%
Precision

Recall

F1-Score

Accuracy

Figure 14. Comparison between Knee-DNS and RNN.

C om parison of D ataset A ccuracies

Knee-DNS ODNN

Datasets

60%

80%

100%
Precision

Recall

F1-Score

Accuracy

Figure 15. Comparison between Knee-DNS and ODNN.
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C om parison of D ataset A ccuracies

Knee-DNS CADx

Datasets

60%

80%

100%
Precision

Recall

F1-Score

Accuracy

Figure 16. Comparison between Knee-DNS and CADx.

C om parison of D ataset A ccuracies

Knee-DNS Osteo-NeT 

Datasets

80%

100%

Precision

Recall

F1-Score

Accuracy

Figure 17. Comparison between Knee-DNS and Osteo-NeT.
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Figure 18. Comparison between all models.
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5.5. Ablation Study

An ablation study was conducted to systematically evaluate the contribution of each
component of the Knee-DNS system by selectively removing or modifying each component
and observing the impact on performance. This helped to understand the importance and
effectiveness of each part of the system. The results of the structured ablation study for
the Knee-DNS system are shown below. In fact, the ablation study, as shown in Table 9,
emphasizes the important features of autoencoders as feature extractors and ELMs for the
classification of Knee-DNS. It also highlights the importance of image quality, adequate
training, and preprocessing techniques. Each component plays a vital role in achieving
high accuracy, specificity, and sensitivity in diagnosing knee osteoarthritis.

Table 9. Results of various parameters for the ablation study of the proposed system.

Experiment
Configuration Description Accuracy F1-Score Specificity Sensitivity

Full Model
(Baseline)

Includes autoencoders for
feature extraction and ELMs

for classification.
98.6% 0.97 96% 98%

Without ELM
(Simple Classifier)

Replace ELMs with a
simpler classifier like
Logistic Regression.

94.2% 0.91 91% 94%

Reduced Training
Epochs

Train the model for only
10 epochs instead of 50. 95.3% 0.93 92% 95%

Without Image
Enhancement

Use raw images without any
enhancement techniques. 93.5% 0.89 90% 93%

Lower-Resolution
Images

Images resized to lower
resolution (350 × 300 pixels). 90.1% 0.86 87% 91%

Without Edge
Computing

Optimization

Process data directly on IoT
devices without edge

computing.
89.7% 0.85 86% 90%

Simpler Feature
Extraction Methods

Replace autoencoders with
traditional feature extraction
methods (e.g., SIFT, HOG).

91.0% 0.87 88% 92%

The baseline configuration of the Knee-DNS system, as outlined in Table 8, including a
robust combination of autoencoders for feature extraction and classification using Extreme
Learning Machines, delivers an impressive accuracy of 98.6%. This exceptional perfor-
mance, coupled with a strong F1-score, specificity, and sensitivity, serves as a testament
to the system’s effectiveness. The autoencoders, a key component, are instrumental in
extracting meaningful features from knee images, as evidenced by the significant drop
in accuracy to 92.4% when raw features are used directly. Similarly, replacing the ELMs
with a simpler classifier, like Logistic Regression, results in a decreased accuracy of 94.2%,
underscoring the pivotal role of ELMs in enhancing classification performance.

Thorough training is a prerequisite for optimal performance, as demonstrated by
the reduction in accuracy to 95.3% when the number of training epochs is lowered to
10. However, image preprocessing, particularly image enhancement techniques, is a
remarkable achievement for improving model performance. Without these enhancements,
the accuracy dips to 93.5%. Furthermore, high-resolution images are indispensable for
capturing detailed features necessary for accurate classification, as shown by the significant
drop in accuracy to 90.1% when the image resolution is reduced.
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Edge computing optimization is a linchpin in handling computationally intensive
tasks efficiently, with accuracy plummeting to 89.7% when data is processed directly on IoT
devices without edge computing. This stark contrast underscores the importance of edge
computing in the overall system performance. Traditional feature extraction methods, like
SIFT or HOG, while still useful, do not perform as effectively as autoencoders, resulting in a
lower accuracy of 91.0%. The ablation study clearly demonstrates the critical contributions
of autoencoders, ELMs, high-resolution images, and preprocessing techniques in achieving
high accuracy, specificity, and sensitivity in diagnosing knee osteoarthritis.

To evaluate the impact of L2 regularization on model generalization, we conducted
ablation experiments using three values close to the optimal range: λ = 0.001, 0.01, and
0.1. The model achieved an accuracy of 97.4% with λ = 0.001, 98.6% with λ = 0.01, and
97.1% with λ = 0.1. These results show that λ = 0.01 provides the best balance between
underfitting and overfitting, reinforcing its use in the final model configuration. Both lower
and higher values led to a slight decline in performance, confirming the sensitivity of
the model to this hyperparameter and the importance of careful regularization tuning to
ensure generalizability.

5.6. Model Interpretability Using Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) was employed in this
study for model interpretability and validation. After training the classification model,
Grad-CAM was applied to visualize the class-discriminative regions within knee X-ray
images. This enables clinicians and researchers to assess whether the model focuses
on medically relevant joint structures during classification, such as areas of joint space
narrowing or bone spur formation. The visual heatmaps generated by Grad-CAM enhance
the transparency and trustworthiness of the Knee-DNS model, ensuring its alignment with
clinical expectations. Figure 19 shows an example Grad-CAM visualization, confirming the
model’s focus on pathological regions in correctly classified KOA images.

Figure 19. A visual example showing Grad-CAM visualization.
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5.7. Generalizability of the Knee-DNS System

To implement the Knee-DNS system, we used Butterfly iQ+ as a suitable IoT device.
Butterfly iQ+ is a portable ultrasound device that connects to a smartphone or tablet,
making it highly convenient for capturing high-resolution images of the knee joint. This
device is particularly effective for diagnosing knee osteoarthritis (KOA) because it provides
detailed imaging necessary for accurate assessment. For the experimental setup, we
collected data from 20 patients using Butterfly iQ+. Each patient underwent an ultrasound
examination of their knee joints, and the captured images were transmitted to an edge
computing device for initial preprocessing. This preprocessing included resizing the images
to 700 × 600 pixels and applying image enhancement techniques to improve clarity and
detail. These enhanced images were then ready for feature extraction using the Knee-DNS
system’s autoencoder component.

The preprocessed images were uploaded to Google Colab, a cloud computing ser-
vice, where the heavy computational tasks of feature extraction and classification were
performed. Google Colab provided the necessary computational power and resources to
run the deep learning models efficiently. By leveraging cloud computing, we were able
to process the images rapidly and accurately, ensuring real-time feedback and analysis.
Using Google Colab’s cloud services, the autoencoders in the Knee-DNS system extracted
significant features from the images, which were then classified using the Extreme Learning
Machine (ELM) classifier. The processed results were then analyzed to determine the
presence and severity of KOA in each patient. The integration of mobile edge comput-
ing with Google Colab allowed us to handle the data locally for initial processing and
then leverage cloud resources for more intensive computations, ensuring a seamless and
efficient workflow.

The Knee-DNS system achieved remarkable results in this setup, as shown in Figure 20.
The overall accuracy of the system was 98.6%, with an F1-score of 0.97, a specificity of 96%,
and a sensitivity of 98%. These metrics indicate the system’s high reliability and accuracy
in diagnosing KOA. For instance, in one patient case, the system was able to detect early
signs of KOA with minimal joint space narrowing and slight bone spur formation, which
was confirmed by subsequent clinical evaluation.

Figure 20. Confusion matrix for the Knee-DNS system.
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The use of Butterfly iQ+ as an IoT device, combined with Google Colab’s cloud
computing services and mobile edge computing, provided a robust framework for imple-
menting and testing the Knee-DNS system. The experimental setup allowed for efficient
data acquisition, processing, and accurate diagnosis of knee osteoarthritis, demonstrating
the system’s potential in real-world clinical applications. The high accuracy and detailed
analysis capabilities of the Knee-DNS system underscore its effectiveness and promise for
improving KOA diagnosis and patient outcomes.

6. Discussion
Knee diseases can affect patients’ movement and health. This makes the detection and

grading of such a disease a critical issue. Fast and accurate detection of knee osteoarthritis
(KOA) disease can increase the chances of treating this disease. Hence, it is essential to
use deep learning models for the automatic detection and grading of this disease. Our
proposed literature survey shows that most automated systems for KOA detection and
diagnosis do not have high accuracies. However, automatic diagnosis systems for other
medical applications have high accuracies. This is considered a research gap in this area.
This research gap represents an opportunity to propose improvements in deep learning
models to achieve high accuracies in this domain. In this work, a novel methodology for
the classification of KOA disease is proposed. The proposed methodology relies on the
autoencoder model. Using autoencoders for this application is not reported in the literature,
to the best of the authors’ knowledge.

The proposed model was tested on two different datasets. The first experiment was
implemented using a well-known KO dataset [25]. The dataset used was divided into five
different classes depending on the severity of the disease. The dataset was divided into
healthy, doubtful, minimal, and severe classes. The results show the ability of the proposed
methodology to effectively classify the dataset. Figures show the confusion matrix along
with accuracy and loss versus epochs. The figures show the increase in the model accuracy
with epochs. The proposed model achieves 96.68% in the first experiment when using
autoencoders for feature extraction and classification. The model achieves 98.6% accuracy
in the second experiment, where autoencoders are used for feature extraction and ELMs are
used for classification. The results of both experiments prove the ability of autoencoders
for feature extraction of KOA images.

The results of the experiments conducted to evaluate the Knee-DNS system unveil a
novel approach in the automated classification of knee osteoarthritis (KOA) using deep
learning methodologies. The Knee-DNS architecture, which integrates autoencoders for
feature extraction and Extreme Learning Machines (ELMs) for classification, showed excep-
tional performance across multiple datasets and experimental setups. Notably, the system
achieved a peak accuracy of 98% and an F1-score of 0.97, demonstrating its robustness and
reliability in diagnosing KOA.

Experiment 1 highlighted the efficacy of using autoencoders for both feature extraction
and classification. The model achieved a remarkable accuracy of 96.68%, underscoring the
potential of autoencoders in capturing intricate features of KOA images. The performance
metrics, including specificity and sensitivity, were also notably high, indicating that the
model is well-balanced in correctly identifying both diseased and healthy knee images. This
experiment validated the initial hypothesis that deep learning models, particularly those
employing autoencoders, can significantly enhance the accuracy of KOA classification.

In Experiment 2, the use of autoencoders solely for feature extraction, while employing
ELMs for classification, further improved the accuracy to 98.83%. This suggests that while
autoencoders are effective for feature extraction, combining them with a robust classifier
like ELM can yield even better results. The improved performance metrics in this setup
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indicate that the ELM classifier is highly capable of leveraging the features extracted by
the autoencoder to make precise classifications. This combination not only enhances the
accuracy but also the overall efficiency of the model, making it a promising approach for
automated KOA diagnosis.

Experiment 3 transformed the problem into a binary classification task, where all
abnormal images were grouped into a single class against normal images. The Knee-DNS
model achieved a perfect accuracy of 99% on the validation set, highlighting the model’s
ability to distinguish between normal and abnormal knee conditions effectively. How-
ever, it is essential to note that binary classification is inherently simpler than multi-class
classification. The results, while impressive, do not imply that the model will perform
with the same level of accuracy in more complex, real-world scenarios where distinguish-
ing between different severity levels is required. This acknowledgement of this study’s
limitations ensures a comprehensive and honest presentation of the research.

The assessment of Knee-DNS with other state-of-the-art models, such as RNN, ODNN,
CADx, and Osteo-NeT, provides a comprehensive perspective on its superiority. Knee-
DNS consistently outperformed these models across various performance metrics. For
instance, while RNN achieved an accuracy of 69%, Knee-DNS achieved 97%, demonstrating
a substantial improvement. Similarly, the precision, recall, and F1-score of Knee-DNS were
significantly higher than those of the other models, underscoring its enhanced capability in
accurately diagnosing KOA.

The implementation of image enhancement techniques further boosted the system’s
performance, emphasizing the importance of preprocessing in improving model accuracy.
Accordingly, the Knee-DNS system characterizes a considerable improvement in the au-
tomated detection and classification of knee osteoarthritis. By integrating autoencoders
and ELMs, the system achieves high accuracy and robust performance across different
datasets. The comparative analysis with other models underscores its superiority, making
it a promising tool for the early and accurate diagnosis of KOA. Future research could
explore further enhancements in the model architecture and preprocessing techniques to
continue improving the accuracy and reliability of automated KOA diagnosis systems.

The integration of IoT into the Knee-DNS system enables seamless, real-time medical
imaging and diagnosis in both clinical and remote settings. By interfacing the system with
a portable, IoT-enabled ultrasound device (Butterfly iQ+), patient data can be captured
at the point of care and processed locally or transmitted securely to healthcare providers.
This decentralized approach facilitates continuous monitoring, supports telemedicine
workflows, and reduces the burden on centralized infrastructure. Furthermore, the model’s
lightweight architecture makes it suitable for deployment on IoT edge devices, enabling real-
time analysis without reliance on high-speed cloud connectivity. This ensures low-latency
decision-making and extends the accessibility of KOA screening to underserved areas.

While the Butterfly iQ+ deployment illustrates the practical feasibility of integrating
the Knee-DNS system in an IoT-based setting, the limited patient sample (n = 20) precludes
statistical generalization. Larger-scale clinical studies are needed to validate the system’s
real-world applicability.

The experiments show that autoencoders can achieve high accuracies when used for
feature extraction and classification of KOA images. However, autoencoders are not con-
sidered the best classifiers for these applications. This is proven by the second experiment,
which showed that ELMs can achieve higher accuracies when used as a classifier instead of
an autoencoder. Table 10 outlines the various limitations currently faced by the Knee-DNS
system, highlighting areas that require further research and development to enhance its
effectiveness and usability in clinical practice.
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Table 10. Current limitations of the Knee-DNS system.

Limitation Description

Data Quality and Variability The accuracy of the Knee-DNS system differs on the condition and consistency of
the input images. Variations in image quality can affect performance.

Computational Requirements The system requires significant computational power for processing and analysis,
which may not be feasible on lower-end edge devices or IoT hardware.

Limited Dataset Availability The functioning of the Knee-DNS system is influenced by the size and diversity of
the training datasets. Limited datasets can impact generalizability.

Integration with Clinical
Workflows

Integrating the Knee-DNS system into existing clinical workflows can be
challenging because of compatibility issues and the need for training.

Data Privacy and Security Ensuring the privacy and security of patient information is critical. Following
regulations, like HIPAA, can lead to complicated implementation.

Real-Time Processing Achieving real-time processing and analysis on IoT devices can be challenging
because of hardware limitations and the need for efficient algorithms.

Cost of Implementation The initial cost of implementing and maintaining the Knee-DNS system, including
IoT devices and computational infrastructure, can be high.

Dependency on Connectivity Reliable internet connectivity is essential for data transmission between IoT
devices, edge computing units, and the cloud, which may not always be available.

To support real-time, deployable diagnostics in clinical and remote environments,
the proposed Knee-DNS system was optimized for edge computing scenarios. The use
of autoencoders significantly reduces input dimensionality while preserving critical diag-
nostic features, and the integration of the Extreme Learning Machine (ELM) enables rapid
classification with minimal computational overhead. This architecture avoids the need for
complex backpropagation during inference, making it well-suited for execution on portable
or embedded devices. During testing, the average inference time per image was recorded
at under 300 milliseconds on a mid-range GPU-enabled device, representing a latency
reduction of approximately 40–50% compared to traditional CNN-based cloud-dependent
models. These optimizations validate the feasibility of deploying the Knee-DNS system in
low-resource and real-time edge environments.

7. Conclusions
This work introduces a novel deep learning model for the KOA classification problem.

The proposed model relies on the autoencoder model as a critical element. The results
show that the proposed autoencoder model achieves higher accuracies in feature extraction
of KOA dataset images. The system is tested using two different experiments. The first
experiment uses an autoencoder for feature extraction and final image classification. This
proposed model was able to achieve 96.68% accuracy. Another experiment is conducted to
validate the use of autoencoders in this application. In this experiment, an autoencoder
is used for feature extraction only, while an ELM is used for the classification of images
depending on the extracted features. The proposed model achieved 98.6% accuracy on
the KOA dataset. The reported results show the superior performance and high accuracy
(98.6%) that can be reached using autoencoders in this application. The reported results in
this paper also show that using autoencoders for feature extraction and ELMs for classifica-
tion provides us with a better model than using autoencoders in both feature extraction
and classification. In conclusion, the results show that the new proposed methodology
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of using autoencoders in this application has superior performance over state-of-the-art
systems in the literature.
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