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Abstract: (1) Background: In recent years, Transformer-based models have dominated the
time-series forecasting domain, overshadowing recurrent neural networks (RNNs) such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). While Transformers
demonstrate superior performance, their high computational cost limits their practical
application in resource-constrained settings. (2) Methods: In this paper, we reconsider
RNNs—specifically the GRU architecture—as an efficient alternative to time-series fore-
casting by leveraging this architecture’s sequential representation capability to capture
cross-channel dependencies effectively. Our model also utilizes a feed-forward layer right
after the GRU module to represent temporal dependencies, and aggregates it with the GRU
layers to predict future values of a given time-series. (3) Results and conclusions: Our
extensive experiments conducted on different real-world datasets show that our inverted
GRU (iGRU) model achieves promising results in terms of error metrics and memory
efficiency, challenging or surpassing state-of-the-art models on various benchmarks.

Keywords: time-series; gated recurrent units; temporal dependencies; cross-channel correlations

1. Introduction
Time-series forecasting is an important task in several application domains, includ-

ing finance, meteorology, transportation, and energy consumption. Providing accurate
forecasts helps industries and businesses save both money and time by enabling opti-
mized and informed decision-making ahead of time, thereby avoiding unnecessary actions.
Time-series forecasting involves leveraging historical (past) data from various channels
or variates to predict future values of the same or related variates. As shown in Figure 1,
these variables are often inter-correlated, and temporal relationships exist along the time
dimension in a time-series. Time-series analysis and forecasting have garnered significant
attention from researchers over the past few decades. With the rise of Artificial Intelligence
(AI), deep learning-based methods have taken the lead in this field [1]. Among the deep
learning models developed for time-series forecasting, Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), Transformer
models, and Large Language Model (LLM)-based approaches have attained remarkable
performance due to their ability to capture complex long-term temporal dependencies [1–5].
A model usually demonstrates high performance for multivariate time-series forecasting
when it captures the relations between the prediction variables and the temporal correla-
tions across the historical time steps. There are two main approaches used for time-series
forecasting with deep learning models. The first category of methods are known as Channel-
Dependent (CD) methods, which usually project the channel dimension into a hidden space
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(modeling dimension). However, recent works have shown that Channel-Independent (CI)
models generally achieve better results [6,7]. Recently, many Transformer-based models
have been proposed using channel independence, where multiple channels are predicted
independently. In addition, one of the recently invented CI-based models, iTransformer [8],
directly captures the intricate interaction among multiple time-series channels by exploiting
the high capacity of the multi-head self-attention module inside the Transformer, and em-
bedding the temporal dimension within the model dimension, leading to impressive results,
specifically when dealing with complex real-world datasets. However, the Transformer-
based models face the obvious challenge of quadratic time complexity with respect to the
input sequence length, specifically in the inference step, which gives rise to an intensive
calculation when applied to a large number of variates or longer look-back windows,
hindering their deployment in real-world applications.

Figure 1. An example of a multivariate time-series which consists of multiple channels (variates).
There are inter-variate dependencies between the channels and temporal correlations between differ-
ent time-steps.

There have already been attempts to reduce the computational complexity of Trans-
former for time-series forecasting. For instance, Ref. [9] modified the Transformer to focus
on a portion of the sequence, while other works utilized linear models to decrease the time
complexity [7,10]. Although linear models can reduce time complexity, they mainly rely
on linear computations and fail to exploit contextual information, resulting in sub-optimal
predictions, specifically when applied to datasets involving many variates or series. Given
the prevalent use of Transformer models in the time-series forecasting (TSF) domain, recur-
rent models such as LSTM and GRU have been neglected and their potential to capture
cross-channel dependencies escaped the attention of researchers in the field. RNNs are still
occasionally utilized for TSF [11] in rare cases. However, their capability for sequential
modeling is underestimated compared to that of Transformers.

In this paper, we reconsider the RNNs, specifically the Gated Recurrent Unit (GRU),
as an alternative to the multi-head self-attention module in the Transformer models. We
exploit GRUs to extract the interactions among time-series channels and utilize them in
multiple-channel forecasting. Inspired by the iTransformer [8] model, we apply the GRU to
the channel dimension of the input series to capture inter-series correlations. Considering
the importance of capturing cross-channel correlations in time-series analysis, we will
answer the question of whether RNNs (including GRU or LSTM) should still be considered
for time-series forecasting. We answer this question by conducting experiments using
various public time-series datasets and analyzing the results, specifically through the abla-
tion experiments. Recurrent Neural Networks (RNNs) represent significant advantages
in inference time efficiency for time-series forecasting, although their performance some-
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times falls behind that of Transformer-based architectures. The proposed iGRU achieves
a competitive performance with reduced computational overhead. On datasets like So-
lar, iGRU outperforms several Transformer models in both accuracy and efficiency, as
shown in Section 3. However, for some datasets, iGRU’s performance is surpassed by
computation-intensive models, reflecting a trade-off between accuracy and computational
cost. This work explores these trade-offs, demonstrating iGRU’s potential as a lightweight
and effective model for time-series forecasting task. Furthermore, in most cases, iGRU
outperforms the recently proposed iTransformer [8]. The prominent reason for utilizing
GRUs in our model is that RNNs provide significantly lower time and memory complexity
compared to many Transformer-based models, resulting in improved efficiency for specific
applications, as demonstrated in Table 1. Additionally, the clear temporal flow in RNNs
provides better interpretability in understanding how information propagates through
sequences [12], specifically when compared to Transformer and MLP-based architectures.

Table 1. Comparison of time and memory complexity for different models, where L represents the
input sequence length (context length).

Method Type Time Complexity Memory Complexity

GRU RNN O(L) O(L)
DLinear MLP O(L) O(L)

Crossformer Transformer O(L2) O(L2)

Our work includes the following contributions to the time-series forecasting domain:

• We reconsider RNNs for time-series forecasting using a different approach by focusing
on the inter-channel dependencies and describe the inverted GRU (iGRU), which
exploits GRU blocks to capture interactions between the time-series channels and
feed-forward layers to represent temporal relations.

• We extensively evaluate iGRU on eleven public datasets and report the results in terms
of error metrics and memory efficiency.

• We show that our iGRU model achieves comparable results to the state-of-the-art
models or outperforms them.

Time-series forecasting methods are generally categorized into statistical models, such
as Auto-ARIMA [13], and modern (deep learning) approaches, including Transformer,
linear and convolutional neural network models. The Transformer architecture was initially
designed to process and generate token sequences, mainly for natural language processing
applications, especially Large Language Models (LLMs). However, its excellent potential
motivated the TSF research community to deploy and adapt it for time-series tasks. For in-
stance, LogTrans [14] uses convolutional attention in the LogSparse design to capture local
information and reduce time complexity. The Informer [15] exploits the ProbSparse self-
attention with distillation to emphasize prominent keys. In the Autoformer [16], the idea of
time-series decomposition and auto-correlation calculation is proposed to extract temporal
correlations. The FEDformer [17] is designed based on Fourier-based architecture and
achieves a linear time complexity. In another work, the Pyraformer [18] utilizes pyramidal
attention to capture inter-scale and intra-scale relations with a linear complexity. Recently,
PatchTST [19] was proposed based on a Transformer architecture, which utilizes patched
time-series with channel independence to capture temporal correlations for each channel,
separately. In a different design, the Crossformer [20] exploits an encoder–decoder structure
with hierarchical attention modules to leverage cross-channel dependencies. However,
some Linear models have emerged recently to outperform Transformers in benchmark ex-
periments [7,21]. On the other hand, these linear models fall short in representing non-linear
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dependencies between the input series and future time steps [7]. Recently, CNN-based
models achieved promising results in time-series analysis tasks. As a prominent example,
TimesNet [22] utilizes two-dimensional convolutions to capture inter-period and intra-
period relations in a time-series with multiple period lengths, obtaining promising results.
Over the past few years, Transformers and CNNs have overshadowed Recurrent Neural
Networks (RNNs) in the time-series forecasting domain. For instance, the iTransformer [8]
model is proposed based on the vanilla Transformer model and embedding the channels
of the input series. This model attained impressive results in many benchmark datasets,
pinpointing the importance of modeling cross-channel interactions in the forecasting tasks.
The more recent model, TimeXer [23], incorporates the external information to enhance
the forecasting accuracy, which strengthens the canonical Transformer to harmonize en-
dogenous and exogenous information by using patch-wise self-attention and cross-variate
attention, simultaneously. In this paper, we reconsider the potential of RNNs for capturing
sequential dependencies and introduce the inverted GRU (iGRU), which leverages GRUs
to capture dependencies across time-series channels while utilizing feed-forward layers to
extract temporal features.

2. Materials and Methods
Our iGRU architecture is illustrated in Figure 2 and the corresponding forecasting

procedure is shown in Algorithm 1. Given xt ∈ RC, the observation of a time-series with
C channels at time t, we aim to forecast its future H time-steps xt+1, ..., xt+H using a history
or context window wt of length L (i.e., wt = (xt−L+1, ..., xt)).

Figure 2. Illustration of iGRU architecture.
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Algorithm 1 The forecasting procedure of iGRU
Input: Batch(X) = [x1, x2, . . . , xL] : (B, L, C)
Output: Batch(Y) = [y1, y2, . . . , yH ] : (B, H, C)

1: XT : (B, C, L)← Transpose(Batch(X))
2: Xembedded : (B, C, D)← Embedding(XT)
3: for each layer l in iGRU layers do
4: XCC ←

−−→
GRU(Xembedded)

5: XCCR ← XCC + Xembedded
6: XCCR ← LayerNorm(XCCR)
7: XFF ← Feed-Forward(XCCR)
8: XFF ← XFF + XCCR
9: XF ← LayerNorm(XFF)

10: Xembedded ← XF
11: end for
12: Xout : (B, C, H)← Projection(XF)
13: Batch(Y) : (B, H, C)← Transpose(Xout)

2.1. Preliminaries
2.1.1. RNN and GRU

Recurrent Neural Networks (RNNs) are a category of neural networks designed for
sequential data processing across multiple time steps. The Gated Recurring Unit [24],
introduced in 2014, is a specific type of RNN with a gating mechanism to input or forget
information along a sequence of timesteps, which employs update and forget units to
process sequential data mapped to a hidden space. The GRU operation is defined by the
following equations:

zt = σ(Wzxt + Uzht−1 + bz) (1)

rt = σ(Wrxt + Urht−1 + br) (2)

ĥt = ϕ(Whxt + Uh(rt ⊙ ht−1) + bh) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (4)

where ⊙ represents element-wise multiplication. xt and ht indicate input and hidden
state vectors at time t, respectively. zt, rt, ĥt represent the update vector, reset vector
and candidate hidden state at time step t, respectively. In addition, Wh, Wz, Wr, Uh,
Uz, Ur, bh, bz and br are the relevant weights and biases which are learned during the
model training phase. This type of RNN showed effective sequential modeling in various
applications [24–26]. In most applications, GRUs and LSTMs are commonly used to capture
temporal dependencies. However, their efficiency in modeling cross-channel correlations
within time-series data has often been overlooked. To leverage RNNs for capturing inter-
series dependencies, the input multivariate time-series must first be projected into a hidden
space using a simple linear embedding layer [8]. We selected GRU over LSTM due to its
comparatively lower parameter count while achieving similar performance, which aligned
with our goal of maintaining model efficiency. Vanilla RNNs, on the other hand, are not
studied in our approach as they lack memory gates, which limits their performance relative
to GRUs.

2.1.2. Temporal Embedding of Time-Series

Similarly to [8], the input multivariate series is embedded into a higher-dimensional
space through a linear layer. The input to the temporal embedding has the shape X (Batch,
Channel, Time Length), which is an inverted version of the input time-series obtained by
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swapping the temporal and channel dimensions. Then, X is projected into the model space
along its temporal dimension by

Xembedded = Linear(X) (5)

Here, Linear refers to a fully connected layer, where the input dimension corresponds
to the series length, and the output dimension corresponds to the model dimensionality.

2.2. Proposed iGRU Model

As illustrated in Figure 2, the input multivariate series is first passed to the linear
embedding layer, which is applied series-wise to map each channel into a hidden space.
Before embedding, instance normalization [27] is utilized to reduce non-stationarity and
distribution shifts between the training and test sets. The embedded series is then sent to the
GRU module, which acts like the multi-head self-attention of Transformers to capture the
intricate interactions among multiple time-series channels. Here, the GRU cells represent
those dependencies in one direction starting from the first channel to the last one, similar
to temporal sequence modeling:

XCC =
−−→
GRU(Xembedded) (6)

The channel or variate correlated output, XCC, encoded by the GRU layer, is connected
with its input to form the output of this layer, facilitating gradient flow and training stability:

XCCR = XCC + Xembedded (7)

After adding the GRU output and the skip connection, layer normalization is applied
to normalize the activations within each layer to obtain a mean of zero and a variance of one,
thereby stabilizing training through the reduction of varying feature scales. Then, a feed-
forward layer (FFN) is applied to the series representations to capture temporal correlations
along each channel. The feed-forward network (FFN) consists of two fully connected
layers mapping the series representation to a higher dimensional space (two times the
model dimension) and then to the model dimension, with a Gaussian Error Linear Unit
(GELU) activation used between the layers. It is worth noting that FFN implicitly represents
temporal dependencies along the model dimension. Finally, the FFN module output is
added to its input using a skip connection and a normalization layer is employed afterwards
to adjust the obtained series representation. The final prediction is obtained by applying a
projection layer to the output of the feed-forward network. The projection layer is a fully
connected layer which projects the model dimension to the forecasting horizon (prediction
length), generating the predictions of multiple channels.

3. Results
The Proposed iGRU is thoroughly and carefully evaluated on eleven public datasets.

The Traffic dataset [6] is a collection of road occupancy data from the California Department
of Transportation. It was gathered from 862 sensors between 2015 and 2016. PEMS [6,28] is
a complex spatiotemporal dataset related to public traffic networks in California consisting
of four different datasets (PEMS03, PEMS04, PEMS07, and PEMS08). The ETT (Electricity
Transformer Temperature) dataset [16] includes data related to the load and oil temperature
of electricity transformers collected from July 2016 to July 2018. This collection contains
different datasets captured hourly or in minutes granularity, including ETTm1 and ETTm2,
all consisting of seven variates. The Weather dataset [16] consists of 21 meteorological
variates recorded every 10 min from the Max Planck Bio-geochemistry institute. The
Electricity dataset [16] contains hourly electricity consumption of 321 costumers. The Solar-
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Energy dataset [16], which was sampled every 10 min, collected solar power records in
2006 from 137 PV plants in the US state of Alabama. The Exchange dataset [16] is collected
based on panel data of daily exchange rates corresponding to eight countries from 1990 to
2016. More information regarding the datasets are reported in Table 2.

Table 2. Dataset information: Dim represents the number of variates and Dataset Size denotes
the total number of time points in (Training, Validation, Testing) split of each dataset, respectively.
Prediction Length indicates the future time points to be predicted and four prediction lengths settings
are specified in each dataset. Frequency denotes the sampling interval of time points.

Dataset Dim Prediction Length Dataset Size Frequency Information

ETTm1, ETTm2 7 {96, 192, 336, 720} (34,465, 11,521, 11,521) 15 min Electricity
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy
Weather 21 {96, 192, 336, 720} (36,792, 5271, 10,540) 10 min Weather

Electricity 321 {96, 192, 336, 720} (18,317, 2633, 5261) Hourly Electricity
Traffic 862 {96, 192, 336, 720} (12,185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36,601, 5161, 10,417) 10 min Energy
PEMS03 358 {12, 24, 48, 96} (15,617, 5135, 5135) 5 min Transportation
PEMS04 307 {12, 24, 48, 96} (10,172, 3375, 3375) 5 min Transportation
PEMS07 883 {12, 24, 48, 96} (16,911, 5622, 5622) 5 min Transportation
PEMS08 170 {12, 24, 48, 96} (10,690, 3548, 3548) 5 min Transportation

We compared the proposed iGRU model with several state-of-the-art models, includ-
ing TimeXer [23], iTransformer [8], PatchTST [19], Crossformer [20], TiDE [21], DLinear [7],
FEDformer [17], Autoformer [16] and TimesNet [22]. We implemented our proposed model
in Pytorch [29] and executed our experiments using a single A100-40G NVIDIA GPU. All
models were trained for 10 epochs with early stopping patience of three steps based on
the validation loss change. The Mean Square Error (MSE) loss function is utilized with the
Adam [30] optimizer to train all models. We set the learning rate to 0.001 for the Traffic,
Electricity and PEMS datasets and lower values (0.0005 or 0.0001) are used for the other
datasets. This choice is an attempt to mitigate overfitting and skipping of sub-optimal
results, since these datasets had a limited number of training instances. For each hyper-
parameter, we tried a range of possible values, and the value yielding the best result was
picked. The reported results represent an average of five runs. In our experiments, the
batch size is uniformly selected as 16 or 32, and the number of iGRU blocks are set from
{1, 2, 3, 4}. Additionally, the model dimension is chosen from {128, 256, 512} according to
each dataset. The selected hyper-parameters for each dataset are shown in Table 3. The
results of time-series forecasting in terms of MSE and MAE (Mean Absolute Error) are
reported in Tables 4 and 5.

Table 3. Selected hyper-parameters for training the iGRU model on different benchmarks.

Dataset Model
Dimension Feed-Forward Dimension iGRU Blocks Learning Rate Batch Size Dropout

ETTm1 256 512 2 0.0001 32 0.1
ETTm2 256 512 2 0.0001 32 0.1
Weather 512 512 3 0.0001 32 0.1

Exchange 256 256 2 0.00005 32 0.1
Electricity 512 512 3 0.001 16 0.1

Traffic 512 512 4 0.001 16 0.1
PEMS03 512 512 4 0.001 16 0.1
PEMS04 1024 1024 4 0.001 16 0.1
PEMS07 512 512 3 or 4 0.001 16 0.1
PEMS08 512 512 3 or 4 0.001 16 0.1
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Table 4. Multivariate time-series forecasting results of iGRU and the baseline models on Traffic and PEMS datasets. The input length (lookback window) is set to 96
and the prediction length is in {12, 24, 48, 96} for PEMS datasets and in {96, 192, 336, 720} for Traffic dataset. The best results are shown in bold, and the second-best
results are shown in italics.

Models Ours TimeXer iTransformer PatchTST DLinear Crossformer TimesNet TiDE FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.393 0.268 0.428 0.271 0.395 0.268 0.462 0.295 0.650 0.396 0.522 0.290 0.593 0.321 0.805 0.493 0.587 0.366 0.613 0.388
192 0.417 0.277 0.448 0.282 0.417 0.276 0.466 0.296 0.598 0.370 0.530 0.293 0.617 0.336 0.756 0.474 0.604 0.373 0.616 0.382

Traffic 336 0.431 0.283 0.473 0.289 0.433 0.283 0.482 0.304 0.605 0.373 0.558 0.305 0.629 0.336 0.762 0.477 0.621 0.383 0.622 0.337
720 0.463 0.301 0.516 0.307 0.467 0.302 0.514 0.322 0.645 0.394 0.589 0.238 0.640 0.350 0.719 0.449 0.626 0.382 0.660 0.408
Avg 0.426 0.282 0.466 0.287 0.428 0.282 0.481 0.304 0.625 0.383 0.550 0.304 0.620 0.336 0.760 0.473 0.610 0.376 0.628 0.379

12 0.069 0.172 0.072 0.184 0.071 0.174 0.099 0.216 0.122 0.243 0.090 0.203 0.085 0.192 0.178 0.305 0.126 0.251 0.272 0.385
24 0.087 0.195 0.088 0.202 0.093 0.201 0.142 0.259 0.201 0.317 0.121 0.240 0.118 0.223 0.257 0.371 0.149 0.275 0.334 0.440

PEMS03 48 0.119 0.230 0.127 0.242 0.125 0.236 0.211 0.319 0.333 0.425 0.202 0.317 0.155 0.260 0.379 0.463 0.227 0.348 1.032 0.782
96 0.151 0.264 0.177 0.284 0.164 0.275 0.269 0.370 0.457 0.515 0.262 0.367 0.228 0.317 0.490 0.539 0.348 0.434 1.031 0.796

Avg 0.107 0.215 0.116 0.228 0.113 0.221 0.180 0.291 0.278 0.375 0.169 0.281 0.147 0.248 0.326 0.419 0.213 0.327 0.667 0.601

12 0.078 0.185 0.082 0.197 0.078 0.183 0.105 0.224 0.148 0.272 0.098 0.218 0.087 0.195 0.219 0.340 0.138 0.262 0.424 0.491
24 0.091 0.204 0.094 0.212 0.095 0.205 0.153 0.275 0.224 0.340 0.131 0.256 0.103 0.215 0.292 0.398 0.177 0.293 0.459 0.509

PEMS04 48 0.114 0.230 0.119 0.237 0.120 0.233 0.229 0.339 0.355 0.437 0.205 0.326 0.136 0.250 0.409 0.478 0.270 0.368 0.646 0.610
96 0.141 0.254 0.162 0.275 0.150 0.262 0.291 0.389 0.452 0.504 0.402 0.457 0.190 0.303 0.492 0.532 0.341 0.427 0.912 0.748

Avg 0.106 0.218 0.114 0.230 0.111 0.221 0.195 0.307 0.295 0.388 0.209 0.314 0.129 0.241 0.353 0.437 0.231 0.337 0.610 0.590

12 0.065 0.163 0.063 0.171 0.067 0.165 0.095 0.207 0.115 0.242 0.094 0.200 0.082 0.181 0.173 0.304 0.109 0.225 0.199 0.336
24 0.084 0.188 0.079 0.187 0.088 0.190 0.150 0.262 0.210 0.329 0.139 0.247 0.101 0.204 0.271 0.383 0.125 0.244 0.323 0.420

PEMS07 48 0.103 0.210 0.100 0.203 0.110 0.215 0.253 0.340 0.398 0.458 0.311 0.369 0.134 0.238 0.446 0.495 0.165 0.288 0.390 0.470
96 0.128 0.235 0.131 0.233 0.139 0.245 0.346 0.404 0.594 0.553 0.396 0.442 0.181 0.279 0.628 0.577 0.262 0.376 0.554 0.578

Avg 0.095 0.199 0.093 0.199 0.101 0.204 0.211 0.303 0.329 0.395 0.235 0.315 0.193 0.271 0.380 0.440 0.165 0.283 0.367 0.451

12 0.077 0.179 0.091 0.206 0.079 0.182 0.168 0.232 0.154 0.276 0.165 0.214 0.112 0.212 0.227 0.343 0.173 0.273 0.436 0.485
24 0.109 0.212 0.133 0.253 0.115 0.219 0.224 0.281 0.248 0.353 0.215 0.260 0.141 0.238 0.318 0.409 0.210 0.301 0.467 0.502

PEMS08 48 0.177 0.232 0.209 0.249 0.186 0.235 0.321 0.354 0.440 0.470 0.315 0.355 0.198 0.283 0.497 0.510 0.320 0.394 0.966 0.733
96 0.213 0.262 0.492 0.467 0.221 0.267 0.408 0.417 0.674 0.565 0.377 0.397 0.320 0.351 0.721 0.592 0.442 0.465 1.385 0.915

Avg 0.144 0.221 0.231 0.294 0.150 0.226 0.280 0.321 0.379 0.416 0.268 0.307 0.193 0.271 0.441 0.464 0.286 0.358 0.814 0.659
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Table 5. Multivariate time-series forecasting results of iGRU and the baseline models on Weather, Electricity, Exchange, Solar-energy, ETTm1 and ETTm2 datasets.
The input length (look-back window) is set to 96 and the prediction length is {96, 192, 336, 720}. The best results are shown in bold, and the second-best results are
shown in italics.

Models Ours TimeXer iTransformer PatchTST DLinear Crossformer TimesNet TiDE FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.167 0.210 0.157 0.205 0.174 0.214 0.177 0.218 0.196 0.255 0.158 0.230 0.172 0.220 0.202 0.261 0.217 0.296 0.266 0.336
192 0.215 0.254 0.204 0.247 0.221 0.254 0.225 0.259 0.237 0.296 0.206 0.277 0.219 0.261 0.242 0.298 0.276 0.336 0.307 0.367

Weather 336 0.273 0.297 0.261 0.290 0.278 0.296 0.278 0.297 0.283 0.335 0.272 0.335 0.280 0.306 0.287 0.335 0.339 0.380 0.359 0.395
720 0.354 0.349 0.340 0.341 0.358 0.347 0.354 0.348 0.345 0.381 0.398 0.418 0.365 0.359 0.351 0.386 0.403 0.428 0.419 0.428
Avg 0.253 0.278 0.241 0.271 0.258 0.278 0.259 0.281 0.265 0.317 0.259 0.315 0.259 0.287 0.271 0.320 0.309 0.360 0.338 0.382

96 0.142 0.238 0.140 0.242 0.148 0.240 0.181 0.270 0.197 0.282 0.219 0.314 0.168 0.272 0.237 0.329 0.193 0.308 0.201 0.317
192 0.160 0.255 0.157 0.256 0.162 0.253 0.188 0.274 0.196 0.285 0.231 0.322 0.184 0.289 0.236 0.330 0.201 0.315 0.222 0.334

Electricity 336 0.176 0.272 0.176 0.275 0.178 0.269 0.204 0.293 0.209 0.301 0.246 0.337 0.198 0.300 0.249 0.344 0.214 0.329 0.231 0.338
720 0.210 0.301 0.211 0.306 0.225 0.317 0.246 0.324 0.245 0.333 0.280 0.363 0.220 0.320 0.284 0.373 0.246 0.355 0.254 0.361
Avg 0.172 0.267 0.171 0.270 0.178 0.270 0.205 0.290 0.212 0.300 0.244 0.334 0.192 0.295 0.251 0.344 0.214 0.327 0.227 0.338

96 0.194 0.243 0.187 0.250 0.203 0.237 0.234 0.286 0.290 0.378 0.310 0.331 0.250 0.292 0.312 0.399 0.242 0.342 0.884 0.711
192 0.208 0.255 0.202 0.271 0.233 0.261 0.267 0.310 0.320 0.398 0.734 0.725 0.296 0.318 0.339 0.416 0.285 0.380 0.834 0.692

Solar 336 0.214 0.271 0.215 0.284 0.248 0.273 0.290 0.315 0.353 0.415 0.750 0.735 0.319 0.330 0.368 0.430 0.282 0.376 0.941 0.723
720 0.214 0.264 0.220 0.293 0.249 0.275 0.289 0.317 0.356 0.413 0.769 0.765 0.338 0.337 0.370 0.425 0.357 0.427 0.882 0.717
Avg 0.208 0.258 0.229 0.274 0.233 0.262 0.270 0.307 0.330 0.401 0.641 0.639 0.301 0.319 0.347 0.417 0.291 0.381 0.885 0.711

96 0.086 0.207 0.086 0.206 0.086 0.206 0.088 0.205 0.088 0.218 0.256 0.367 0.107 0.234 0.094 0.218 0.148 0.278 0.197 0.323
192 0.181 0.304 0.188 0.308 0.177 0.299 0.176 0.299 0.176 0.315 0.470 0.509 0.226 0.344 0.184 0.307 0.271 0.315 0.300 0.369

Exchange 336 0.331 0.417 0.342 0.421 0.331 0.417 0.301 0.397 0.313 0.427 1.268 0.883 0.367 0.448 0.349 0.431 0.460 0.427 0.509 0.524
720 0.857 0.702 0.870 0.702 0.847 0.691 0.901 0.714 0.839 0.695 1.767 1.068 0.964 0.746 0.852 0.698 1.195 0.695 1.447 0.941
Avg 0.364 0.408 0.372 0.409 0.360 0.403 0.367 0.404 0.354 0.414 0.940 0.707 0.416 0.443 0.370 0.413 0.519 0.429 0.613 0.539

96 0.321 0.358 0.318 0.356 0.334 0.368 0.329 0.367 0.345 0.372 0.404 0.426 0.338 0.375 0.364 0.387 0.379 0.419 0.505 0.475
192 0.364 0.382 0.362 0.383 0.377 0.391 0.367 0.385 0.380 0.389 0.450 0.451 0.374 0.387 0.398 0.404 0.426 0.441 0.553 0.496

ETTm1 336 0.399 0.406 0.395 0.407 0.426 0.420 0.399 0.410 0.413 0.413 0.532 0.515 0.410 0.411 0.428 0.425 0.445 0.459 0.621 0.537
720 0.470 0.445 0.452 0.441 0.491 0.459 0.454 0.439 0.474 0.453 0.666 0.589 0.478 0.450 487 0.461 0.543 0.490 0.671 0.561
Avg 0.389 0.398 0.382 0.397 0.407 0.410 0.387 0.400 0.403 0.407 0.513 0.496 0.400 0.406 0.419 0.419 0.448 0.452 0.588 0.517

96 0.177 0.260 0.171 0.256 0.180 0.264 0.175 0.259 0.193 0.292 0.287 0.366 0.187 0.267 0.207 0.305 0.203 0.287 0.255 0.339
192 0.242 0.304 0.237 0.299 0.250 0.309 0.241 0.302 0.284 0.362 0.414 0.492 0.249 0.304 0.290 0.364 0.269 0.328 0.281 0.340

ETTm2 336 0.306 0.343 0.296 0.338 0.311 0.348 0.305 0.343 0.369 0.427 0.597 0.542 0.321 0.351 0.377 0.422 0.325 0.366 0.339 0.372
720 0.408 0.406 0.392 0.394 0.412 0.407 0.402 0.412 0.554 0.522 1.730 1.042 0.408 0.403 0.558 0.524 0.421 0.415 0.433 0.432
Avg 0.283 0.328 0.274 0.322 0.288 0.332 0.281 0.326 0.350 0.401 0.757 0.610 0.290 0.333 0.358 0.404 0.305 0.349 0.327 0.371



AI 2025, 6, 90 10 of 17

4. Discussion
Our iGRU model outperforms most baseline models, notably iTransformer, by cap-

turing inter-series relations with GRU modules. Despite the relatively low number of
variates in the ETT datasets (seven variates), iGRU achieves a better performance compared
to iTransformer and PatchTST models. For example, on the ETTm1 dataset, our iGRU
model outperforms iTransformer by more than 4% on average in terms of the MSE met-
ric, highlighting its efficiency in capturing relations between variates and temporal time
steps. Our model efficiency is also verified by its performance in datasets with numerous
periodic variations, including datasets from traffic, electricity, and PEMS. As observed in
Table 4, the iGRU model exhibits noticeably higher MSE and MAE values on the Traffic
dataset compared to the PEMSn datasets. This difference can be attributed to the inherent
complexity and variability of the Traffic dataset, which includes diverse traffic patterns
influenced by external factors such as weather, events, or road conditions, making it less
predictable than the PEMSn datasets. In addition, the Traffic dataset’s hourly sampling
frequency records broader trends, amplifying variability and reducing short-term pattern
consistency, whereas the PEMSn datasets’ 5 min sampling pattern provides finer patterns,
facilitating more predictable temporal dependencies. This trend of elevated errors is con-
sistent across other models evaluated on the traffic dataset, suggesting that the dataset’s
characteristics pose a general challenge. The results associated with the Traffic, PEMS03,
PEMS04, PEMS07 and PEMS08 datasets underscore the capability of iGRU in handling
inter-series dependencies more efficiently compared to other baseline models. According
to Table 4, iGRU reduces the MSE error (averaged over four prediction lengths) by nearly
6% compared to the second-best baseline (iTransformer) in the PEMS07 dataset, which
comprises 883 variates and represents a spatiotemporal type of time-series. iGRU also
achieves prediction accuracy comparable to TimeXer while consuming less GPU memory
and training time, especially when the prediction length is set to 96. In the traffic dataset,
iGRU reduces the MSE error by more than 8.5% on average, relative to TimeXer. When
averaged across four prediction horizons, the MSE error also improved by more than 21%
in the PEMS08 dataset compared to TimeXer. Additionaly, iGRU performs better than
TimeXer in predicting solar power along different forecasting lengths, by more than 9%
on average MSE. This highlights the capability of the iGRU model to capture complex
cross-variate dependencies. To demonstrate the robustness of our iGRU model, we trained
it five times with various random seeds and reported the mean and standard deviation
of the results in Table 6. The low standard deviations of the MSE and MAE errors in
the test sets associated with different datasets confirm the stability and robustness of the
iGRU model.

To illustrate the performance of iGRU on different datasets intuitively, we present a
visual comparison of its predictions against the ground truth target series. These visualiza-
tions provide a clear and interpretable assessment of the model forecasting accuracy. In the
provided plots (Figure 3), the orange line indicates the predictions related to a model and
the blue line demonstrates the actual selected sequence. Figure 3 indicates that predictions
corresponding to the iGRU are well aligned with the ground truth series on different
datasets compared to the predictions generated by the iTransformer.
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Figure 3. Visual comparison of iGRU and iTransformer on different datasets. The orange line indicates
predictions for iGRU and green line corresponds to predictions for iTransformer, with the blue line
indicating the ground truth. The look-back window and forecast window lengths are set to 96 for
all datasets.

4.1. Model Efficiency

To assess our model’s computational efficiency, its memory consumption and training
time are compared against those of the other baselines on the Traffic and PEMS07 datasets.
Here, by efficiency, we mean training time and GPU memory consumption. Independent
runs are conducted using a single A100-40G GPU with the batch size fixed to 16. Our
model’s efficiency is illustrated in Figure 4, where bubble charts show a visual comparison
of efficiency metrics. The vertical axis indicates the prediction MSE, and the horizontal
axis depicts the duration of one training iteration (milliseconds/iteration). The bubble
size indicates the related memory footprint in Gigabytes (total memory consumption in
one epoch). As Figure 4 illustrates, the iGRU model attains the most accurate results,
while requiring less or equal training time and memory usage compared to other baselines,
except the linear models. DLinear consumes minimal memory and time resources than
the other models, while delivering the least accurate forecasts. To further support the
claim regarding the computational efficiency of iGRU compared to Transformer-based
models, we conducted additional experiments on the Electricity dataset with varying
input lengths (96, 336, and 720), while keeping the prediction length fixed at 96. For
each configuration, we measured the training time (ms/iteration), peak GPU memory
usage, and related model performance (MSE). Figure 5 illustrates how model cost varies
across different input lengths. Notably, iGRU consistently maintains a short training time
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and low memory footprint, while delivering competitive or better accuracy compared to
Transformer-based alternatives. These results confirm that iGRU offers a stable trade-off
between efficiency and performance, specifically when the optimal model is sensitive to
the length of input window.

Figure 4. Comparison of iGRU with other baselines in terms of MSE, training time and GPU memory
usage on Traffic and PEMS07 datasets. The look-back window is set to 96 and the prediction length is
set to 96 and 12 for the Traffic and PEMS07 datasets, respectively.

Figure 5. Cont.
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Figure 5. Comparison of training time (ms/iter), model performance (MSE), and memory usage
(bubble size) across different input lengths on the Electricity dataset. iGRU consistently demonstrates
a low training cost and memory usage while maintaining competitive or better performance compared
to Transformer-based models.

4.2. Ablation Study

We demonstrate the importance of the RNN (GRU) and feed-forward layers in our
model through conducting experiments with and without the GRU, feed-forward layer
and skip connections. The results are reported in Table 7, showcasing the impact of these
components on the iGRU performance. The impact of the above components is mostly
evident on the Traffic dataset, which is a complex dataset with many time-series variates.
The skip connections added to the outputs of the GRU and feed-forward layers contribute
to the gradient flow and training efficiency, which helps to attain optimal results. The
significant contribution of GRU blocks in capturing cross-variate correlations becomes
evident when comparing the results of the model without GRU blocks (W/O GRU) to
those of the iGRU model, which incorporates these blocks. This comparison underscores
the potential of GRUs to enhance time-series forecasting performance and prompts a raised
discussion on whether RNNs, particularly GRUs, should be reconsidered as a powerful
tool in time-series analysis, specifically for modeling cross-channel dependencies.
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Table 6. Robustness of iGRU model. Five independent runs are conducted with different random seeds.

Dataset Electricity Traffic Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.142 ± 0.000 0.238 ± 0.000 0.393 ± 0.001 0.267 ± 0.001 0.167 ± 0.002 0.210 ± 0.001
192 0.160 ± 0.000 0.254 ± 0.000 0.416 ± 0.000 0.277 ± 0.001 0.215 ± 0.000 0.254 ± 0.001
336 0.176 ± 0.000 0.272 ± 0.000 0.431 ± 0.000 0.283 ± 0.000 0.273 ± 0.000 0.297 ± 0.000
720 0.210 ± 0.003 0.301 ± 0.003 0.463 ± 0.000 0.301 ± 0.000 0.354 ± 0.001 0.349 ± 0.001

Dataset ETTm1 ETTm2 Exchange

Horizon MSE MAE MSE MAE MSE MAE

96 0.320 ± 0.001 0.358 ± 0.001 0.178 ± 0.000 0.260 ± 0.000 0.086 ± 0.000 0.207 ± 0.000
192 0.364 ± 0.000 0.382 ± 0.000 0.244 ± 0.001 0.304 ± 0.001 0.181 ± 0.000 0.304 ± 0.000
336 0.398 ± 0.000 0.405 ± 0.000 0.304 ± 0.001 0.343 ± 0.000 0.331 ± 0.000 0.417 ± 0.000
720 0.469 ± 0.001 0.445 ± 0.000 0.408 ± 0.001 0.403 ± 0.001 0.857 ± 0.000 0.702 ± 0.000

Table 7. Ablation of iGRU model without GRU, skip or residual connections and feed-forward layer.
The best results are shown in bold.

Design W/O
F.F

W/O F.F
+

W/O Skip
Connection

W/O Skip
Connection W/O GRU iGRU

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.324 0.361 0.325 0.364 0.327 0.364 0.324 0.362 0.321 0.358
ETTm1 192 0.366 0.383 0.368 0.387 0.373 0.390 0.367 0.384 0.364 0.382

336 0.399 0.405 0.403 0.410 0.415 0.418 0.400 0.406 0.399 0.406
720 0.467 0.443 0.475 0.450 0.482 0.455 0.467 0.444 0.470 0.445

96 0.407 0.281 0.414 0.287 0.502 0.366 0.437 0.282 0.393 0.268
Traffic 192 0.428 0.289 0.437 0.296 0.535 0.372 0.450 0.287 0.417 0.277

336 0.445 0.296 0.452 0.303 0.537 0.371 0.464 0.294 0.431 0.283
720 0.476 0.313 0.487 0.323 0.572 0.389 0.495 0.312 0.463 0.301

96 0.170 0.214 0.166 0.211 0.169 0.213 0.194 0.232 0.168 0.211
Weather 192 0.217 0.256 0.214 0.255 0.217 0.257 0.239 0.269 0.215 0.254

336 0.274 0.297 0.271 0.296 0.277 0.300 0.291 0.307 0.274 0.297
720 0.353 0.349 0.353 0.349 0.357 0.352 0.364 0.354 0.354 0.348

4.3. Increasing Look-Back Length

Some of the previous Transformer-based works [7,19] have shown that increasing
the length of look-back window does not necessarily improve the forecasting results,
which can be caused by distracted attention on the increasing (prolonged) input. As the
structure of our iGRU model is different from the Transformer-based models, we evaluate
the performance of iGRU and its main competitor models, e.g., TimeXer, iTransformer,
DLinear and PatchTST in Figure 6 using various input lengths. The results pinpoint the
performance promotion of iGRU for longer input windows and its capability to leverage
the information over the extended temporal context.
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Figure 6. Forecasting with look-back length in {48, 96, 192, 336, 720} and prediction length of 96 on
the Electricity and Traffic datasets. The proposed iGRU model exploits enlarged and shortened input
lengths and delivers accurate results.

5. Conclusions
In this work, recurrent neural network architecture has been brought back to the

time-series forecasting field by using it in a different manner and integrating it with a
feed-forward layer. Experimentally, the proposed iGRU achieves results that can compete
with those of the other state-of-the-art models, while consuming less training time and
memory. In future work, we will investigate large-scale foundation models using the iGRU
and perform a more in-depth exploration of time-series analysis.
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