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Abstract: As manifestations of Industry 4.0. become visible across various applications, one key
and opportune area of development are quality inspection processes and defect detection. Over the
last decade, computer vision architectures, in particular, object detectors have received increasing
attention from the research community, due to their localisation advantage over image classification.
However, for these architectural advancements to provide tangible solutions, they must be optimised
with respect to the target hardware along with the deployment environment. To this effect, this
survey provides an in-depth review of the architectural progression of image classification and
object detection architectures with a focus on advancements within Artificially Intelligent accelerator
hardware. This will provide readers with an understanding of the present state of architecture–
hardware integration within the computer vision discipline. The review also provides examples
of the industrial implementation of computer vision architectures across various domains, from
the detection of fabric defects to pallet racking inspection. The survey highlights the need for
representative hardware-benchmarked datasets for providing better performance comparisons along
with envisioning object detection as the primary domain where more research efforts would be
focused over the next decade.

Keywords: artificial intelligence; computer vision; hardware advancements; image classification;
object detection

1. Introduction

Artificial Intelligence (AI) has experienced significant advancements over the past
decade, and one notable advance is in deep learning [1]. The manifestation of AI-integrated
applications based on machine learning (ML) and deep learning (DL) approaches can
be observed across various domains from manufacturing [2] and renewable energy [3] to
security [4] and healthcare [5,6]. Although conventional ML/DL approaches are well suited
for numerical and textual data due to their structured nature and established preprocessing
techniques, they are not the standard choice for image-based applications because images
are high-dimensional and contain complex spatial hierarchies that require specialised
handling. Image data can consist of millions of pixels, making the feature space vastly
larger, and capturing meaningful patterns necessitates understanding spatial relationships
and local features, which conventional algorithms struggle to achieve. Amongst the
various subdomains attributed to AI, Computer Vision (CV) is one of the front-runners
when it comes to a practical demonstration of AI within the corporate world. Simulating
the visual perception ability of humans, CV provides computers with artificial visual
perception, allowing them to perceive objects within the physical environment and suggest
actions accordingly.

Modelling CV systems require the architectural design and the development of algo-
rithms that contain the ability to perceive, analyse, comprehend and classify, according to
the requirements of the application [7]. Researchers have segmented CV into three distinct
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inter-domains: (1) image classification [8], for determining the presence of a particular
object in an image; (2) object detection [9], for the determination of multiple objects along
with the location details for each object; and (3) object segmentation [10], for the pixel-level
segmenting of the object(s) of interest within a single image or a video stream. Prior to the
advent of deep learning, for several decades, researchers focused their efforts on common
object perception, via conventional image processing techniques, namely hand-crafted fea-
ture descriptors, albeit with limited success given the complex nature and high variations
found even with the most common objects [11]. The success of artificial neural networks
(ANN), when trained on large datasets, without the need for manual feature engineering,
demonstrated promise in the CV domain [12]. It was thought that by pursuing the adoption
of ANNs, large datasets containing millions of images could be used in the training of
convolutional neural networks (CNNs). These are a variant of ANN, capable of enhanced
perception, enabling better visual performance, robustness to variations and without the
need for manual feature descriptors [13]. In further advancements, IMAGENET [14] was
brought into existence by Feifei in 2009, the largest image classification database, containing
15 million images spanning 22,000 classes. Following on, CNN-based architectures were
developed and benchmarked on the IMAGENET database to gain an understanding of
their capabilities.

CNNs are unrivalled in their claim as the de facto architecture for vision-based ap-
plications. Assisted by large training datasets, CNNs focus on the transformation of
high-dimensional input data into low-dimensional but highly abstracted, semantic outputs
for accurate classification. The advancements in CV are self-evident with regard to their
potential in enhancing operations across various sectors. However, as researchers aim
to transfer CV architectures from academic laboratories to manufacturing facilities and
production lines, incompatibilities with existing application requirements are becoming
self-evident with rising severity. This includes aspects such as high computational cost,
increased power consumption and high processing requirements from central processing
units (CPUs) and graphical processing units (GPUs) [15]. These incompatibilities have
rerouted the research direction from a one-dimensional criterion, i.e., high accuracy, to multi-
dimensional design considerations including computational complexities, architectural
footprint and energy efficiency.

1.1. Survey Objective

This paper presents a comprehensive survey of key advancements in the field of
computer vision (CV). This survey focuses on two main aspects: (1) breakthroughs in
proposed CV architectures, particularly internal architectural advancements that enable
high-performing networks, and (2) hardware advancements aimed at addressing deploy-
ment issues faced by CV architectures, such as inference speeds, processing time, intra-
connectivity, and power consumption. In terms of architectural advancements, this survey
provides an in-depth analysis of the image classification and object detection domains. It
highlights significant breakthroughs in these areas, emphasising the key contributions that
have enabled advancements in CV algorithms.

Regarding hardware deployment options, this survey explores notable options in-
cluding GPUs, Field-Programmable Gate Arrays (FPGAs) [16], and Application-Specific
Integrated Circuits (ASICs) [17]. These hardware solutions aim to facilitate the smoother
integration of CV frameworks into existing business processes.

It is worth noting that while there are a significant number of works in the literature
available on the development of Convolutional Neural Networks (CNNs), research specifi-
cally focusing on CV architecture design and deployment strategies is relatively limited
and often task-specific [6]. This survey addresses this gap by presenting a comprehensive
review that encompasses both architectural and hardware options. By offering insights
into the latest advancements and options in deployable CV development frameworks,
this survey equips researchers with the necessary knowledge to stay updated and make
informed decisions in their own CV-related research.
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1.2. Existing Surveys

Several significant surveys have delved into the adoption of CNNs in the domain of in-
dustrial surface defect detection. Shengxiang et al. [18] provide an in-depth review starting
with the delineation of computer vision domains before transitioning to implementation
scenarios of these domains for industrial surface defect detection, while authors in [19]
present a lightweight overview on CNNs before focusing their efforts on the segmentation
of industrial surface level defects. Despite shedding light on the potential of CNNs for
industrial surface-level defect detection, these surveys overlook the critical relationship
between the utilised architectures and the hardware accelerators essential for successful
real-world deployment.

Addressing this gap, authors in [20] investigated efficient CNN implementation across
various hardware platforms, albeit from a generic perspective without focusing on the
industrial requirements of the domains in question. A broader survey conducted by
Capra et al. [21] explored the integration of computer vision architectures with hardware
accelerators via object detection, and whilst this provided a detailed analysis of the con-
nection between CNNs and hardware accelerators, it lacked the specific connection to
industrial surface-level defect detection. This review stands out by presenting a comprehen-
sive and up-to-date survey that specifically links object detection, hardware accelerators,
and industrial defect detection within the overall CNN ecosystem focusing on industrial
requirements such as low latency, high inference rates and optimal accuracy. It serves
as a valuable resource for researchers, practitioners and industry professionals aiming to
harness its collective potential for robust and efficient industrial defect detection systems.

1.3. Establishing the Link between CNNs and Hardware

The rapid advancement of CNN architectures has transformed the field of CV, facili-
tating significant breakthroughs in automated visual applications. However, the successful
deployment of CNN models transcends the design of sophisticated architectures. Hardware
considerations play a decisive role in determining the feasibility, efficiency and real-world
applicability of CNNs. Hence, it is important to establish the connection between the
development of CNN architectures and the corresponding hardware considerations before
delving into the details of each.

Computational Requirements: CNN networks are computationally demanding, re-
quiring substantial processing power to perform complex operations. As CNNs become
larger in terms of depth and breadth to capture more complicated features, the compu-
tational requirements grow exponentially. Hence, hardware considerations, such as the
selection of processors/accelerators, must be carefully evaluated to guarantee the efficient
execution and real-time performance of CNN models. Specialised hardware, including
GPUs, FPGAs or Application-Specific Integrated Circuits (ASICs), can provide the necessary
computational power to accelerate CNN training and inferencing processes.

Memory Requirements: CNNs usually require substantial memory resources for
storing model intermediate feature maps and inferencing weights. The size of these models,
measured in terms of the number of parameters, has seen exponential growth with the
advancement of deeper architectures. Hardware accelerators with sufficient memory
capacity and bandwidth are critical to facilitate the memory requirements of CNNs.

Energy Efficiency: The energy efficiency of CNNs is a critical consideration, partic-
ularly for applications deployed on embedded systems and resource-constrained edge
devices. Hardware accelerators, designed explicitly for CNN computations, aim to optimise
power consumption while delivering real-time inference speeds [22]. Compression tech-
niques like quantisation, pruning, and efficient memory access patterns can be deployed to
reduce the energy footprint of CNN architectures. Hardware platforms with low power
consumption, such as dedicated neural network accelerators or low-power edge devices,
enable the energy-efficient deployment of CNN architectures [23].

Scalability and Parallelism: CNN architectural scalability refers to efficiently utilising
multiple hardware resources for processing large amounts of data or performing parallel
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computations. Hardware platforms offering parallel processing capabilities, such as GPUs,
allow for faster training and inference speeds by exploiting parallelism within the internal
architecture of CNNs. Additionally, developments in hardware architecture, such as systolic
arrays and tensor processing units (TPUs), facilitate the effective parallel execution of CNN
computations, further improving scalability.

Deployment Flexibility: Hardware considerations can impact the flexibility in the
deployment of CNN architectures. Different application domains may require distinct
hardware platforms depending on factors like weight, power, size and cost constraints.
For instance, GPU-based systems are appropriate for high-performance applications but
necessarily feasible when it comes to resource-constrained environments, whilst FPGA-
based solutions provide a high degree of reconfigurability, enabling custom hardware
acceleration for specific CNN architectures. ASICs, while presenting the highest perfor-
mance and energy efficiency, induce higher development costs and limited flexibility.

The designing of CNN architectures and hardware considerations are closely inter-
twined, with each influencing the other. Hardware advancements stimulate the design of
more sophisticated CNN architectures by granting the necessary computational capabilities
and memory resources. Conversely, novel CNN architectures inspire the development of
specialised hardware-enhanced architectures for deep learning tasks [24]. This iterative
process promotes advancements in both the algorithmic and hardware spheres, fostering
innovation and progress in computer vision applications.

1.4. Linking Industrial IoT, CNNs and Hardware Accelerators

The connection between Industrial IoT (IIoT), Convolutional Neural Networks (CNNs)
and Hardware Accelerators (HAs) is of paramount importance in transforming various
aspects of industrial operations and manufacturing processes.

Industrial IoT and CNNs: IIoT involves the amalgamation of sensors, devices and ma-
chinery in industrial settings to collect and exchange data, creating a connected ecosystem.
These data can include information about machine performance, environmental conditions,
production metrics and more. CNNs, with their proficiency in visual data administering,
play a focal role in processing images and videos captured by IIoT devices.

For instance, CNNs can be exploited for quality control in industrial manufacturing by
inspecting for products with defects in real time [25]. Additionally, they can be deployed
for predictive maintenance, where they analyse visual image data to detect potential asset
failures before they occur, thus reducing downtime and optimising productivity.

Hardware Accelerators for CNNs in IIoT: Given the computationally demanding
nature of CNNs, notably for complex industrial applications, hardware accelerators be-
come vital for ensuring the efficient and real-time inferencing of visual data. In industrial
settings, where power consumption, low latency and real-time response is critical, hard-
ware accelerators play a crucial role in handling the computational load of CNNs. By
integrating hardware accelerators like GPUs, FPGAs or ASICs (Application-Specific Inte-
grated Circuits), IIoT devices can execute advanced CNN tasks locally, without relying
solely on cloud-based processing, thus reducing dependence on internet connectivity and
minimising the risk of high latency.

In brief, the incorporation of CNNs with hardware accelerators in the Industrial
IoT domain empowers smart manufacturing and real-time analysis, leading to enhanced
productivity, reduced costs and increased safety in industrial settings, thus representing a
powerful convergence of leading edge technology for facilitating the next wave of visual-
based industrial automation and efficiency.

1.5. Structure

The structure of this review is presented in Figure 1. Section 2 provides an overview
of image classification, beginning with conventional image processing techniques and then
transitioning to convolutional neural networks. In Section 3, we delve into object detec-
tion, highlighting significant advancements in this domain, particularly the architectural
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contributions of widely used object detectors. We focus on exploring the various YOLO
variants, known for their efficient nature and real-time inference capabilities. Moving on
to Section 4, we delve into the realm of industrial IoT acceleration for visual inspection,
primarily examining three leading technologies: graphical processing units (GPUs), Field-
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs).
Section 5 showcases industrial quality inspection applications based on the software and
hardware mechanisms discussed in the previous sections, focusing on defect detection in
fabric and photovoltaic manufacturing, as well as the emerging field of automated pallet
racking inspection. Lastly, in Section 6, we discuss the challenges and future scope for
integrating CNN with hardware solutions. Section 7 serves as the conclusion of this article.

Figure 1. Visual structure of this review.

2. Image Classification
2.1. Conventional Image Processing

In the field of image processing, conventional techniques have long been employed
to tackle various challenges related to image analysis, feature extraction and pixel accen-
tuation. These traditional methods, based on using algorithms and handcrafted features,
have shown considerable success in a wide range of applications. However, there are
clear limitations attributed to conventional image processing that have been addressed
through deep learning. Some of the key limitations of conventional image processing are
presented as follows:

Manual Feature Engineering: Conventional image processing techniques frequently
require manual feature engineering, where domain experts design task-specific feature
descriptors. This procedure can be labour-intensive, time-consuming, costly and heavily
dependent on expert knowledge. In contrast, CNNs eliminate the need for explicit feature
engineering by automatically ascertaining features directly from the images, reducing
reliance on human expertise.

Limited Generalisation Capacity: Conventional image processing algorithms can
find it difficult to generalise on new and unseen data, as they rely on assumptions about
image statistics. This is not always the case in complex and diverse real-world scenarios.
Conversely, CNNs are able to learn from large-scale datasets, capturing intricate patterns
that lead to improved generalisation on unseen data.

Handling Complex Variations: Conventional image processing can face challenges
when it comes to handling complex variations in images, such as fluctuations in lighting
conditions, orientations and occlusions. These variations may warrant the designing of spe-
cific feature descriptors tailored to each scenario. Meanwhile, CNNs, with their hierarchical



AI 2024, 5 1329

composition and data-driven learning, have demonstrated greater robustness and adapt-
ability when it comes to handling such complex variations without explicit modifications.

Limited Representation Learning: Traditional image processing techniques often rely
on handcrafted feature extractors that may not entirely capture the complexity and richness
of visual information. These manual extractors may be limited in their ability to represent
intricate patterns and semantic information embedded within the images. CNNs, by con-
trast, excel in representation learning by automatically mining hierarchical features from
images, enabling them to acquire high-level semantics and intricate details simultaneously.

Scalability: Conventional image processing mechanisms may struggle to scale effec-
tively as the size and variance of datasets increase or where more challenging computational
requirements need to be followed. As datasets increase in size, computational demands
also grow, and CNNs are able to leverage parallel processing on specialised hardware such
as GPUs to efficiently process vast amounts of data, leading to significant improvements in
scalability and performance.

2.2. Convolutional Neural Networks

Image classification in the context of CV refers to the ability of the computer/system
to perceive the presence of a particular object in a given image. Before the advent of CNN-
inspired architectures, research on image classification orbited around the development of
scale-invariant feature descriptors (SIFT [26], GIST [27] and HOG [28]), feature representa-
tions (Fisher Kernel [29], bag-of-features [30]) and classifiers (SVM [31]). However, manual
feature engineering resulted in feature descriptors and classifiers that were unable to gen-
eralise to natural variations such as complex backgrounds, light intensity, orientations,
varying colours and occlusions. A breakthrough was achieved during the IMAGENET
Large Scale Visual Recognition Challenge (ILSVRC) in 2012 when AlexNet [32] secured first
position by a significant margin over runners-up architectures based on SIFT and Fisher
Vectors. This remarkable milestone, demonstrated the superiority and robustness of CNNs
in feature engineering and classification over the long reining conventional approaches,
ending the trough period for neural networks. A general CNN, denoted by C, consisting of
n architectural parameters λ1, . . ., λn, with decision spaces λ1, . . ., λn, respectively, focuses
on optimising the problem formulated as

{arg min
λ

L(Cλ, Dtrain, Dvalid) s.t. λ ∈ Λ} (1)

where C(λ,·) denotes the CNN, C adopting the architectural parameter setting λ,
λ = {λ1, . . . , λn}, Λ = Λ1 × . . . × Λn, and L(·) computes the performance of C(λ,·) on
the validation dataset Dvalid post-training on Dtrain (training dataset). When dealing with
classification, L(·) focuses on the computation of the classification error with respect to the
tasks for which C is applied.

The fundamental structure of a typical CNN architecture consists of several compo-
nents. First, a convolutional layer receives the input image and generates a set of resultant
feature maps, i.e., a 2D matrix of neurons for a single feature map, and a 3D volume of
resultant feature maps for several input feature maps [33]. Activation functions, the most
popular being Rectified Linear Unit (ReLu), provide non-linearity, followed by pooling
layers for the removal of positional dependencies and finally connected layers play the in-
termediary role between the sparse convolutions and the output nodes [34]. The stacking of
various layers coupled with performing multi-scale convolutions and regularisation strate-
gies facilitate the discovery of highly abstract, semantically rich and discriminative features.

AlexNet [32] was one of the first techniques and, as mentioned earlier, initiated the
way for the deeper architectural network. AlexNet consists of eight convolutional layers,
followed by three pooling and three fully connected layers. It featured the successful im-
plementation of the ReLu activation function, a mathematically simpler function compared
to its predecessors Sigmoid [35] and TanH [36]. AlexNet contained 60 Million parameters.
The race of claiming the superior CNN architecture had begun, and more breakthroughs
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appeared at the 2014 ILSVRC. VGG-Net [37] and GoogleNet [38], based on the princi-
ple of deeper architectural depth for higher accuracy, secured second and first position,
respectively, at the 2014 competition. For enhanced performance, VGGNet deployed a
stacking strategy, whereby 3 × 3-based convolutional filters and 2 × 2 max-pooling layers
were repeatedly stacked. GoogleNet, took a different approach, by completely eliminating
the fully connected layers and focusing on the optimisation of the sparse matrices. Al-
though GoogleNet contains 22 layers, due to its unwillingness to implement fully connected
layers, its floating-point operations and parameter count were lighter than both AlexNet
and VGG-Net. Simonyan et al. [37], focused the VGG-Net architecture on the stacking ap-
proach, essentially initialising and stacking several convents, as presented in Table 1, which
is evaluating the layer stacking performance. As more researchers focused their attention,
it was quickly discovered that simply increasing the depth of architecture via continuous
stacking cannot guarantee higher accuracy. This is due to the loss of gradient information,
also known as vanishing and exploding gradients. This issue was addressed by the winner
of ILSVRC 2015, ResNet [39], introducing the concept of skip connections between residual
blocks, allowing the conservation of gradient information from previous layers, during the
training process. The concept of skip connections between residual blocks facilitated the
development of very deep architectures reaching 152 layers i.e., ResNet-152. Guided by
the underlying principle of information preservation presented by ResNet, DenseNet [40],
progressed further, by sanctioning links between all current and preceding layers. Through
concatenation, DenseNet promoted the re-usability of features throughout the architectural
layers, providing high performance.

Table 1. VGG-Net Configuration.

Layer Output Size Filter Size/Stride

Input 224 × 224 × 3 -
Conv1-64 224 × 224 × 64 3 × 3/1
Conv2-64 224 × 224 × 64 3 × 3/1
MaxPool1 112 × 112 × 64 2 × 2/2
Conv3-128 112 × 112 × 128 3 × 3/1
Conv4-128 112 × 112 × 128 3 × 3/1
MaxPool2 56 × 56 × 128 2 × 2/2
Conv5-256 56 × 56 × 256 3 × 3/1
Conv6-256 56 × 56 × 256 3 × 3/1
Conv7-256 56 × 56 × 256 3 × 3/1
MaxPool3 28 × 28 × 256 2 × 2/2
Conv8-512 28 × 28 × 512 3 × 3/1
Conv9-512 28 × 28 × 512 3 × 3/1

Conv10-512 28 × 28 × 512 3 × 3/1
MaxPool4 14 × 14 × 512 2 × 2/2

Conv11-512 14 × 14 × 512 3 × 3/1
Conv12-512 14 × 14 × 512 3 × 3/1
Conv13-512 14 × 14 × 512 3 × 3/1
MaxPool5 7 × 7 × 512 2 × 2/2
FC1-4096 4096 -
FC2-4096 4096 -
FC3-1000 1000 -
Softmax 1000 -

In the subsequent years, researchers shifted their focus from developing deeper net-
works to improving internal block-wise functionality by utilising ResNet/DenseNet as
the backbone structure for feature extraction. A manifestation of the active and rapid
advancements was observed at the ILSVRC 2017, with SENet [41], securing first place.

SENet unveiled a ‘squeeze and excitation’ module aimed at re-calibration of channel-wise
feature maps through explicit modelling of inter-dependencies among channels, consequen-
tially leading to the accentuation of important and suppression of non-informative channels.
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Notwithstanding the high classification ability of the aforementioned architectures,
appropriate design and robust development of a CNN architecture to meet stringent
predefined criteria can become a significant and complex design task. To address this,
researchers have developed neural search architectures such as NAS-Net [42], deduced
from reinforcement learning [43] for determining the optimal CNN architecture concerning
the training data.

Additionally, NASNet facilitates proxy dataset mapping, i.e., CIFAR-10 to IMAGENET,
along with a regularisation strategy for improved generalisation capacity. As is evident
from Table 2, NAS-Net is computationally lightweight compared to SENet whilst achieving
the same accuracy (82.7%) on the IMAGENET dataset.

Table 2. YOLO variants benchmarked on COCO 2017 dataset.

Variant AP-Val (%) Fps (b = 32) Latency (ms) Param (M) Flops (G)

v5-L 67.3 126 8.8 46.5 109.1
X-Tiny 50.3 1143 1.4 5.1 6.5

X-L 68.0 103 10.6 54.2 155.6
PPE-L 68.6 127 10.1 52.2 110.1
v6-N 51.2 1234 4.3 11.1 26.3

v6-L-ReLU 69.2 149 58.5 144.0 354.2
v6-L 70.0 121 58.5 144.0 354.2

v7-Tiny 49.9 1196 6.2 5.8 8.8

The preceding architectures all present respectable performance concerning classifica-
tion accuracy. However, cracks appear when the deployment criterion, explicitly sanctions
limited computational resources about the deployment infrastructure, i.e., edge deploy-
ment. Hence, an additional variable is introduced into the design phase, mandating a
stringent computational budget (i.e., processing memory, FLOPs) in addition to high clas-
sification accuracy. The practicality element renewed the research direction, positioning
it on the path to lightweight architecture development, with noteworthy advancements
manifested in the form of SqueezeNet [44], MobileNet [45], ShuffleNet [46] and more.

To achieve computational efficacy, SqueezeNet [44] substitutes the majority of 3 × 3
kernels with 1 × 1 kernels, in addition to reducing the input channels for the remaining
3 × 3 kernels. To ensure this does not have a detrimental effect on the accuracy, down-
sampling is postponed to later layers, avoiding information loss within earlier layers.

The effectiveness of this strategy in achieving a lightweight architecture, is demon-
strated by the fact it is smaller than AlexNet [32] by greater than 50 times. In addition,
the implementation of deep compression [47] can further reduce the computational load
concerning AlexNet [32] by 510 times.

Tasked with computational efficiency, MobileNet [45] proposes a depth-wise separable
approach for the decomposition of standard convolutions into depth-wise convolutions
followed by point-wise convolutions. The proposed mechanism was based on the depth-
wise module performing the convolution process via a single filter on each input channel,
whilst point-wise convolution combines the single channels via 1 × 1 convolution. The pro-
posed mechanism facilitated a notable reduction in the number of parameters and overall
computational complexities, in some cases by nine-fold [48]. The application of depth-wise
convolution with a single filter per input channel, i.e., input depth can be expressed as

Ĝk,l,m = ∑
i,j

K̂i,j,m · FK+i−1,l+j−1,m (2)

where k̂ signifies depth-wise convolutional kernel with dimensions D(K×)D(K×)M,
where the mth filter for k̂ is applied to mth channel in F for producing the mth channel
of the filtered output feature map Ĝ.

Similarly, ShuffleNet [46] implements grouped point-wise convolution, segmenting the
input feature maps into groups prior to implementing the convolutional process separately
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in each group, aimed at reducing the computational baggage. As shown in Figure 2, due to
point-wise group convolutions coupled with channel shuffle, all components within the
ShuffleNet block can be efficiently computed.

Figure 2a presents a bottle-neck block with depth-wise convolution. Figure 2b presents
the ShuffleNet block with point-wise convolution and channel shuffle. Figure 2c presents
a ShuffleNet block based on a stride of 2. The grouping strategy does, however, limit the
dissemination of information between the various channels. To compensate, channels are
further shuffled before each group in the subsequent layer is fed with multiple channels
attributed to different groups, ensuring sufficient information distribution across channels.

Figure 2. ShuffleNet block (a) depth-wise bottleneck, (b) ShuffleNet block and (c) ShuffleNet block
(stride = 2).

To reduce computational costs attributed to spatial convolutions, Shift-Net [49] intro-
duces the concept of information communicated through the internal network via feature
map shifting, enabling the aggregation of spatial data through subsequent point-wise
convolution layers.

In addition, FE-Net [50] demonstrates the requirement of only a small number of shift
procedures for ascertaining spatial information. Hence, FE-Net [50] features a sparse-shift
layer (SSL) focused on conducting shift operations on a reduced number of feature maps.

3. Object Detection
3.1. Anatomy for Object Detection

Object detection can be designated as an extension of image classification, where
the focus is not only on detecting an object but rather multiple objects along with the
respective locations for each object. Primarily, object detection is based on feature extraction
via a module known as backbone; various architectures can be deployed to serve this
purpose, such as ResNet [39], which is followed by bounding box prediction along with
class assertion. Figure 3 presents the anatomy of an object detector. Before CNN-based
object detection, researchers exerted their efforts on selective category detection such as
faces [51] and humans [52] via manual feature descriptors, i.e., HOG [53], LBP [54] and
Harr like. The historical approach is anchored around the concept of feature template
matching concerning the location.

Similar to IMAGENET for image classification, researchers within the object detection
domain have prioritised the development of large, multi-scale datasets for streamlining the
process of benchmarking newly introduced architectures. The two iconic datasets in this
regard are the PASCAL-VOC 2007 [55] containing 20 classes and MS-COCO [56] consisting
of 80 categories. Performance evaluation is based on two metrics: (1) Average Precision
(AP) for computing true bounding box detections with an overlap ratio of 0.5 or greater
concerning the ground truth; and (2) Mean Average Precision (MAP), taking the average AP
values attributed to various overlap ratio thresholds. The popularity of the two respective
datasets and wide acceptance amongst researchers can be gauged via Figure 4, presenting
the detection accuracies for different architectures based on the two benchmark datasets.
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Figure 3. Object detector anatomy.

Figure 4. Accuracy for several object detectors on (a) Pascal VOC 2007 and (b) MS COCO.

R-CNN is considered among the early CNN-based object detection architectures.
It subscribes to the two-stage detection framework, by focusing first on the generation
of a sparse set of candidate bounding boxes from the input image, segueing into the
second phase focused on suppressing and selecting the most relevant candidate proposals,
for output determination. R-CNN embraces the AlexNet framework for the extraction of
fixed-length feature vectors from regional candidate proposals, achieved by the selective
search algorithm [57]. Each proposal is classified via a batch of class-specific linear SVMs.
As shown in Figure 4, R-CNN demonstrated significant improvement utilisation compared
to the prior state-of-the-art DPM network [52]. However, its cumbersome, multistage
pipeline resulted in inefficiencies due to high redundancy, attributed to a large number of
irrelevant regional proposals.

Its successor, Fast R-CNN [58], introduced a region of interest (RoI) pooling mechanism
before the fully connected block. Hence, the acquiring of the fixed-length feature vector for
every region proposal was limited to a single convolutional operation. Although Fast R-
CNN significantly improved the MAP, high computational baggage remained a hindrance
due to external region proposals. Focusing on reducing the computational complexities,
Faster R-CNN [59] proposed the integration of the region pooling network (RPN) with the
Fast R-CNN architecture, as presented in Figure 5, replacing the selective search algorithm
with the region proposal network. For each location predefined set of anchor boxes con-
sisting of different sizes and aspect ratios is applied for acquiring candidate regions. Next,
each region candidate is dimensionally suppressed by a factor of 32 before the application
of max-pooling. Finally, the joint regression and classification of the candidate regions
facilitate the determination of regions of interest (ROI), asserting normalisation concerning
the bounding boxes and class probability. This integration led to shared convolutional
layers, resulting in an inference speed of 6 fps via a GPU on the PASCAL-VOC 2007 dataset.
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Lin Dollar et al. [60] proposed a feature pyramid network (FPN) to leverage the pyramidal
structure of a CNN for generating semantically optimised feature maps at various layers of
the network.

Figure 5. Region proposal network mechanism.

Two-stage architecture has demonstrated impressive performance concerning MAP;
however, this comes at the expense of high computation and low FPS, making them infeasible
for many real-world applications. To address these issues, one-stage detectors focus on the
direct regression and classification of the object without pre-generated regional proposals.

To break the ice, YOLO [61] was introduced in 2016, framing object detection as a
regression task as opposed to classification. The proposed methodology was hinged on the
segmenting of the input image into several M × M grids, followed by several B bounding
boxes for every grid. Next, through the global utilisation of the CNN features for the given
input, the network directly predicted class probabilities, bounding box dimensions and
confidence scores for the bounding boxes normalisation of the network from the proposal
generation stage, enabling it to achieve a 45 fps inference speed. However, the reduced
proposal candidates resulted in less accuracy compared to two-stage detectors. The same
year, Liu et al. [62] introduced another single-stage architecture, famously known as the
single-shot detector (SSD). The methodological approach was based on eliminating the
process of proposal candidate generation, by processing a predefined number of multiscale
feature maps, before adopting a default set of anchor boxes, facilitating the better handling
of different resolution feature maps due to varying object dimensions of objects. The result
was an increased detection speed reaching 59 fps based on a 300 × 300-pixel input image.
By increasing the input size to 512 × 512, an MAP of 76.5% was achieved on the PASCAL-
VOC 2007 dataset, outperforming the state-of-the-art Faster R-CNN.

The following year, YOLO made a comeback, introducing YOLO9000, famously
known as YOLOv2 [63]. The proposed framework adopted the anchor approach from SSD,
also proposing the use of batch normalisation, dimension clustering and anchor-based
convolution, i.e., focusing on offset prediction as opposed to bounding box coordinates.
YOLOv2 was able to reach 40 fps on the PASCAL-VOC 2007 dataset, with a MAP of 78.6%,
outperforming various state-of-the-art architectures, including two-stage detectors.

YOLOv3, 2018 [64], focused on improving the performance of the network on small-
size defects by presenting multiple anchor box approaches assigned at three different
feature map scales. This increased the number of proposals, facilitating better classification
ability. The backbone of the architecture, YOLOv3, evolved from Darknet-19 for YOLOv2 to
Darknet-53, increasing the depth of the architectural layers. DarkNet is known as a flexible
framework for research purposes, written in low-level languages. Although this decreased
the inference speed compared to that of Darknet-19, it maintained similar accuracy to
Faster R-CNN, with respectable real-time inference. The original author, Redmon, citing
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the manipulation of computer vision for use in questionable applications, discontinued his
work post-YOLOv3 [64]. The YOLO variants in the post-Redmon period, to the present
date, have been released by various authors, both individuals and reparameterised research
groups, such as Baidu.

YOLOv4 [65], released in 2018, enables the quantisation of various concepts, including
cross mini-batch normalisation (CMBN), cross-stage partial connections and mish activation.
Figure 6 presents the conceptual pipeline for the cross-stage partial connection, separating
the input feature map reparameterised into two parts. Part one avoids passing through
the dense block, directly composing the input for the following transition layer. Whilst
part two feeds through the dense block before joining part one at the input of the transition
layer, parameterisation increases complexity. The objective behind CMBN was to enable
processing on any GPU as opposed to the requirement of multiple GPUs operating in
tandem. Additionally, bag-of-freebies was proposed, with the primary contribution known
as the Mosaic augmentation, based on tiling images together with a focus on smaller object
accentuation and the suppression of background pixels. YOLOV4 achieved 65.7% AP on
the MS-COCO [56] dataset at approximately 65 fps, benchmarked on a Tesla V100.

Figure 6. Cross-stage partial connection mechanism (a) DenseNet and (b) CSP-DenseNet.

YOLOv5 [66] was released via a Github repository as opposed to the conventional
approach (academic paper), by Glen Jocher, around one month after YOLOv4. From the per-
spective of accessibility, a significant contribution was the migration from darknet, written
primarily in C, to PyTorch, written in the popular Python language. The technical contri-
bution included the integration of the anchor box selection mechanism via k-Means into
the training process as opposed to a separate clustering procedure for default anchor box
selection, presented in YOLOv2 [63], requiring manual configuration into the architecture.

YOLOv6, the initial codebase, was introduced in June 2022, followed by an updated
version and then being published in a paper in September 2022 [67] by researchers at
Meituan [68]. The researchers aimed to propagate its implementation within industrial
environments, hence following stringent design considerations such as speed and accuracy.
Various variants of YOLOv6 have been introduced, aimed at a diverse set of industrial ap-
plications, from YOLOv6-Nano (addressing speed) to YOLOv6-Large (addressing accuracy)
and in between. Unravelling the technicalities of the latest variant presented rich contri-
butions on various fronts, including reparameterised backbones, various augmentations,
network quantisation and more. The first significant contribution was the adoption of an
anchor-free approach, providing better generalisability and making it 51% faster when com-
pared to the majority of anchor-based object detection architectures. Next, reparameterised
backbones were implemented for the feature extraction stage. Backbones are one of the
more computationally expensive components within a network, hence increasing the com-
putational baggage and adversely affecting the inference speed. Hence, reparameterisation
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enabled switching between backbone structures during the training and inference phase.
As shown in Figure 7, RepVGG blocks with skip connections were implemented during
the training for YOLOv6, whilst RepConv, i.e., simple 3 × 3 convolutional blocks, were de-
ployed during inference. A couple of weeks after the introduction of YOLOv6, YOLOv7 [69]
was introduced to the computer vision industry. The authors aimed to improve speed and
accuracy via the implementation of several reforms at the architectural level. YOLOv7,
similar to scaled YOLOv4 backbones, avoids pretraining the backbone via IMAGENET
rather than opting for the COCO dataset. A significant contribution is manifested in the
form of an Extended Efficient Layer Aggregation Network (E-ELAN) as the computational
backbone for the architecture. To cater for various applications, networks need to be tuned
to meet specific requirements, i.e., accuracy and speed. For this, the authors introduced
compound model scaling for facilitating the scaling of the depth and width in coherence
for concatenation-based networks. YOLOv7 is present in several variants, with all variants
able to achieve greater than 30 fps on the Tesla V100 GPU; however, the authors explicitly
state that no variant is designed for mobile device CPUs.

Figure 7. YOLOV6—RepVGG blocks utilised for training and RepConv blocks for inferencing.

Table 2 presents the quantitative results of COCO 2017 validation benchmarks for
various YOLO architectures with input dimensions of 640 × 640 pixels, except for YOLOX-
Tiny and YOLOV7-Tiny at 416 × 416 pixels. Surprisingly, YOLOv6-ReLU, consisting of
58.5 million parameters, surpassed both PPYE-L and YOLOX-L in speed and accuracy.
Additionally, it can be observed that the majority of YOLOv6 variants provide higher FPS
concerning a batch size of 32.

3.2. YOLOv8

In January 2023, Ultralytics introduced YOLOv8, object detector for computer vision
tasks [70]. Demonstrating impressive precision, YOLOv8 performance was benchmarked
via the COCO and Roboflow 100 datasets [70]. YOLOv8 is seen to be more user firendly
via its user-oriented features, including a user-friendly command-line interface and a well-
structured Python package. YOLOv8 deviates from conventional anchor-based methods,
employing an anchor-free approach that predicts the target center. This method addresses
challenges posed by anchor boxes that may not accurately represent custom dataset dis-
tributions, reducing the number of box predictions and accelerating the post-processing
step involving non-maximum suppression. The YOLOv8 training routine encompasses
techniques such as online image augmentation and mosaic augmentation, enhancing its
ability to detect objects in diverse conditions and spatial arrangements. YOLOv8 also
introduces architectural changes from its predecessor, YOLOv5, including the direct con-
catenation of features in the neck segment without enforcing uniform channel dimensions,
reducing the parameter count and overall tensor size. When tested on the MS COCO
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dataset’s test-dev 2017 subset, YOLOv8x delivered an average precision (AP) of 53.9%
at an image size of 640 pixels, compared to YOLOv5’s 50.7% AP at the same input size.
Additionally, YOLOv8x achieved a processing speed of 280 fps using an NVIDIA A100
with TensorRT and is available in five variants, each tailored to specific accuracy and
computational requirements.

3.3. YOLOv9

In February 2024, Wang et al. [71] introduced YOLOv9, featuring two key innovations:
the Programmable Gradient Information (PGI) framework and the Generalized Efficient
Layer Aggregation Network (GELAN). The PGI framework focuses on the information
bottleneck problem in deep neural networks, facilitating compatibility with lightweight
architectures and enhancing performance accuracy. PGI warrants reliable gradient infor-
mation propagation during training, improving learning capacity and prediction accuracy.
GELAN builds on the gradient path optimisation principles of CSPNet [72] and ELAN [73],
balancing model lightweightness, inference speed, and accuracy. This design enables
GELAN to perform consistently across various computational blocks and depth configura-
tions, making it suitable for deployment on resource-constrained edge devices. With the
strengths of PGI and GELAN, YOLOv9 marks a significant advancement in lightweight
object detection, surpassing YOLOv8 in parameter reduction and computational efficiency
while achieving a 0.6% improvement in AP on the MS COCO dataset. The performance
metrics of different YOLOv9 models are detailed in Table 3 [74].

Table 3. Performance metrics of YOLOv9 models [71].

Model Size (Pixels) APval APval
50 APval

75 Param. FLOPs

YOLOv9-S 640 46.8% 63.4% 50.7% 7.2 M 26.7 G
YOLOv9-M 640 51.4% 68.1% 56.1% 20.1 M 76.8 G
YOLOv9-C 640 53.0% 70.2% 57.8% 25.5 M 102.8 G
YOLOv9-E 640 55.6% 72.8% 60.6% 58.1 M 192.5 G

3.4. YOLOv10

Released in May 2024 by researchers at Tsinghua University, YOLOv10 represents a
substantial advancement in real-time object detection (OD) [75]. This architecture addresses
the challenge of balancing accuracy with computational efficiency through innovative
training strategies and architectural modifications. The core concept involves “Consistent
Dual Assignments” during training, allowing the model to learn from rich supervision
while eliminating the need for computationally expensive non-maximum suppression
(NMS) during inference, significantly reducing processing time. YOLOv10 enhances effi-
ciency with the Parallel Split-Attention (PSA) module and the Compact Inverted Bottleneck
(CIB) block, enabling efficient multi-scale feature processing and effective attention mech-
anisms. To boost accuracy, the Scaled Residual Connection and Scaled Weight Shortcut
techniques improve information flow within the network. Extensive evaluations show
that YOLOv10 surpasses previous YOLO versions and other state-of-the-art models in the
accuracy–efficiency trade-off. For instance, as shown in Table 4, YOLOv10-B reduces latency
and parameter count compared to YOLOv9-C with equivalent performance. Additionally,
YOLOv10-L and YOLOv10-X variants outperform their YOLOv8 counterparts in accuracy
while requiring fewer parameters.
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Table 4. Performance metrics of YOLOv10 models [76].

Model Size (Pixels) APval (%) FLOPs (G) Latency (ms)

YOLOv10-N 640 38.5 6.7 1.84
YOLOv10-S 640 46.3 21.6 2.49
YOLOv10-M 640 51.1 59.1 4.74
YOLOv10-B 640 52.5 92.0 5.74
YOLOv10-L 640 53.2 120.3 7.28
YOLOv10-X 640 54.4 160.4 10.70

4. Hardware Configurations

Architectural advancements within the software realm, as presented in the preced-
ing section, have significantly contributed to the success of CNN. However, architectural
breakthroughs are not the sole driving factor for the success of computer vision. Advance-
ments in hardware, over the past decades, have equally contributed to the proliferation
of computer vision applications, in particular when referring to CNN deployment [77].
Major breakthroughs in hardware acceleration have resulted in robust parallel computing
architectures, facilitating the enhanced training and inferencing of complex, multi-layered
and deep CNN-inspired architectures.

Hardware acceleration constructively manipulates computer hardware with the ob-
jective of executing computational tasks at reduced latency and increased throughput,
compared to customary software execution on CPUs. Historically, Princeton computing
architectures are primarily focused on serial computations coupled with complex task
planning [78], hence suffering from low memory bandwidth and high-power consumption
when dealing with CNN architectures requiring dense parallel computation, increased
memory bandwidth and high data reusability [79]. To address these limitations, researchers
and hardware vendors are actively engaged in developing strategies for enhanced pro-
cessing capabilities leading to higher parallelisation, improved inferencing and efficient
power consumption. The section focuses on evaluating significant hardware acceleration
implementations, their contribution, limitations and implications with respect to computer
vision applications.

4.1. Graphical Processing Units (GPUs)

A graphical processing unit (GPU) can be defined as a specialised processor, originally
focused on accelerating real-time 3D graphics applications, rendering and games [80,81].
As the dawn broke for the 21st century, scientists and researchers started investigating and
swiftly realised the potential of GPU integration with computing systems for addressing a
wide range of computing problems. This was primarily due to the underlying nature of a
GPU, incorporating extraordinary levels of computational capabilities and administering
incredible acceleration to computing workloads that exploit the highly parallel nature of
GPUs, such as CNNs [82]. Hence, a GPU in the modern era is not only seen as a compelling
graphics engine but also a highly parallelised processor for computing purposes, featuring
high throughput and memory bandwidth for parallel architectures.

Multicore CPUs are in general multi-instructional, and out-of-order, utilising large
caches for suppressing the latency of a single thread and running a high frequency. On the
contrary, GPUs contain thousands of cores that are in order, are reliant on small-size caches
and operate on lower frequencies [83]. To address barriers around the implementation
and integration of GPU-based applications, several development platforms have emerged
such as Open Computing Language (OpenCL) [84] and the well-established, widely used
Compute Unified Device Architecture (CUDA) by NVIDIA [85].

Along with other domains, deep learning has also been a primary beneficiary of GPU-
based acceleration. Unravelling the CNN structure, one can observe the perfect match
between the two applications in regard to the parallelisation of the convolutional operations,
different sub-sampling strategies and neuron activations within the fully connected layers
via a binary-tree multiplier [86]. Realising the potential of GPUs in CNN structures,
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several libraries have emerged for GPU-CNN integration, such as cuDNN [87], Cuda-
convert [88] in addition to libraries built upon deep learning frameworks such as Caffe [89],
Tensorflow [90] and Torch [91].

Benchmarking the efficacy of GPUs with respect to Deep Learning is primarily based
upon three performance indicators, namely memory efficiency, computational throughput
and power consumption. NVIDIA is accepted as the leading vendor when it comes to
deep learning on GPUs. Considering the vast variety of applications, stringent deployment
environments and financial allotments, NVIDIA has progressively introduced various
GPUs over the last two decades.

Recognising the incompatibility of many GPU variants, when it comes to constrained
environments requiring edge deployment, small-size form factor and reduced cost, NVIDIA
introduced Jetson, featuring a heterogeneous architecture, where the CPU was tasked
with booting the operating system (OS), and CUDA-based GPU with accelerating deep
learning tasks. Several variants of NVIDIA Jetson have been released focused on providing
a low-power embedded device, facilitating server-grade computing performance at an
affordable cost. NVIDIA accelerator kits have been widely utilised for a wide range
of machine learning and deep learning experiments and applications. Authors in [92]
presented CNN performance evaluation on CNN architectures, concluding the Jetson
TX2 variant as outputting high efficiency compared to other Jetson variants. Rui Jin [93]
proposed a teacher/student architecture for real-time fabric defect detection during the
production phase. The architecture consisted of a YOLOv5 backbone and deployed onto
a Jetson TX2 for edge inferencing rather than the Raspberry Pi [94]. The student network
achieved an impressive 96.5% AUC with an inference time of 16 ms, hence guaranteeing
real-time performance.

4.2. Field-Programmable Gate Arrays (FPGAs)

GPUs have proven to be efficient in providing high parallelism and throughput,
making them a strong contender for hardware acceleration. However, the progression
of the Internet of Things (IoT) [95] and its delineation have resulted in accessibility to
a wider enterprise base. In particular, for Industry 4.0 [96], businesses are censoring
for close-to-the-source, edge device deployment solutions. One of the key requirements,
in addition to high accuracy and inference speeds, is power efficiency, an area in which
Field-Programmable Gate Arrays (FPGAs) [97] have an advantage over GPUs. Taking
into account recent architectural advancements, leading to increasingly sparse yet compact
architectural structures, FPGAs facilitate irregular parallelism, customised data types and
specific hardware designs. Additionally, post manufacturing, FPGAs allow reprogramming
in order to stay in tune with the dynamic application/environmental requirements. Due to
the flexibility and tailor design feature, FPGA accelerators have found their way into the
embedded application domain [98].

FPGA modules consist of a set of programmable logic blocks coupled through a
hierarchy of interconnects that are reconfigurable. A typical FPGA is a host to various
subcomponents such as digital signal processing (DSP) units catering for multiply–add–
accumulate operations (MAC), look-up tables (LUTs), addressing combinatorial logic
operations and the facilitation of on-chip data storage via block RAMs [99]. With respect
to the implementation of CNNs, Figure 8 presents a characteristic FPGA architecture.
The internal blocks consist of several sub-modules, including a memory-data-management
unit (MDM), on-chip-data-management unit (ODM), general-purpose-matrix-multiply
unit (GEMM), implemented via a set of processing elements (PEs) for computing MAC
operations and a Msic-layers unit (MLU) for computing batch normalisation, ReLU and
pooling [100].

The execution of a CNN via an FPGA consists of several steps, starting with the
transfer of CNN weights along with the input feature maps from the MDM into an on-chip
buffer, i.e., ODM. Next, the GEMM unit is tasked with computing the matrix operations and
transferring the results to MLU for batch normalisation, ReLU and pooling. MLU resultants
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are transferred to another ODM unit to be accessed by subsequent convolutional/fully
connected layers. In the case of memory shortage in the on-chip buffer, intermediary results
are temporarily hosted in the on-chip/off-chip memory.

Figure 8. Typical FPGA architecture for DNN implementation.

Conventionally, FPGAs are specified at a register transfer level (RTL) through hard-
ware description language (HDL), i.e., VHDL [101] and Verilog [102]. However, the less
abstract nature of these languages demands specific hardware design expertise, as well as
time and effort for the theoretical and practical implementation of the required architec-
ture, in addition to factoring in high concurrency requirements between varying hardware
modules. To address these limitations, high-level-synthesis (HLS) methods have been
successfully proposed, facilitating FPGA hardware design through high-level languages
such as C [103]. In addition to the automated compilation of high-level descriptions to
low-level specifications, hence widening the accessibility to a wider research audience [104].

In general, CNN architectures feature high computational requirements due to in-
creased architectural parameters (FLOPs) and high memory storage requirements; however,
FPGAs typically feature a memory bandwidth often 10% or less than that of GPUs. Classi-
fying this as a threat to the compatibility of CNNs on FPGAs, researchers have developed
several algorithmic optimisations for reducing the architectural computational load of
CNNs, making them more lightweight for deployment on computationally constrained
FPGA devices.

One of the optimisation strategies is known as algorithmic operation, based on the
implementation of computational transforms such as Fast Fourier Transform (FFT) [105],
GEMM and Winograd [106] on convolutional kernels/feature maps, aimed at suppressing
the number of arithmetic operations post-deployment i.e., during inference. FFT reduces
arithmetic complexity, by casting a 2D convolution to an element-wise matrix multipli-
cation [107]. This can be particularly useful when dealing with large kernel sizes, due
to the increased number of computational operations required between the kernels and
feature maps.

GEMM is a widely applied technique for deep neural network (DNN) processing in
CPUs and GPUs, as it vectorises both convolutional and fully connected layer computa-
tions [108]. When dealing with small kernels, Winograd provides a more efficient approach
for arithmetic reduction compared to FFT, by reutilising the intermediate results [109].
The manifestation of its efficiency can be gauged by the fact that Winograd transforms can
achieve 7.28x runtime speed-up, on a VGG-Net, compared to GEMM, when running on a
Titan-X GPU [107], whilst delivering 46 GOPs throughput for AlexNet on an FPGA [110].

Data-path optimisation is another strategy aimed at more efficient architectures with
respect to computation. Traditionally, FPGAs designed, and deployed processing elements



AI 2024, 5 1341

as 2D systolic arrays [111–113]. However, due to the resultant kernel size of the CNN, data
caching was not possible, limiting architectural efficacy.

The loop optimisation mechanism looks to alleviate this issue, consisting of several
sub-components; loop reordering for blocking redundant memory access between loops
enhancing cache capacity [114], loop unrolling, and pipe-lining improve FPGA resource
utilisation [115,116], whilst loop tiling, partitions weights/feature maps for each layer
arriving from the memory into ‘tiles’, for efficient hosting onto the on-chip buffers [117].

CNNs have the potential to be deployed across the spectrum with respect to appli-
cations. Many applications are able to accommodate a certain degree of error, i.e., error-
tolerance, in particular quality inspection applications within domains like manufacturing.
This has provided further leverage and an initiative for researchers to focus on model com-
pression strategies for further reducing architectural and hardware complexities. Model
compression techniques can be categorised into three distinct types: pruning [118], low-rank
approximation [98] and quantisation [119].

Pruning [120–122] focuses on reducing architectural complexity through the elimina-
tion of redundant parameters/weights within a network. For example, CNNs, contain a
large number of weights; however, not all of the weights have a substantial or in some
cases any contribution to the performance; hence, by alleviating the network of redundant
weights, a more lightweight and energy-efficient footprint can be ascertained allowing
more fruitful deployment on constrained devices such as FPGAs. Low-rank approxima-
tion [123], when utilised for CNN compression, decomposes the convolutional weight
matrix or fully connected layers into a set of low-rank filters, that can be evaluated at
reduced computational cost, again, this can be particularly useful in the case of the target
deployment hardware being constrained in terms of the computational capacity.

Quantisation [124,125], is based on the fact that fixed-point arithmetic operations
demand less computational resources compared to float-point operations; hence, quan-
tising CNN feature maps and weight matrices based on a fixed-point representation can
further reduce computational cost. In cases where deployment infrastructure is extremely
constrained, quantisation via binary transformation of weights can be deployed, known as
binary neural networks (BNN); however, in some cases, this can have a detrimental impact
on the accuracy [126].

Jin Rui et al. [127] demonstrate the effectiveness of pruning by applying it to a CNN
architecture aimed at textile defect detection within the production environment. Authors
achieved pruning via tensorRT, prior to deployment on an NVIDIA Jetson TX2. Evaluating
the impact of pruning, authors state processing defects before implementing pruning
required 80 ms, whilst post-pruning, this was reduced to 36 ms.

4.3. Application-Specific Integrated Circuits

In the context of deep learning, Application-Specific Integrated Circuits (ASICs) are
custom-designed hardware accelerators, with a reduced focus on achieving the require-
ments of a specific application, i.e., accuracy, and inference speed [128]. The tailored design
of these accelerators enables them to outperform GPUs and FPGAs when evaluated on the
particular application for which the ASIC was designed. However, due to their custom
design, the design, development and implementation requires substantial time cycles.
Over the last decade, various ASIC accelerators have been introduced to the AI market
such as the HiSilicon Kirin-970, developed by Huawei [129], featuring a heterogeneous
architecture with a dedicated neural processing unit, improving throughput by 25 times
and energy efficiency by 50 times, based on a Cortex-A73 (quadcore) CPU cluster. Google
boasts its own customised ASIC known as Tensor Processing Unit (TPU) [130], tailored for
deep neural networks via the TensorFlow platform [91]. Pencilling its own contribution,
Apple introduced the neural engine, a set of processor cores aimed at certain deep learning
networks for applications such as face identification.

Table 5 presents a comparison between GPUs, FPGAs and ASICs on a wider metric
base. Additionally, once manufactured, the design footprint of ASICs is not reconfig-



AI 2024, 5 1342

urable. This is a significant bottleneck for ASICs, as, due to the changing nature of various
deployment environments, reconfigurability is required for making relevant adjustments.

Table 5. Hardware metric-based comparison with increased row height.

Metric GPUs FPGAs ASICs

Energy Efficiency Low Medium High
Ability to Reconfigure Low High Low

Area Large Large Small
Digital Signal Processing Blocks - Fixed Precision Custom

Power High Medium Low
Time to Market Low Medium High

5. Industrial Defect Detection

Machine vision is the coined term when referring to the application of computer
vision within the industrial domain. A decade back, both hardware and architectural
capacity had not developed to the level of maturity to warrant its integration into existing
industrial processes. Hence, quality inspection in the majority of cases was administered
via human-based inferencing.

However, as automated process integration found its way into manufacturing facilities
and the types of defects became harder to differentiate, the integration of machine vision-
based inspection has been on the rise, in particular within the surface defect detection
domain [131] . Quality inspection is an indispensable component within the manufacturing
domain. Hence, by upgrading its efficacy via machine vision, additional benefits can be
reaped such as reduced labour costs, the elimination or suppression of human bias, reduced
inferencing time, elimination of human fatigue, etc. The implementation of machine vision
across several industries for surface defect detection is presented.

5.1. Textiles

Rui Jin et al. [93] initiate their research by mentioning the potential benefits of auto-
mated quality inspection within the fabric manufacturing industry, referring to reduced
labour cost and higher detection speed. The authors propose a customised YOLOV5 archi-
tecture, integrating a spatial attention mechanism for the identification of smaller defects.
The process consisted of a trained teacher network on the fabric dataset. Knowledge distil-
lation was adopted to transfer the learning to a student (computationally lighter network),
before being deployed to a Jetson TX2 via TensorRT. The authors state that although the
teacher architecture provided higher performance 98.8% (AUC) compared to student ar-
chitecture (96.5% AUC), the inference speed for the latter was significantly less (16 ms)
compared to 35 ms for the former on the Jetson TX2. The authors argue the proposed
architecture coupled with the hardware selection guarantees real-time performance with
respect to the required identification time.

Jiaqi Zhang et al. [132] propose a modified Mo-bileNetV2-SSD-Lite architecture for
automated fabric surface defect detection. The modification is manifested in the form
of introducing a channel-based attention mechanism, aimed at the accentuation of the
defective regions relative to the background surface. Additionally, the default loss function
is replaced via focal loss and K-means clustering for candidate box parameter optimisa-
tion. The results demonstrated a respectable performance, with the proposed architecture
achieving greater than 90% MAP (mean average precision) whilst reaching an inference
speed of 14.19 fps on the camouflage dataset. With respect to the channel-based attention
mechanism, the authors reveal that the computational implications of this integration were
negligible, with the parameters experiencing an increase of incorporation of 0.001 million.

Feng Li et al. [133] propose fabric defect detection through the implementation of a
cascaded-RCNN, similar. Figure 9 represents the concept of cascading, focused on accuracy
enhancement through a multi-headed approach. Multiscale training was utilised followed
by dimensional clustering for characterising the prior anchors with ResNet-50 selected as
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the feature extractor. Additionally, a feature pyramid network (FPN) was utilised based on
a bottom-up–top-down path corresponding to the lateral connections. The authors claim
to quantify the proposed implementation result in improving the overall precision of the
architecture by 8.9%; however, it is worth acknowledging the reduced complexity of the
testing dataset due to the lack of patterned fabric images, which would make accurate
classification more difficult.

Figure 9. Cascaded R-CNNconcept.

Shaojun Song et al. [134] aim to address industrial-based fabric defect detection via an
efficient architecture. To cater for the constrained deployment environment, the authors
exert efforts in developing a computationally lightweight footprint providing low latency
and power consumption whilst reaching high accuracies. Additionally to the application of
representative data augmentation, architectural optimisation is sought through TensorRT,
facilitating layer and tensor fusion along with weight and activation precision calibration.
The authors justify the implementation of CBR (convolution, bias and relu merging into
a single layer) aimed at acquiring a computationally lighter architecture. Their results
reinforced the high efficacy of the proposed solution, with the edge deployment being
2.5x faster compared to a cloud-based configuration in addition to the detection accuracy
achieving 98%. Furthermore, post tensorRT, results improved to 22.78 fps and an inference
time of 43.9 ms compared to pre-optimisation (13.74 fps, inference time 72.8 ms).

5.2. Photovoltaics

Photovoltaic systems are seen as a major contributor when it comes to renewable
energy, focused on the reduction of global emission-based alleviating the dependence on
conventional energy generation systems [135]. Solar cells are the fundamental component
within the PV setup, and during PV module manufacturing, cells are exposed to high
temperature differentials, in addition to external pressure sources, resulting in the inception
of micro-cracks [136].

The quality inspection led by human inspectors carries similar bottlenecks to those
found within the fabric manufacturing industry. As per a recent case study (2018), based
on the inspection of 180,000 PV panels, post-deployment, over 4000 faulty modules were
shipped, incurring six-figure losses for the client. The non-uniformity of the cell surface
can make defect detection a cumbersome task; hence, researchers have focused attention
on the implementation, manipulation and enhancement of CNN architectures for this task.

Hussain et al. [3] propose a tailored CNN architecture for industrial-based Micro-crack
detection during PV manufacturing. Addressing the difficulty in industrial data procure-
ment, the authors introduce the concept of internal feature map extraction for utilisation as
representative augmented samples, improving the variance of the dataset without affecting
the true characteristics of the dataset. Post-training, the proposed architecture was bench-
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marked against SOTA architectures on a broad metric baser compromising of architectural
complexities, computational complexities, accuracy, FPS and latency. The reported results
endorsed the efficiency of the proposed methodology achieving an impressive F1 score of
98.8% whilst containing only 6.42 million learnable parameters.

Z. Luo et al. [137] focus on addressing data scarcity in the context of industrial PV
manufacturing i.e., Electroluminescence Imaging (EL) of PV cells. The methodology is
anchored on the utilisation of a Generative Adversarial Network (GAN) for the generation
of representative data samples from within the original dataset. Three SOTA architectures
are trained for methodology evaluation purposes; ResNet, AlexNet and SqueezeNet [44].
The former, i.e., ResNet, provided the optimal performance. However, critically evaluating
their methodology, the authors indicated the high instability of the training process along
with the increased computational baggage experienced during training, which would have
a knock-on impact on the scalability of the proposed solution.

Binyi Su et al. [138] argue that automated EL-based PV cell surface defect detection is a
challenging process due to the blurring of boundaries with respect to defective and normal
pixel regions. Hence, the authors propose a Complementary Attention Network (CAN)
presented in Figure 10, based on the coupling of channel and spatial-wise attention modules.
The proposed mechanism is incorporated into the Faster-RCNN architecture facilitating
background pixel suppression, resulting in the accentuation of defective regions. VGG-16
was selected as the feature extractor integrated into the Faster-RCNN, with architecture
pretraining conducted on the IMAGENET dataset. Focusing on the computational com-
plexities of the proposed architecture, it can be observed that a significant computational
space was required, with the architecture containing 261.26 Million parameters. However,
the CAN mechanism had a minimal contribution to the computational complexity, with
Faster-RCNN contributing 260.50 Million parameters.

Figure 10. Complementary attention network [128].

Ashfaq Ahmad et al. [139] highlight key challenges in PV surface defect detection as
inhomogeneous surface intensities and varying background complexity. The proposed
solution consists of a custom CNN architecture compromising four convolutional blocks
containing 32 filters each, followed by dual convolutional blocks containing 64 filters each
and ending with two convolutional blocks with 128 filters each, feeding into a single fully
connected layer. Additionally, the authors apply various augmentations for improving
generalisation, reporting respectable performance in terms of accuracy at 91.58%.

5.3. Warehousing

A new potential application for automated defect detection via machine vision within
the warehousing/manufacturing industry is pallet-rack inspection. Warehousing, distribu-
tion and storage centres rely on critical infrastructure for stock storage and preservation
known as pallet racking. Unnoticed racking damage can lead to multiple complications in
the case of the racking collapsing such as ruined stock leading to financial loss, operational
downtime, injured employees and, in severe cases, the costing of lives. Although various
mechanical solutions exist, in the form of rackguards [140], these are only limited to impact
absorption, lacking any intelligence for damage perception.
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Hussain et al. [141] initiate their research within this field focusing on the adoption
of deep learning architectures for automated defect detection. Due to the constrained
deployment requirements, the authors propose a MobileNetV2-based solution trained
on the first pallet-racking dataset acquired from several industrial partners. The authors
focus on enhancing the dataset via representative sample scaling, achieving mean average
precision of 92.7%. An additional novelty, compared to previous mechanical and sensor-
based solutions, was the device placement proposal. Rather than attaching any hardware
to the racking itself, the authors proposed the placement of the hardware device hosting
the inferencing mechanism, onto the forklift adjustable brackets. This strategic placement
resulted in a significant cost reduction, i.e., reducing hardware in some cases by 95% @
IoU of 50% whilst expanding the coverage area relative to the operating forklift. With the
aim to further improve the performance along with enhancement of the solution with
respect to real-time operational requirements, Hussain et al. provided a recent paper [142]
proposing the training of the YOLOV7 architecture based on the concept of domain variance
modelling (DVM). Additionally, the defect classes were expanded from only vertical defects
to including vertical, horizontal and rack support damage. The presented results were
impressive, demonstrating an overall performance at an IoU of 50% of 91.1% running
at 19 fps.

Fahimeh Farahnakian et al. [143] also focus on automated racking inspection, subscrib-
ing to the segmentation domain by proposing Mask-RCNN as the inferencing architecture.
Although the reported performance is slightly higher than [141], when observing the
dataset, it was evident the dataset is not representative of the production floor, as the cap-
tured images are based on disconnected racking without any contextual details, i.e., ware-
house environment, loaded stock onto racking for training a representative architecture.

Additionally, Table 6 presents a comparison of the four research papers within this
field. It is believed that the introduction of the first racking dataset by Hussain et al. [141]
will prove to be a spark, enabling other researchers to develop CNN architectures for
addressing pallet-racking inspection given the tremendous benefits of this application for
the warehousing industry.

Table 6. Pallet racking recent work comparison with increased row height.

[141] [142] [143] [144]

Domain Detection Detection Segment Detection
Dataset Size 19,717 2094 75 2034

Classes 2 5 1 2
Detector Single stage Two stage Two stage Single stage

MAP@0.5 (IoU) 92.7% 91.1% 93.45% 96.8%

5.4. Diverse Set of Applications

Table 7 highlights various studies and their contributions across different domains of
surface defect detection. This comprehensive overview illustrates the substantial breadth
of Deep Learning (DL)-based machine vision (MV) technology applications, showcasing its
versatility and potential in enhancing industrial quality inspection processes.

By leveraging advanced DL techniques, these studies have addressed a wide range
of industrial challenges, from detecting defects in metals and electronic components to
inspecting the surfaces of wheels, diodes, and ceramic materials. The table underscores the
adaptability of DL methods to various inspection tasks, reflecting their ability to improve
accuracy, efficiency, and overall reliability in quality control across multiple industries.

Each entry in the table represents a unique application, highlighting the innovations
and improvements brought about by DL in specific contexts. This diversity not only
demonstrates the technology’s broad applicability but also its capacity to be tailored to
meet the specific needs of different inspection scenarios, ultimately contributing to more
robust and automated industrial processes.
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Table 7. DL-based machine vision applications in industrial surface defect detection.

Application References

Metal Surface Defect Detection Tao et al. (2018) [145], Xu et al. (2021) [146],
Lin et al. (2021) [147]

Electronic Component Defect Detection Xin et al. (2021) [148], Jeon et al. (2022) [149],
Santoso et al. (2022) [150]

Optical Fiber Defect Detection Wang et al. (2019) [151], Mei et al. (2021) [152]

Wheel Hub Surface Defect Detection Han et al. (2017) [153], Sun et al. (2019) [154],
Cheng et al. (2023) [155]

Diode Chip Defect Detection Lin et al. (2019) [156], Stern et al. (2021) [157],
Zheng et al. (2023) [158]

Bottle Mouth Defect Detection Koodtalang et al. (2019) [159], Zhang et al.
(2021) [160], Gizaw et al. (2022) [161]

Precision Parts Defect Detection Qu et al. (2018) [162]
Varistor Defect Detection Yang et al. (2019) [163], Yang et al. (2020) [164]

Ceramic Defect Detection Stephen et al. (2021) [165], Lu et al. (2022) [166],
Wan et al. (2022) [167]

Wood Defect Detection Shi et al. (2020) [168], Chen et al. (2022) [169],
Lim et al. (2023) [170]

LCD and Touch Display Defect Detection Qi et al. (2020) [18]
Magnetic Tile Surface Defect Detection Huang et al. (2020) [171]
Rail Surface Defect Detection Soukup et al. (2014) [172]
Concrete and Steel Surface Crack Detection Cha and Choi (2017) [173]
Structural Visual Inspection Cha et al. (2018) [174]

5.5. Robotic Vision

A major benefit of machine vision providers like Cognex [175] and Keyence [176] is
their end-to-end development and deployment platforms, which enables consumers to
develop complete solutions within a single integrated ecosystem. This approach offers sig-
nificant benefits over conventional methods that require training architectures on separate
platforms and sourcing compatible hardware configurations for deployment.

Cognex’s In-Sight D900 [177] vision system exemplifies this integrated approach. It
combines a high-resolution camera, powerful processing capabilities and deep learning
software tools in a single package. The system allows users to develop, train and deploy
machine vision applications using the In-Sight ViDi software (D900) and In-Sight spread-
sheet interface, all without requiring a separate PC or extensive programming knowledge.
Key advantages of end-to-end platform include

Simplified workflow: Users can develop, train and deploy applications within a
single environment, streamlining the entire process.

Reduced integration challenges: The hardware and software are designed to work
seamlessly together, eliminating compatibility issues.

Faster deployment: With pre-integrated components and user-friendly interfaces,
solutions can be implemented more quickly.

Accessibility: The intuitive tools make advanced machine vision capabilities accessible
to users without extensive programming expertise.

Optimised performance: The tightly integrated hardware and software ensure optimal
performance and efficiency.

Scalability: These platforms often offer a range of compatible products, allowing
users to scale their solutions as needed.

By providing this comprehensive ecosystem, companies like Cognex enable their
customers to focus on solving their specific machine vision challenges rather than dealing
with the complexities of integrating disparate components and platforms. This approach
significantly reduces the time, cost and technical expertise required to implement advanced
machine vision solutions in industrial settings.

Mujadded et al. [178] look into the integration of a lightweight convolutional neural
network (CNN) architecture with an industrial KUKA robotic arm for automated crit-
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ical component detection, as shown in Figure 11. This integration demonstrates how
lightweight CNNs can be combined with robotic hardware to create intelligent systems
capable of performing complex visual inspection tasks, thereby enhancing operational
efficiency, improving product quality and automating labor-intensive processes for critical
component detection. The authors integrate an attention mechanism into the CNN archi-
tecture to guide the network towards the region of interest without significantly adding to
the computational depth of the CNN, reporting an impressive F1-score of 96%.

Mateusz et al. [179] look into the automated monitoring of cutting tool wear in the
manufacturing industry, to improve production efficiency. This research explores the
application of ViDiDetect, a deep learning-based defect detection solution, in inspecting
cutting tool wear using a Cognex D900 series monochrome camera. The camera was
selected due to its high resolution, adaptability and communication capabilities. The vision
system, equipped with an illuminator and other necessary components, captures high-
resolution images of a car suspension knuckle’s machined surface, focusing on detecting
burrs, chips and tool wear. The results demonstrated the accurate classification of surface
defects indicating towards better optimisation for automated tool replacement process.

Figure 11. Lightweight CNN via KUKA industrial robotic arm.

6. Challenges and the Future Path

This work focused on presenting a holistic review of the existing state of computer
vision from an algorithmic and deployment point of view. Based on the analysis presented,
research trends, potential focus areas and future directions are summarised.

Proliferation of object detection-based architectures: It is clear from the analysis: the
vast computer vision research industry is focused on the implementation and advancement
of object detector algorithms. There are multiple reasons for this. Firstly, it is more effective
in practical scenarios as compared to image classification. This is due to the ability of
object detectors to not only determine if the object of interest is residing within the image
frame but also extract the spatial dimensions of the particular object. This unlocks multiple
options for various applications such as industrial manufacturing, where object detection
and localisation may trigger external actuation.

Evolving variants of YOLO: Since its inception in 2015, without a doubt the YOLO
family of architectures have been the most popular, reaching YOLOV8 by January 2023.
The success of YOLO can be attributed to the fact that its authors have continuously focused
on the optimisation of two key metrics required for deployable solutions, that is, accuracy
and lightweight computation, leading to higher inference speed. Also, what seemed to
be a setback for the YOLO family after the original author halted further development,
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citing privacy concerns, has been a blessing in disguise with various researchers and well-
renowned research groups actively and rigorously engaged in architectural optimisations.
This competition can be equated to an arms race, where various research organisations are
competing for superiority within the object detection arena, knowing full well the large
scope of potential applications that can benefit from lightweight and real-time detection.

Dataset Quality: The quality of datasets is critical for the performance of image clas-
sification and object detection models. In industrial research, the procurement of large
volumes of representative data can be difficult, expensive, and time-consuming. Data
scarcity, particularly in domains like product defect detection, presents a significant chal-
lenge. Generating sufficient defect samples often necessitates the production of potentially
flawed products, which incurs financial and ethical concerns. To mitigate these issues,
future research should explore advanced data augmentation techniques, synthetic data
generation, and the use of few- or zero-shot learning and generative AI scale their respective
data samples.

Architectural Efficiency: Deploying CNNs in industrial applications, such as quality
inspection and defect detection, promises significant advancements. However, these
environments often face constraints on processing resources, making the deployment
of computationally expensive models a challenge. Lightweight networks via strategies
such as attention mechanisms and model compression techniques, such as pruning and
quantisation, offer a compelling solution. These approaches can significantly reduce
the computational load without sacrificing accuracy, enabling the effective and efficient
implementation of CNNs in resource-constrained industrial settings.

Foundation Models: The development of generalised ‘Foundation Models’ with an
industrial theme can expedite deployment across a broader spectrum of industrial envi-
ronments, resulting in notable reductions in development costs and shorter development
cycles. However, achieving generalisation remains a significant challenge. CNNs must
be able to perform well on unseen data and adapt to varying conditions across different
industrial settings. This requires robust training protocols, such as domain adaptation,
to enhance the generalisation capabilities of the networks. Additionally, continuous learn-
ing and model updating mechanisms should be implemented to ensure that models remain
accurate and reliable as new data becomes available.

Scalability: As CV architectures advance, scalability becomes a crucial factor for
successful deployment in large-scale industrial settings. Achieving scalability involves
several key considerations: managing substantial data volumes efficiently, maintaining
high performance across diverse operational environments, and adapting architectures to
various modes of operation. This includes designing modular and flexible systems that can
be scaled up or down as required, optimising models to handle varying data loads with
minimal performance degradation, and ensuring that infrastructure can support dynamic,
real-time scaling. Strategies such as distributed computing and cloud-based resources can
facilitate efficient data processing, while techniques like model compression and quantisa-
tion can reduce computational demands without compromising accuracy. Additionally,
incorporating edge computing can help manage latency and improve responsiveness by
processing data closer to its source. Future research should prioritise developing scalable
architectures and deployment strategies that incorporate these approaches, focusing on
robust resource management, adaptive algorithms and resilient infrastructure to maintain
consistent performance and efficiency as applications grow and evolve.

Future Directions

Need for hardware benchmarked architectural design: Architecture design over
much of the past decade has focused on acquiring high accuracy on benchmark datasets.
These datasets consist of, in some cases, 1000 classes with over a million images, hence
resulting in computationally demanding architectures. With the focus over the past couple
of years shifting from the theoretically constrained performance optimisation towards
real-world practical implementation, hardware-based benchmarks need to be developed,
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expanding the competition metrics beyond accuracy to be inclusive of wider performance
indicators such as computational efficacy, resource allocation and inference speed on
various constrained devices such as FPGAs.

Targeting general-purpose development boards: Although FPGAs can be used for
deployment purposes, they are not as widespread, user-friendly and accessible as general-
purpose boards such as Raspberry PI and Arduino. These general-purpose development
boards, although significantly constrained in terms of computational accommodation, can
still host computationally lightweight architectures as recently shown by works such as [2].
To achieve deployment requirements, researchers during the algorithmic design phase
need to focus more on parameter/block/layer compression strategies such as pruning,
quantisation and model compression.

Privacy Concerns: As computer vision research makes its way from academic circles
into real-world applications, the architectural development stage, in addition to accuracy
and lightweight computation, must cater for privacy concerns along with explainable
models. This will be critical if the computer vision solutions are to penetrate and integrate
themselves into critical applications within industries such as healthcare, security, manu-
facturing and renewable energy. Hence, developers/researchers need to account for the
security factor when developing their design footprints, providing confidence to potential
clients, in particular within sensitive domains such as healthcare.

7. Conclusions

In conclusion, this review has provided a comprehensive examination of the archi-
tectural and hardware advancements in the field of computer vision, with a specific focus
on object detection. Through our analysis, we have illustrated the remarkable pace of
evolution seen in CNN architectures and AI accelerators, exemplified by architectural
variants such as the YOLO family, which has experienced significant refinements in just
seven years. Furthermore, we have showcased the wide-ranging industrial applications of
these architectures, spanning from the detection of fabric defects in production lines to the
automated inspection of industrial pallet racking in modern warehouses.

Our findings emphasise the growing tendency towards designing architectures that
prioritise resource efficiency and smooth integration with deployment requirements, right
from the initial architectural design phase. This shift in focus highlights the need for
hardware-benchmarked architectural designs and the development of computationally
lightweight models suitable for deployment on general-purpose development boards.
Additionally, we have highlighted the obligation of addressing privacy concerns and pro-
moting explainable architectures alongside considerations of accuracy and computational
efficiency, particularly in sensitive and precision-demanding domains.

Future Anticipations

Looking ahead, several prominent themes of research emerge from our survey. Firstly,
there is a urgent need for the further exploration and optimisation of object detection algo-
rithms, particularly in the context of lightweight footprints for emerging applications such
as autonomous vehicles, smart surveillance systems, and precision agriculture. Moreover,
the amalgamation of object detection techniques with complementary domains such as
natural language processing (NLP), robotics and augmented reality (AR) presents exciting
avenues for interdisciplinary research and innovation. For instance, the blend of object
detection with NLP can facilitate more intuitive human–computer interactions, while its
incorporation with robotics holds promise for improving automation and efficiency in
various industrial settings.

Furthermore, the application of object detection transcends conventional visual do-
mains, with potential use cases in medical imaging, environmental monitoring and remote
sensing. By leveraging object detection strategies, researchers can contribute to advance-
ments in disease diagnosis, disaster response and environmental conservation efforts.
In addition, the advent of edge computing and IoT presents new opportunities for deploy-
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ing object detection architectures in resource-constrained environments, enabling real-time
decision making and intelligent automation at the network edge. In essence, the future
of object detection research lies in utilising its potential to address real-world challenges
across a diverse set of domains, while concurrently advancing the fundamental principles
of computer vision. By adopting interdisciplinary collaboration and innovation, researchers
can unlock new frontiers in object detection, paving the way for transformative applications
that improve our lives and shape the future of visual automation.
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