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Abstract: Radial basis function networks are widely used in a multitude of applications in various
scientific areas in both classification and data fitting problems. These networks deal with the above
problems by adjusting their parameters through various optimization techniques. However, an
important issue to address is the need to locate a satisfactory interval for the parameters of a network
before adjusting these parameters. This paper proposes a two-stage method. In the first stage, via
the incorporation of grammatical evolution, rules are generated to create the optimal value interval
of the network parameters. During the second stage of the technique, the mentioned parameters
are fine-tuned with a genetic algorithm. The current work was tested on a number of datasets from
the recent literature and found to reduce the classification or data fitting error by over 40% on most
datasets. In addition, the proposed method appears in the experiments to be robust, as the fluctuation
of the number of network parameters does not significantly affect its performance.
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1. Introduction

Many practical problems of the modern world can be thought of as data fitting
problems, such as, for example, problems that appear in physics [1,2], problems related
to chemistry [3,4], economic problems [5,6], medicine problems [7,8], etc. Radial basis
function (RBF) networks are commonly used machine learning tools to handle problems of
this nature [9,10]. Usually, an RBF network is expressed using the following equation:

y
(−→x ) = k

∑
i=1

wiφ
(∥∥−→x −−→ci

∥∥) (1)

where the symbols in the equation are defined as follows:

1. The element −→x represents the input pattern from the dataset describing the problem.
For the rest of this paper, the notation d will be used to represent the number of
elements in −→x .

2. The parameter k denotes the number of weights used to train the RBF network, and
the associated vector of weights is denoted as −→w .

3. The vectors −→ci , i = 1, . . . , k stand for the centers of the model.
4. The value y

(−→x ) represents the value of the network for the given pattern −→x .

The φ(x) function, in most cases, represents the Gaussian function given by:

φ(x) = exp

(
− (x− c)2

σ2

)
(2)

The main advantages of RBF networks are as follows:
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1. They have a simpler structure than other models used in machine learning, such as
multilayer perceptron neural networks (MLPs) [11], since they have only one processing
layer and therefore have faster training techniques, as well as faster response times.

2. They can be used to efficiently approximate any continuous function [12].

RBF networks have been applied in a variety of problems, such as physics problems [13–16],
solving differential equations [17–19], robotics problems [20,21], face recognition [22], digital
communications [23,24], chemistry problems [25,26], economic problems [27–29], and
network security problems [30,31]. Recently, a variety of papers have appeared proposing
novel initialization techniques for these networks’ parameters [32–34]. Benoudjit et al. [35]
discussed the effect of kernel widths on RBF networks. Moreover, Neruda et al. [36]
presented a comparison of some learning methods for RBF networks. Additionally, a
variety of pruning techniques [37–39] have been suggested in the literature for decreasing
the number of parameters. Due to the widespread usage of RBF networks and because
considerable computing time is often required for their effective training, in recent years, a
series of techniques have been published [40,41] for the exploitation of parallel computing
units to adjust their parameters.

In the same direction of research, other machine learning models have been proposed,
such as support vector machines (SVM) [42,43] and decision trees [44,45]. Also, Wang et
al. suggested an auto-encoder reduction method applied on a series of large datasets [46].
Various methods have been proposed in the same direction, such as the work of Agarwal
and Bhanot [47], which proposed the use of the ABC algorithm [48] and the incorpora-
tion of the Firefly algorithm [49] to adapt an RBF network’s parameters. Furthermore,
Gyamfi et al. [50] recently proposed a differential RBF network that incorporated partial
differential equations, aiming to make the network more robust in the presence of noisy
data. Also, Li et al. [51] proposed a multivariate ensemble-based hierarchical linkage
strategy (ME-HL) for the evaluation of the system reliability of aeroengine cooling blades.

The parameters of an RBF network can be modified in order to minimize the following
loss function, which is called the training error of the network:

E(y(x, g)) =
m

∑
i=1

(
y
(−→x i,

−→g
)
− ti

)2 (3)

where the parameter m denotes the number of patterns and ti represent the expected output
for pattern −→x i. The vector −→g represents the parameter set of the network.

A common method of calculating the parameters in these neural networks uses a
technique to calculate the centers of the functions φ(x), and then the vector of weights −→w
is calculated as a solution of a linear system of equations. Typically, the method used to
calculate the centers is the well-known k-means method [52]. In many cases, this way of
estimating the parameters leads to over-fitting of the model so that it cannot generalize
satisfactorily to unknown data. Furthermore, since there is no range of values for the
parameters, there is the possibility that they will take extremely large or extremely small
values, with the result that any generalizability of the model is lost. This work suggests a
two-phase method to minimize the error of Equation (3). During the first phase, an attempt
is made to bound the parameter values to intervals at which the training error is likely to be
significantly reduced. The identification of the most promising intervals for the parameters
is performed using a technique that utilizes grammatical evolution [53], which collects
information from the training data. During the second phase, the parameters can be trained
inside the best located range of the first phase using a global optimization method [54,55].
In the proposed approach, the widely used method of genetic algorithm [56–58] was used
for the second phase of the process. The main contributions of the suggested approach are
as follows:
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1. The first phase of the procedure seeks to locate a range of values for the parameters
while also reducing the error of the network on the training dataset.

2. The rules grammatical evolution uses in the first phase are simple and can be general-
ized to any dataset for data classification or fitting.

3. The determination of the value interval is conducted in such a way that it is faster
and more efficient to train the parameters with an optimization method during the
second phase.

4. After identifying a promising value interval from the first phase, any global optimiza-
tion method can be used on that value interval to effectively minimize the network
training error.

The rest of this paper is divided into the following sections. In Section 2, the pro-
posed method is fully described. Section 3 presents the used datasets and the conducted
experiments. Finally, in Section 4, we provide a discussion on the conducted experiments.

2. Method Description

This section starts with an extended presentation of the grammatical evolution tech-
nique and the grammar that is used to generate partition rules for the parameter set of RBFs.
Afterwards, the first phase of the proposed methodology is extensively analyzed, and then
the second phase is presented, where a genetic algorithm is applied to the outcome of the
first phase.

2.1. Grammatical Evolution

Grammatical evolution is a genetic algorithm, where the chromosomes are integer
numbers. Genetic algorithms were initially proposed by John Holland [59] and are bio-
logicaly inspired algorithms. The algorithm starts by forming a population of potential
solutions to an optimization problem. These solutions are called chromosomes, and they
are gradually altered using the genetic operators of selection, crossover, and mutation [60].
The chromosomes in the grammatical evolution method stand for a series of production
rules of any given BNF (Backus–Naur form) grammar [61]. Grammatical evolution has
been applied with success in a variety of cases, such as function approximation [62,63],
solving equations related to trigonometry [64], the automatic composition of music [65],
the construction of neural networks [66,67], producing numeric constraints [68], video
games [69,70], the estimation of energy demand [71], combinatorial optimization [72], and
cryptography [73]. The BNF grammar can be used to describe the syntax of programming
languages, and usually, it is defined as G = (N, T, S, P), where:

• N is a set of the non-terminal symbols. A series of production rules is associated with
every non-terminal symbol. The application of these production rules produces series
of terminal symbols.

• T stands for the set of terminal symbols.
• S denotes the start symbol of the grammar and S ∈ N.
• P defines the set of production rules. These are rules that follow the following nota-

tions: A→ a or A→ aB, A, B ∈ N, a ∈ T.

The algorithm begins using the symbol S and gradually creates series of terminal
symbols with the assistance of the production rules. The production rules are selected
through the following procedure:

• Denote with V the next element form of the current chromosome.
• The next production rule is calculated as: Rule = V mod R. The number R stands for

the total number of production rules for the non-terminal symbol that is currently
under processing.

Algorithm 1 shows the BNF grammar used by the proposed method. Each non-
terminal symbol of the grammar is enclosed in a <> symbol. The numbers that are enclosed in
parentheses represent the sequence numbers of production rules for every non-terminal symbol.
Every RBF network with k weights is constructed by the following series of parameters:
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1. A series of vectors −→ci , i = 1, . . . , k that stand for the centers of the model.
2. For every Gaussian unit, an additional parameter σi is required.
3. The output weight vector −→w .

The number n is the total number of parameters of the problem. In the case of this
paper, it is the total number of parameters of the RBF network. For the current work, the
number n can be computed using the following formula:

n = (d + 2)× k (4)

Algorithm 1 The BNF grammar used in the proposed method to produce intervals for the
RBF parameters. By using this grammar in the first phase of the current work, the optimal
interval of values for the parameters can be identified.

S::=<expr> (0)
<expr> ::= (<xlist> , <digit>,<digit>) (0)

|<expr>,<expr> (1)
<xlist>::=x1 (0)

| x2 (1)
.........
| xn (n)

<digit> ::= 0 (0)
| 1 (1)

The number n in the corresponding grammar is computed as follows:

1. For each center −→ci , i = 1, . . . , k, there are d variables. As a consequence, every center
requires d× k parameters.

2. Every Gaussian unit requires an additional parameter: σi, i = 1, . . . , k, which means k
more parameters.

3. The weight vector −→w used in the output has k parameters.

As an example of production, the chromosome x = [9, 8, 6, 4, 15, 9, 16, 23, 8] is con-
sidered, where d = 2, k = 2, n = 8. The steps to produce the final program ptest =
(x7, 0, 1), (x1, 1, 0) are outlined in Table 1. Every partition program consists of a series of
partition rules. Each partition rule contains three elements:

1. The variable for which its original interval will be partitioned, for example, x7.
2. An integer number with values 0 and 1 at the left margin of the interval. If this value

is 1, then the left margin of the corresponding variable’s value field will be divided by
two; otherwise, no change will be made.

3. An integer number with values 0 and 1 at the right end of the range of values of the
variable. If this value is 1, then the right end of the corresponding variable’s value
field will be divided by two; otherwise, no change will be made.

Hence, for the example program ptest, the two partition rules will divide the right
end of the variable x7 and the left end of the variable x1.

Table 1. The series of steps used to compute a valid expression from the BNF grammar for a given
chromosome.

Expression Chromosome Operation

9, 8, 6, 4, 15, 9, 16, 23, 8 9 mod 2 = 1

<expr>,<expr> 8, 6, 4, 15, 9, 16, 23, 8 8 mod 2 = 0

(<xlist>,<digit>,<digit>),<expr> 6, 4, 15, 9, 16, 23, 8 6 mod 8 = 6

(x7,<digit>,<digit>),<expr> 4, 15, 9, 16, 23, 8 4 mod 2 = 0
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Table 1. Cont.

Expression Chromosome Operation

(x7,0,<digit>),<expr> 15, 9, 16, 23, 8 15 mod 2 = 1

(x7,0,1),<expr> 9, 16, 23, 8 9 mod 2 = 1

(x7,0,1),(<xlist>,<digit>,<digit>) 16, 23, 8 16 mod 8 = 0

(x7,0,1),(x1,<digit>,<digit>) 23, 8 23 mod 2 = 1

(x7,0,1),(x1,1,<digit>) 8 8 mod 2 = 0

(x7,0,1),(x1,1,0)

2.2. The First Phase of the Proposed Algorithm

The purpose of this phase is to initialize the bounds of the RBF model and discover
a promising interval for the corresponding values. For this initialization, the k-means
algorithm [52] is used, which is also used for the traditional RBF network training technique.
A description of this algorithm in a series of steps is shown in Algorithm 2.

Algorithm 2 The k-means algorithm.

1. Repeat
(a) Define Sj = {}, j = 1. . .k
(b) For every pattern xi, i = 1, . . . , m do

i. Compute j∗ = mink
i=1
{

D
(
xi, cj

)}
.

ii. Compute Sj∗ = Sj∗ ∪ {xi}.
(c) EndFor
(d) For every center cj, j = 1. . .k do

i. Denote as Mj the number of points in set Sj
ii. Compute cj as

cj =
1

Mj

Mj

∑
i=1

xi

(e) EndFor
2. Compute the quantities sj as

σ2
j =

∑
Mj
i=1

(
xi − cj

)2

Mj

3. Stop the algorithm if centers cj do not change anymore.

Having calculated the centers ci and the corresponding variances σi, the algorithm
continues to compute the vectors

−→
L ,
−→
R with dimension n, which are used as the initial

bounds of the parameters. The above vectors are calculated through the procedure of
Algorithm 3.
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Algorithm 3 The proposed algorithm used to locate the vectors
−→
L ,
−→
R

1. Set m = 0
2. Define F > 1, the scaling factor.
3. Define B > 0, the initial upper bound for the weight vector −→w .
4. For i = 1. . .k do

(a) For j = 1. . .d do
i. Compute Lm=−F× cij, Rm=F× cij
ii. Compute m = m + 1

(b) EndFor
(c) Compute Lm = −F× σi, Rm = F× σi
(d) Compute m = m + 1

5. EndFor
6. For j = 1, . . . , k do

(a) Compute Lm = −B, Rm = B
(b) Compute m = m + 1

7. EndFor

The range of values for the first (d + 1)× k parameters is estimated by multiplying
the parameter F by the values already estimated by the k-means algorithm. The bounds
of the weight vector −→w are initialized using the value B. Subsequently, the genetic algo-
rithm described here is performed to estimate the most promising range

[−→
L ,
−→
R
]

for the
RBF parameters:

1. Define as Nc the number of chromosomes that will participate in the the grammatical
evolution procedure.

2. Define as k the number of processing nodes of the used RBF model.
3. Define as Ng the number of allowed generations.
4. Define as ps the used selection rate, with ps ≤ 1.
5. Define as pm the used mutation rate, with pm ≤ 1.
6. Define as Ns the total number of RBF networks that will be created randomly in every

fitness calculation.
7. Initialize Nc chromosomes as sets of random numbers.
8. Set f ∗ = [∞, ∞] as the fitness of the best chromosome. The fitness function fg of any

provided chromosome g is considered an interval fg =
[

fg,low, fg,upper
]

9. Set iter = 0.
10. For i = 1, . . . , Nc do

(a) Produce the partition program pi using the grammar of Figure 1 for the chro-
mosome i.

(b) Produce the bounds
[
~Lpi ,
−→
Rpi

]
for the partition program pi.

(c) Set Emin = ∞, Emax = −∞
(d) For j = 1, . . . , NS do

i. Create randomly a set of parameters −→gj ∈
[
~Lpi ,
−→
Rpi

]
ii. Calculate the error E−→gj

= ∑M
k=1
(
y
(−→xk ,−→gj

)
− tk

)2

iii. If E−→gj
≤ Emin, then Emin = E−→gj

iv. If E−→gj
≥ Emax, then Emax = E−→gj

(e) EndFor
(f) Set the fitness fi =

[
Emin, Emax

]
11. EndFor
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12. Perform the procedure of selection. Initially, the chromosomes of the population are
sorted according to their fitness values. Since the fitness values are intervals, the L∗

operator is defined as

L∗( fa, fb) =

{
TRUE, a1 < b1, OR (a1 = b1 AND a2 < b2)

FALSE, OTHERWISE
(5)

As a consequence, the fitness value fa is considered smaller than fb if L∗( fa, fb) = TRUE.
The first (1− ps)× Nc chromosomes with smaller fitness values are copied without
changes to the next generation of the algorithm. The rest of the chromosomes are
replaced by chromosomes created in the crossover procedure.

13. Perform the crossover procedure. The crossover procedure will create new ps × Nc
chromosomes. For every pair of created offspring, two parents (z, w) are selected
from the current population using the tournament selection method. These parent
will produce the offspring z̃ and w̃ using the one-point crossover method shown
in Figure 1.

14. Perform the mutation procedure. In this process, a random number r ∈ [0, 1] is
drawn for every element of each chromosome. The corresponding element is changed
randomly if r ≤ pm.

15. Set iter = iter + 1
16. If iter ≤ Ng , go to step 10.

Figure 1. An example of the one-point crossover procedure, as used in grammatical evolution.

2.3. The Second Phase of the Proposed Algorithm

The second phase utilizes a genetic algorithm to optimize the parameters of the RBF
network. The optimization of the parameters uses as bounds the best interval produced in
the first phase of the method. The layout of each chromosome is shown in Figure 2.

c11 c12 ... c1d σ1 c21 c22 . . . c2d σ2 . . . ck1 ck2 . . . ckd σk w1 w2 . . . wk

Figure 2. The layout of chromosomes in the second phase of the proposed algorithm.

1. Initialization Step

(a) Define as Nc the number of chromosomes.
(b) Define as Ng the total number of generations.
(c) Define as k the number of processing nodes of the used RBF model.
(d) Define as S =

[
Lbest, Rbest

]
the best-located interval of the first stage of the

algorithm of Section 2.2.
(e) Produce NC random chromosomes in S.
(f) Define as ps the used selection rate, with ps ≤ 1.
(g) Define as pm the used mutation rate, with pm ≤ 1.
(h) Set iter = 0.

2. Fitness calculation step
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(a) For i = 1, . . . , Ng, do

i. Compute the fitness fi of each chromosome gi as fi = ∑m
j=1
(
y
(−→xj ,−→gi

)
− tj

)2

(b) EndFor

3. Genetic operations step

(a) Selection procedure. Initially, the population is sorted according to the fitness
values. The first (1− ps)× Nc chromosomes with the lowest fitness values
remain intact. The rest of the chromosomes are replaced by offspring that will
be produced during the crossover procedure.

(b) Crossover procedure: For every two new offspring (z̃, w̃), there are two par-
ents (z, w) that are selected from the current population with the selection
procedure of tournament selection. The offspring are produced through the
following process:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (6)

The value ai is a random number, where ai ∈ [−0.5, 1.5] [74].
(c) Perform the mutation procedure. In this process, a random number r ∈ [0, 1]

is drawn for every element of each chromosome. The corresponding element
is changed randomly if r ≤ pm.

4. Termination Check Step

(a) Set iter = iter + 1
(b) If iter ≤ Ng , go to step 2.

The steps of the current algorithm are also outlined graphically in Figure 3 using a
flowchart.

Figure 3. The flowchart of the proposed algorithm (g* denotes the best chromosome in the population
and N* denotes the corresponding RBF network for g*).
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3. Experiments
3.1. Experimental Datasets

The proposed method was tested on a wide set of classification and regression prob-
lems found in the relevant literature. The method was compared against some other
well-known machine learning models. The following databases were used to obtain the
datasets:

1. The UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on 5
December 2023);

2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 5 December
2023) [75];

3. The Statlib URL http://lib.stat.cmu.edu/datasets/ (accessed on 5 December 2023).

The classification datasets are listed in Table 2, and the regression datasets are listed
in Table 3.

Table 2. The classification datasets used in the experiments. The column DATASET denotes the
number of the dataset, the column CLASSES stands for the number of classes in each dataset, and the
column REFERENCE points to the bibliography where the use of the particular dataset is presented.

Dataset Classes Reference

APPENDICITIS 2 [76]

AUSTRALIAN 2 [77]

BALANCE 3 [78]

CLEVELAND 5 [79,80]

DERMATOLOGY 6 [81]

HAYES ROTH 3 [82]

HEART 2 [83]

HOUSEVOTES 2 [84]

IONOSPHERE 2 [85,86]

LIVERDISORDER 2 [87]

MAMMOGRAPHIC 2 [88]

PARKINSONS 2 [89]

PIMA 2 [90]

POPFAILURES 2 [91]

SPIRAL 2 [92]

REGIONS2 5 [93]

SAHEART 2 [94]

SEGMENT 7 [95]

WDBC 2 [96]

WINE 3 [97,98]

Z_F_S 3 [99]

ZO_NF_S 3 [99]

ZONF_S 2 [99]

ZOO 7 [100]

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
http://lib.stat.cmu.edu/datasets/
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Table 3. The regression datasets used in the experiments. The column DATASET denotes the number
of the dataset, and the column REFERENCE points to the bibliography or URL (KEEL or STATLIB)
where the use of the particular dataset is presented.

Dataset Reference

ABALONE [101]

AIRFOIL [102]

BASEBALL STATLIB

BK [103]

BL STATLIB

CONCRETE [104]

DEE KEEL

DIABETES KEEL

FA STATLIB

HOUSING [105]

MB [103]

MORTGAGE KEEL

NT [106]

PY [107]

QUAKE [108]

TREASURY KEEL

WANKARA KEEL

3.2. Experimental Results

The RBF model used in the experiments was implemented in ANSI C++ with the
assistance of the open-source Armadillo library [109]. The optimization methods used
were also freely available from the OPTIMUS software, available from https://github.com/
itsoulos/OPTIMUS/(accessed on 5 December 2023). For validation purposes, the 10-fold
validation technique was used for all datasets and for all methods that participated in the
experiments. Also, all the experiments were conducted 30 times, and the seed number of
the random generator was different in each execution. The average classification error is
reported for the classification datasets, and the average mean test error is reported for the
regression datasets. The machine used in the experiments was an AMD Ryzen 5950X with
128 GB of RAM, and the operating system was Debian Linux. The values of the parameters
used in the experiments are shown in Table 4. The experimental results for the classification
datasets are outlined in Table 5, and the results for the regression datasets are listed in
Table 6. For the tables with the experimental results, the following applies:

1. The column RPROP represents an artificial neural network [110,111]. This neural
network has 10 processing nodes and was trained using the Rprop method [112].

2. The column denoted as ADAM indicates the application of the Adam optimizer
[113,114] to train an artificial neural network with 10 hidden nodes.

3. The column NEAT (NeuroEvolution of Augmenting Topologies) [115] denotes the
application of the NEAT method for neural network training.

4. The RBF-KMEANS column denotes the original two-phase training method for
RBF networks.

5. The column GENRBF stands for the RBF training method introduced in [116].
6. The column PROPOSED stands for the results obtained using the proposed method.
7. In the experimental tables, an additional row was added with the title AVERAGE.

This row contains the average classification or regression error for all datasets.

https://github.com/itsoulos/OPTIMUS/
https://github.com/itsoulos/OPTIMUS/
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Table 4. The values used for the experimental parameters.

Parameter Value

Nc 200

Ng 100

Ns 50

F 10.0

B 100.0

k 10

ps 0.90

pm 0.05

Table 5. The first column denotes the name of the classification dataset, and the numbers in the cells
represent the classification error for every method used in the experiments. The last row stands for
the average classification error for all datasets.

Dataset Rprop Adam Neat Rbf-Kmeans Genrbf Proposed

Appendicitis 16.30% 16.50% 17.20% 12.23% 16.83% 15.77%

Australian 36.12% 35.65% 31.98% 34.89% 41.79% 22.40%

Balance 8.81% 7.87% 23.14% 33.42% 38.02% 15.62%

Cleveland 61.41% 67.55% 53.44% 67.10% 67.47% 50.37%

Dermatology 15.12% 26.14% 32.43% 62.34% 61.46% 35.73%

Hayes Roth 37.46% 59.70% 50.15% 64.36% 63.46% 35.33%

Heart 30.51% 38.53% 39.27% 31.20% 28.44% 15.91%

HouseVotes 6.04% 7.48% 10.89% 6.13% 11.99% 3.33%

Ionosphere 13.65% 16.64% 19.67% 16.22% 19.83% 9.30%

Liverdisorder 40.26% 41.53% 30.67% 30.84% 36.97% 28.44%

Mammographic 18.46% 46.25% 22.85% 21.38% 30.41% 17.72%

Parkinsons 22.28% 24.06% 18.56% 17.41% 33.81% 14.53%

Pima 34.27% 34.85% 34.51% 25.78% 27.83% 23.33%

Popfailures 4.81% 5.18% 7.05% 7.04% 7.08% 4.68%

Regions2 27.53% 29.85% 33.23% 38.29% 39.98% 25.18%

Saheart 34.90% 34.04% 34.51% 32.19% 33.90% 29.46%

Segment 52.14% 49.75% 66.72% 59.68% 54.25% 49.22%

Spiral 46.59% 48.90% 50.22% 44.87% 50.02% 23.58%

Wdbc 21.57% 35.35% 12.88% 7.27% 8.82% 5.20%

Wine 30.73% 29.40% 25.43% 31.41% 31.47% 5.63%

Z_F_S 29.28% 47.81% 38.41% 13.16% 23.37% 3.90%

ZO_NF_S 6.43% 47.43% 43.75% 9.02% 22.18% 3.99%

ZONF_S 27.27% 11.99% 5.44% 4.03% 17.41% 1.67%

ZOO 15.47% 14.13% 20.27% 21.93% 33.50% 9.33%

AVERAGE 26.56% 32.36% 30.11% 28.84% 33.35% 18.73%
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Table 6. The first column denotes the name of the regression dataset, and the the numbers in the cells
represent the regression error for every method used in the experiments. The last row stands for the
average regression error for all datasets.

Dataset Rprop Adam Neat Rbf-Kmeans Genrbf Proposed

ABALONE 4.55 4.30 9.88 7.37 9.98 5.16

AIRFOIL 0.002 0.005 0.067 0.27 0.121 0.004

BASEBALL 92.05 77.90 100.39 93.02 98.91 81.26

BK 1.60 0.03 0.15 0.02 0.023 0.025

BL 4.38 0.28 0.05 0.013 0.005 0.0004

CONCRETE 0.009 0.078 0.081 0.011 0.015 0.006

DEE 0.608 0.630 1.512 0.17 0.25 0.16

DIABETES 1.11 3.03 4.25 0.49 2.92 1.74

HOUSING 74.38 80.20 56.49 57.68 95.69 21.11

FA 0.14 0.11 0.19 0.015 0.15 0.033

MB 0.55 0.06 0.061 2.16 0.41 0.19

MORTGAGE 9.19 9.24 14.11 1.45 1.92 0.014

NT 0.04 0.12 0.33 8.14 0.02 0.007

PY 0.039 0.09 0.075 0.012 0.029 0.019

QUAKE 0.041 0.06 0.298 0.07 0.79 0.034

TREASURY 10.88 11.16 15.52 2.02 1.89 0.098

WANKARA 0.0003 0.02 0.005 0.001 0.002 0.003

AVERAGE 11.71 11.02 11.97 10.17 12.54 6.46

On average, the current work appears to be 30–40% more accurate than the next best
method. In many cases, this percentage exceeds 70%. Moreover, in the vast majority of
problems, the proposed technique significantly outperforms the next best available method
in terms of test error. In order to validate the results, an additional experiment was executed
on the classification datasets, where the number of nodes increased from 5 to 20, and the
results are graphically outlined in Figure 4. From this experiment, one can draw two
conclusions: firstly, the proposed technique has a significant advantage over the others to a
large extent in terms of average classification error, and secondly, the proposed method is
shown to be robust and not significantly dependent on an increase in the processing nodes,
since 5–10 processing nodes are enough to achieve low classification errors.

However, the proposed technique consists of two stages, and in each of them, a genetic
algorithm should be executed. This means that it is significantly slower in computing
time compared to the rest of the techniques, and, of course, it needs more computing
resources. This is graphically shown in Figure 5, where the average execution time for the
ADAM method and the proposed method is shown for the classification datasets when
the number of processing nodes increases from 5 to 20. As expected, the current work
requires significantly more time than a simple optimization technique such as ADAM, since
it consists of two sequential genetic algorithms.

Of course, since we are talking about genetic algorithms, the training time required
could be significantly reduced by using parallel techniques that take advantage of modern
parallel computing structures, such as the MPI interface [117] or the OpenMP library [118].
The superiority of the proposed technique is also reinforced by the statistical tests carried
out on the experimental results and outlined in Figure 6.
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Figure 4. Average classification error for all classification datasets. The number of nodes increases
from 5 to 20, and three models were used: the ADAM optimizer to optimize a neural network, the
original RBF training method of two phases, and the proposed method.

Figure 5. Average execution time for the ADAM optimizer used to train a neural network and the
proposed technique.
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Figure 6. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test results of
the comparison for each of the five (5) classification methods (RPROP, ADAM, NEAT, RBF-KMEANS,
and GENRBF) against the proposed method regarding the error on the twenty-four (24) classification
datasets. The stars only intend to flag significance levels for the two most-used groups. A p-value
of less than 0.001 is flagged with three stars (***). A p-value of less than 0.0001 is flagged with
four stars (****).

In addition, an additional set of experiments was executed on the classification data.
In this set of experiments, the critical parameter F took the values 3, 5 and 10. The aim of
this set of experiments was to establish the sensitivity of the proposed method to changes
in its parameters. The experimental results are presented in Table 7, and a statistical test of
the results is presented in Figure 7. The results and the statistics test indicate that there is
no significant difference in the efficiency of the method for different values of the critical
parameter F.

Figure 7. A Friedman test was conducted to find out whether different values of the critical parameter
F had a difference or not in the classification error of the proposed method in twenty-four (24) other
publicly available classification datasets. The analysis results for three different values of the critical
parameter F (F = 3, F = 5, F = 10) indicated no significant difference.
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Table 7. The following table presents experimental results from the use of the proposed technique in
classification problems and for different values of the critical parameter F.

Dataset F = 3 F = 5 F = 10

Appendicitis 15.57% 16.60% 15.77%

Australian 24.29% 23.94% 22.40%

Balance 17.22% 15.39% 15.62%

Cleveland 52.09% 51.65% 50.37%

Dermatology 37.23% 36.81% 35.73%

Hayes Roth 35.72% 32.31% 35.33%

Heart 16.32% 15.54% 15.91%

HouseVotes 4.35% 3.90% 3.33%

Ionosphere 12.50% 11.44% 9.30%

Liverdisorder 28.08% 28.19% 28.44%

Mammographic 17.49% 17.15% 17.72%

Parkinsons 16.25% 15.17% 14.53%

Pima 23.29% 23.97% 23.33%

Popfailures 5.31% 5.86% 4.68%

Regions2 25.97% 26.29% 25.18%

Saheart 28.52% 28.59% 29.46%

Segment 44.95% 48.77% 49.22%

Spiral 15.49% 18.19% 23.58%

Wdbc 5.43% 5.01% 5.20%

Wine 7.59% 8.39% 5.63%

Z_F_S 4.37% 4.26% 3.90%

ZO_NF_S 3.79% 4.21% 3.99%

ZONF_S 2.34% 2.26% 1.67%

ZOO 11.90% 10.50% 9.33%

AVERAGE 19.03% 18.93% 18.73%

4. Conclusions

In the current work, an innovative two-stage technique was proposed to efficiently
train RBF artificial neural networks. In the first stage of the application, using grammatical
evolution, the interval of values of the neural network parameters is partitioned so as to
find a promising range that may contain low values of the training error. In the second
stage, the neural network parameters are trained within the best range of values found
in the first stage. The training of the parameters of the second phase is carried out using
a genetic algorithm. The proposed method was applied on a wide series of well-known
datasets from the relevant literature and was tested against a series of machine learning
models. The new training technique was compared with the traditional method of training
RBF networks, as well as with other machine learning models. From the experimental
results, its superiority is evident in percentages that exceed 40%. However, since the
proposed technique includes two genetic algorithms that are executed sequentially, the
execution time required is longer compared to other techniques, especially for datasets
with many patterns. An immediate solution to increase the speed of the method would
be the use of parallel computing techniques, since genetic algorithms can, by nature, be
directly parallelized.
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Future improvements to the proposed method may include the following:

1. The proposed method could be applied to other variants of artificial neural networks.
2. Intelligent learning techniques could be used in place of the k-means technique to

initialize the neural network parameters.
3. Techniques could be used to dynamically determine the number of necessary pa-

rameters for the neural network. For the time being, the number of parameters
is considered constant, but this has the consequence of resulting in over-training
phenomena being observed in various datasets.

4. Crossover and mutation techniques that focus more on the existing interval construc-
tion technique for model parameters could be implemented.

5. Efficient termination techniques for genetic algorithms could be used to obtain the
most efficient termination of techniques without wasting computing time on unneces-
sary iterations.

6. Techniques that are based on parallel programming could be used to increase the
speed of the method.
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