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Abstract: Artificial Intelligence (AI) describes computer systems able to perform tasks that normally
require human intelligence, such as visual perception, speech recognition, decision-making, and language
translation. Examples of AI techniques are machine learning, neural networks, and deep learning. AI
can be applied in many different areas, such as econometrics, biometry, e-commerce, and the automotive
industry. In recent years, AI has found its way into healthcare as well, helping doctors make better
decisions (“clinical decision support”), localizing tumors in magnetic resonance images, reading and
analyzing reports written by radiologists and pathologists, and much more. However, AI has one big
risk: it can be perceived as a “black box”, limiting trust in its reliability, which is a very big issue in an
area in which a decision can mean life or death. As a result, the term Explainable Artificial Intelligence
(XAI) has been gaining momentum. XAI tries to ensure that AI algorithms (and the resulting decisions)
can be understood by humans. In this narrative review, we will have a look at some central concepts
in XAI, describe several challenges around XAI in healthcare, and discuss whether it can really help
healthcare to advance, for example, by increasing understanding and trust. Finally, alternatives to
increase trust in AI are discussed, as well as future research possibilities in the area of XAI.

Keywords: XAI; AI; artificial intelligence; explainable; explainability; machine learning; deep learning;
data science; big data; healthcare; medicine

1. Introduction

Artificial Intelligence (AI) is “the theory and development of computer systems able to
perform tasks that normally require human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages” [1]. Examples of AI tech-
niques are machine learning (ML), neural networks (NN), and deep learning (DL). AI can be
applied to many different areas, such as econometrics (stock market predictions), biometry
(facial recognition), e-commerce (recommendation systems), and the automotive industry
(self-driving cars). In recent years, AI has found its way into the domain of biomedicine [2]
and healthcare [3] as well. It is used to help researchers analyze big data to enable precision
medicine [4] and to help clinicians to improve patient outcomes [5]. AI algorithms can help
doctors to make better decisions (“clinical decision support”, CDS), localize tumors in magnetic
resonance (MR) images, read and analyze reports written by radiologists and pathologists,
and much more. In the near future, generative AI and natural language processing (NLP)
technology, such as Chat Generative Pre-trained Transformer (ChatGPT), could also help to
create human-readable reports [6].

However, there are some barriers to the effective use of AI in healthcare. The first one is
“small” data, resulting in bias [7]. When studies are carried out on a patient cohort with limited
diversity in race, ethnicity, gender, age, etc., the results from these studies might be difficult to
be applied to patients with different characteristics. An obvious solution for this bias is to create
datasets using larger, more diverse patient cohorts and to keep bias in mind when designing
experiments. A second barrier exists in privacy and security issues. Strict regulations (such
as the European GDPR, the American HIPAA, and the Chinese PIPL) exist, limiting the use
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of personal data and imposing large fines for the leakage of such data. These issues can be
solved in different ways, for example, by using federated or distributed learning. In this way,
the algorithm travels to the data and sends results back to a central repository. The data do
not need to be transferred to another party, avoiding privacy and security issues as much as
possible [8]. Another solution is the use of synthetic data, artificial data, which might either be
generated from scratch or based on real data, usually generated using AI algorithms such as
Generative Adversarial Networks (GANs) [9]. A third barrier is the limited trust that clinicians
and patients might have in AI algorithms. They can be perceived as a “black box”: something
goes in, and something comes out, with no understanding of what happens inside. This distrust
in AI algorithms, their accuracy, and reliability is a very big issue in an area in which a decision
could mean the life or death of the patient. As a result of this distrust, the term Explainable
Artificial Intelligence (XAI) [10] has been gaining momentum as a possible solution. XAI tries to
make sure that algorithms (and the resulting decisions) can be understood by humans.

XAI is being mentioned more and more in scientific publications, as can be seen in Figure 1.
Its first mention in a PubMed title, abstract, or keywords was in 2018, in a paper about machine
learning in neuroscience [11]. Since then, it has been mentioned a total of 488 times, of which
more than 63% (311) in papers from 2022 or from the first months of 2023. The results for
the Embase database show a similar trend. A full list of the publications can be found in
Supplementary Tables S1 (PubMed) and S2 (Embase). This trend shows the growing importance
of XAI in (bio)medicine and healthcare. Taking this growth into consideration, the number
of manuscripts that discuss the concepts and challenges of XAI in the context of healthcare
remains small. In this narrative review, we will have a look at several concepts around XAI
and what their importance might be for the implementation and acceptance of AI in healthcare.
This review will also provide some future directions. It will not attempt to give a full overview
of the current literature on this topic or explain in detail which methods exist to explain AI
algorithms, as several excellent reviews on this topic already exist [12–15]. First, we will go
through some central concepts of XAI. We will explain the terminologies “black box” and
“glass box”. Then, we will look at two approaches to explainability, transparency, and post-hoc
explanations, followed by a discussion on the collaboration between humans (e.g., clinicians) and
AI. The subsequent two sections introduce scientific XAI and discuss the explanation methods
of granular computing and fuzzy modeling. Second, we will discuss some challenges of XAI
in healthcare. The first section is about legal and regulatory compliance, which is of particular
importance in healthcare, dealing with sensitive personal data. The next sections discuss the
effects of XAI on privacy and security and the question of whether the explanations always raise
trust. Another section discusses the balance between explainability and accuracy/performance,
followed by an overview of methods to measure explainability and a contemplation on the
future increasing complexity of AI algorithms. The penultimate section shows some examples of
XAI applied in a healthcare setting. Finally, the discussion puts everything in a broader context
and mentions some future research possibilities of XAI in healthcare.
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Figure 1. Number of publications containing the term “explainable artificial intelligence” in the titles, ab-
stracts, and keywords of the PubMed and Embase databases per year. Queries performed on 26 March 2023.



AI 2023, 4 654

2. Central Concepts of XAI
2.1. From “Black Box” to “(Translucent) Glass Box”

With explainable AI, we try to progress from a “black box” to a transparent “glass
box” [16] (sometimes also referred to as a “white box” [17]). In a glass box model (such
as a decision tree or linear regression model), all parameters are known, and we know
exactly how the model comes to its conclusion, giving full transparency. In the ideal
situation, the model is fully transparent, but in many situations (e.g., deep learning models),
the model might be explainable only to a certain degree, which could be described as a
“translucent glass box” with an opacity level somewhere between 0% and 100%. A low
opacity of the translucent glass box (or high transparency of the model) can lead to a
better understanding of the model, which, in turn, could increase trust. This trust can
exist on two levels, trust in the model versus trust in the prediction, as explained by
Ribeiro et al. [18]. In healthcare, there are many different stakeholders who have different
explanation needs [19]. For example, data scientists are usually mostly interested in the
model itself, whereas users (often clinicians, but sometimes patients) are mostly interested
in the predictions based on that model. Therefore, trust for data scientists generally means
trust in the model itself, while trust for clinicians and patients means trust in its predictions.
The “trusting a prediction” problem can be solved by providing explanations for individual
predictions, whereas the “trusting the model” problem can be solved by selecting multiple
such predictions (and explanations) [18]. Future research could determine in which context
either of these two approaches should be applied.

2.2. Explainability: Transparent or Post-Hoc

Arrieta et al. [20] classified studies on XAI into two approaches—some works focus
on creating transparent models, while most works wrap black-box models with a layer
of explainability, the so-called post-hoc models (Figure 2). The transparent models are
based on linear or logistic regression, decision trees, k-nearest neighbors, rule-based learn-
ing, general additive models, and Bayesian models. These models are considered to be
transparent because they are understandable by themselves. The post-hoc models (such
as neural networks, random forest, and deep learning) need to be explained by resorting
to diverse means to enhance their interpretability, such as text explanations, visual expla-
nations, local explanations, explanations by example, explanations by simplification, and
feature relevance explanations techniques. Phillips et al. [21] define four principles for
explainable AI systems: (1) explanation: explainable AI systems deliver accompanying
evidence or reasons for outcomes and processes; (2) meaningful: provide explanations that
are understandable to individual users; (3) explanation accuracy: provide explanations that
correctly reflect the system’s process for generating the output; and (4) knowledge limits:
a system only operates under conditions for which it was designed and when it reaches
sufficient confidence in its output. Vale et al. [22] state that machine learning post-hoc
explanation methods cannot guarantee the insights they generate, which means that they
cannot be relied upon as the only mechanism to guarantee the fairness of model outcomes
in high-stake decision-making, such as in healthcare.
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2.3. Collaboration between Humans and AI

It is important for clinicians (but also patients, researchers, etc.) to realize that humans
can and should not be replaced by an AI algorithm [23]. An AI algorithm could outscore
humans in specific tasks, but humans (at this moment in time) still have added value with
their domain expertise, broad experience, and creative thinking skills. It might be the case
that when the accuracy of an AI algorithm on a specific task is compared to the accuracy of
the clinician, the AI gets better results. However, the AI model should not be compared to
the human alone but to the combination of the AI model and a human because, in clinical
practice, they will almost always work together. In most cases, the combination (also
known as “AI-assisted decision making”) will obtain the best results [24]. The combination
of an AI model with human expertise also makes the decision more explainable: the
clinician can combine the explainable AI with his/her own domain knowledge. In CDS,
explainability allows developers to identify shortcomings in a system and allows clinicians
to be confident in the decisions they make with the support of AI. [25]. Amann et al. state
that if we would move in the opposite direction toward opaque algorithms in CDSS, this
may inadvertently lead to patients being passive spectators in the medical decision-making
process [26]. Figure 3 shows what qualities a human and an AI model can offer in clinical
decision-making, with the combination offering the best results. In the future, there might
be a shift to the right side of the figure, but the specific qualities of humans will likely
ensure that combined decision-making will still be the best option for years to come.
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2.4. Scientific Explainable Artificial Intelligence (sXAI)

Durán (2021) [27] differentiates scientific XAI (sXAI) from other forms of XAI. He states
that the current approach for XAI is a bottom-up model: it consists of structuring all forms
of XAI, attending to the current technology and available computational methodologies,
which could lead to confounding classifications (or “how-explanations”) with explanations.
Instead, he proposes a bona fide scientific explanation in medical AI. This explanation
addresses three core components: (1) the structure of sXAI, consisting of the “explanans”
(the unit that carries out an explanation), the “explanandum” (the unit that will be ex-
plained), and the “explanatory relation” (the objective relation of dependency that links the
explanans and the explanandum); (2) the role of human agents and non-epistemic beliefs
in sXAI; and (3) how human agents can meaningfully assess the merits of an explanation.
This concludes by proposing a shift from standard XAI to sXAI, together with substantial
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changes in the way medical XAI is constructed and interpreted. Cabitza et al. [28] discuss
this approach and conclude that existing XAI methods fail to be bona fide explanations,
which is why their framework cannot be applied to current XAI work. For sXAI to work,
it needs to be integrated into future medical AI algorithms in a top–down manner. This
means that algorithms should not be explained by simply describing “how” a decision
has been reached, but we should also look at what other scientific disciplines, such as
philosophy of science, epistemology, and cognitive science, can add to the discussion [27].
For each medical AI algorithm, the explanans, explanandum, and explanatory relation
should be defined.

2.5. Explanation Methods: Granular Computing (GrC) and Fuzzy Modeling (FM)

Many methods exist to explain AI algorithms, as described in detail by Holzinger
et al. [29]. There is one technique that is particularly useful in XAI because it is motivated
by the need to approach AI through human-centric information processing [30], Granular
Computing (GrC), which was introduced by Zadeh in 1979 [31]. GrC is an “emerging
paradigm in computing and applied mathematics to process data and information, where
the data or information are divided into so-called information granules that come about
through the process of granulation” [32]. GrC can help make models more interpretable and
explainable by bridging the gap between abstract concepts and concrete data through these
granules. Another useful technique related to GrC is Fuzzy Modeling (FM), a methodology
oriented toward the design of explanatory and predictive models. FM is a technique
through which a linguistic description can be transformed into an algorithm whose result
is an action [33]. Fuzzy modeling can help explain the reasoning behind the output of an
AI system by representing the decision-making process in a way that is more intuitive and
interpretable. Although FM was originally conceived to provide easily understandable
models to users, this property cannot be taken for granted, but it requires careful design
choices [34]. Much research in this area is still ongoing. Zhang et al. [35] discuss the
multi-granularity three-way decisions paradigm [36] and how this acts as a part of granular
computing models, playing a significant role in explainable decision-making. Zhang
et al. [37] adopt a GrC framework named “multigranulation probabilistic models” to enrich
semantic interpretations for GrC-based multi-attribute group decision-making (MAGDM)
approaches.

In healthcare, GrC could, for example, help break down a CDS algorithm into smaller
components, such as the symptoms, patient history, test results, and treatment options. This
can help the clinician understand how the algorithm arrived at its diagnosis and determine
if it is reliable and accurate. FM could, for example, be used in a CDS system to represent
the uncertainty and imprecision in the input data, such as patient symptoms, and the
decision-making process, such as the rules that are used to arrive at a diagnosis. This can
help to provide a more transparent and understandable explanation of how the algorithm
arrived at its output. Recent examples of the application of GrC and FM in healthcare are in
the disease areas of Parkinson’s disease [38], COVID-19 [39], and Alzheimer’s disease [40].

3. Challenges of XAI in Healthcare
3.1. Legal and Regulatory Compliance

Another advantage of XAI is that it can help organizations comply with laws and
regulations that require transparency and explainability in AI systems. Within the General
Data Protection Regulation (GDPR) of the European Union, transparency is a fundamental
principle for data processing [41]. However, transparency is difficult to adhere to because
of the complexity of AI. Felzmann et al. [42] propose that transparency, as required by the
GDPR in itself, may be insufficient to achieve an increase in trust or any other positive
goal associated with transparency. Instead, they recommend a relational understanding of
transparency, in which the provision of information is viewed as a sort of interaction be-
tween users and technology providers, and the value of transparency messages is mediated
by trustworthiness assessments based on the context. Schneeberger et al. [43] discussed



AI 2023, 4 657

the European framework regulating medical AI based on White Paper on AI from 2020
by the European Commission [44] and concluded that this framework, by endorsing a
human-centric approach, will fundamentally influence how medical AI and AI, in general,
will be used in Europe in the future. The EU is currently working on the Artificial Intel-
ligence Act [45], which will make a distinction between non-high-risk and high-risk AI
systems. On non-high-risk systems, only limited transparency obligations are imposed,
while for high-risk systems, many restrictions are imposed on quality, documentation,
traceability, transparency, human oversight, accuracy, and robustness. Bell et al. [46] state
that transparency is left to the technologists to achieve and propose a stakeholder-first
approach that assists technologists in designing transparent, regulatory-compliant systems,
which is a useful initiative. Besides GDPR, there are other privacy laws for which XAI
might be an interesting development. In the USA, there is the Health Insurance Portability
and Accountability Act (HIPAA) privacy rule [47], which is related to the Openness and
Transparency Principle in the Privacy and Security Framework. This Openness and Trans-
parency Principle stresses that it is “important for people to understand what individually
identifiable health information exists about them, how that information is collected, used,
and disclosed, and how reasonable choices can be exercised with respect to that informa-
tion” [48]. The transparency of the usage of health information might point to a need for
explainability of algorithms. In China, article 7 of the Personal Information Protective Law
(PIPL) prescribes that “the principles of openness and transparency shall be observed in
the handling of personal information, disclosing the rules for handling personal informa-
tion and clearly indicating the purpose, method, and scope of handling” [49], which also
points to a need for transparency in data handling and AI algorithms. Since new, more
AI-specific privacy laws are being introduced around the world, regulatory compliance
with AI algorithms is gaining relevance and will be an important area for research in the
future.

3.2. Privacy and Security: A Mixed Bag

On the one hand, XAI can help to improve the safety and security of AI systems by
making it easier to detect and prevent errors and malicious behavior [50]. On the other
hand, XAI can also raise privacy and security concerns, as providing explanations for AI
decisions may reveal sensitive information or show how to manipulate the system, for
example, by reverse engineering [51]. A fully transparent model can make a hacker feel
as if they have endless possibilities. Therefore, it is important to carefully consider the
privacy and security implications of XAI and to take appropriate risk mitigation measures,
certainly in healthcare, where the protection of sensitive personal data is an important
issue. Combining the explainability of algorithms with privacy-preserving methods such
as federated learning [52] might help. Saifullah et al. [53] argue that XAI and privacy-
preserving machine learning (PPML) are both crucial research fields, but no attention
has yet been paid to their interaction. They investigated the impact of private learning
techniques on generated explanations for deep learning-based models and concluded
that federated learning should be considered before differential privacy. If an application
requires both privacy and explainability, they recommend differential private federated
learning [54] as well as perturbation-based XAI methods [55]. The importance of privacy
in relation to medical XAI is shown in Figure 4 of Albahri et al. [56], with keywords such
as “ethics”, “privacy”, “security”, and “trust” being the most often-occurring keywords
in papers around XAI in healthcare. Some research on security in combination with XAI
has been carried out as well. Viganò and Magazzeni [57] propose the term “Explainable
Security” (XSec) as an extension of XAI to the security domain. According to the authors,
XSec has unique and complex characteristics: it involves several different stakeholders
and is multi-faceted by nature. Kuppa and Le-Khac [58] designed a novel black box
attack for analyzing the security properties (consistency, correctness, and confidence)
of gradient-based XAI methods, which could help in designing secure and robust XAI
methods. Kiener [59] looked specifically at security in healthcare and identified three
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types of security risks related to AI: cyber-attacks; systematic bias; and mismatches, all of
which can have serious consequences for medical systems. Explainability can be part of
the solution for all of these risks. The author specifically mentions input attacks as a type
of cyber-attack that is of high risk to AI systems. Input attacks manipulate the input data
(e.g., make some small changes to an MR image) so that the AI algorithm will deliver an
incorrect result [60]. In an explainable model, the clinician can look at the reasoning behind
the incorrect result and possibly, detect the manipulation. Systematic bias can be brought
to light as well by explaining the workings of the AI algorithm. For example, it can become
clearly visible that an algorithm was only trained on data from people from one ethnic
background. Mismatches can occur when the AI algorithm recommends courses of action
that do not match the background situation of the individual patient. The algorithm can
mistake correlation for causation and suggest, for example, an incorrect treatment. In a
black-box AI, such a mismatch might be undetectable, but in a transparent, explainable AI,
it might be much easier to detect or at least indicate the risk of such a mismatch.

3.3. Do Explanations Always Raise Trust?

The goal of explainability to end users of AI models is ultimately to increase trust in
the model. However, even with a good understanding of an AI model, end users may not
necessarily trust the model. Druce et al. [61] show that a statistically significant increase in
user trust and acceptance of an AI model can be reached by using a three-fold explanation:
(1) a graphical depiction of the model’s generalization and performance in the current
game state; (2) how well the agent would play in semantically similar environments; and
(3) a narrative explanation of what the graphical information implies. Le Merrer and
Trédan [62] argue that explainability might be promising in a local context but that it cannot
simply be transposed to a different (remote) context, where a model trained by a service
provider is only accessible to a user through a network and its application programming
interface (API). They show that providing explanations cannot prevent a remote service
from lying about the true reasons leading to its decisions (similar to what humans could do),
undermining the very concept of remote explainability in general. Within healthcare, trust
is a fundamental issue because important decisions might be taken based on the output of
the AI algorithm. Mistrust might result in humans discarding accurate predictions, while
overtrust could lead to over-reliance on possibly inaccurate predictions. Therefore, it would
be good to take all necessary actions described here to reach the correct level of trust in AI
algorithms in healthcare. One of the key actions here is to create open and honest education
to end users on the strengths and weaknesses of AI algorithms. For example, people should
be trained to understand the difference between local context and remote context.

3.4. “Glass Box” vs. “Crystal Ball”: Balance between Explainability and Accuracy/Performance

In some cases, the need for explainability can come at the cost of reduced performance
of the model. For example, in order to make a model fully explainable (a “glass box”), it
might need to be simplified. A very accurate prediction model (a “crystal ball”) might
lose part of its accuracy because of this simplification. Or it needs to introduce some extra,
more simple steps to make it more transparent, causing a reduction in performance. Linear
models and rule-based models are very transparent but usually have lower performance
than deep learning algorithms (Figure 5 [63]). Therefore, in a real-world situation, it might
not be possible to achieve full explainability because accuracy and performance are usually
considered to be more important. A balance needs to be maintained between the two,
as shown in Figure 4. In healthcare, this balance might shift more to the “crystal ball”
as accuracy might be considered more important than transparency and explainability.
Van der Veer et al. [64] concluded that citizens might indeed value the explainability of
AI systems in healthcare less than in non-healthcare domains, especially when weighed
against system accuracy. When developing policy on the explainability of (medical) AI,
citizens should be actively consulted, as they might have a different opinion than assumed
by healthcare professionals. This trade-off between accuracy and transparency could be
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different for each context, however, depending on the implications of a wrong decision
based on the AI algorithm. Future research could be carried out on the context-specific
need for explainability.
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3.5. How to Measure Explainability?

Accuracy and performance can be measured easily by metrics such as specificity,
selectivity, and area under the Receiver Operating Characteristic (ROC) curve (AUC). Ex-
plainability is much more difficult to be measured because the quality of an explanation is
somewhat subjective. Multiple researchers have tried to come up with an assessment of
explainability. Table 1 shows an overview of the most widely used explainability metrics
from the recent literature. The four publications that introduced these metrics all look at
explainability from a different angle. Sokol and Flach [65], for example, have created “ex-
plainability fact sheets” to assess explainable approaches along five dimensions: functional;
operational; usability; safety; and validation. This is quite an extensive approach. Most
researchers measure explainability simply by evaluating how well an explanation is under-
stood by the end user. Lipton [66] identifies three measures: (1) simulatability: can the user
recreate or repeat (simulate) the computational process based on provided explanations
of a system; (2) decomposability: can the user comprehend individual parts (and their
functionality) of a predictive model; (3) algorithmic transparency: can the user fully under-
stand the predictive algorithm? Hoffman et al. [67] use “mental models”, representations
or expressions of how a person understands some sort of event, process, or system [68], as a
user’s understanding of the AI system. This mental model can be evaluated on criteria such
as correctness, comprehensiveness, coherence, and usefulness. Fauvel et al. [69] present a
framework that assesses and benchmarks machine learning methods on both performance
and explainability. Performance is measured compared to the state-of-the-art, best, similar,
or below. For measuring explainability, they look at model comprehensibility, explanation
granularity, information type, faithfulness, and user category. For model comprehensibility,
only two categories are defined, “black-box” and “white-box” models, suggesting that
these components could be further elaborated in future work. For the granularity of the
explanation, they use three categories: “global”; “local”; and “global and local” explain-
ability. They propose a generic assessment of the information type in three categories
from the least to the most informative: (1) importance: the explanations reveal the relative
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importance of each dataset variable on predictions; (2) patterns: the explanations provide
the small conjunctions of symbols with a predefined semantic (patterns) associated with
the predictions; (3) causal: the most informative category corresponds to explanations
under the form of causal rules. The faithfulness of the explanation shows if the user can
trust the explanation, with the two categories, “imperfect” and “perfect”. Finally, the
user category shows the target user at which the explanation is aimed: “machine learning
expert”, “domain expert”, and “broad audience”. This user category is important because
it defines the level of background knowledge they have. As suggested by the authors, all
these metrics and categories can be defined in more detail in future XAI research.

Table 1. Methods for assessing explainability.

Manuscript Measures

Sokol and Flach (2020) [65]

- Functional
- Operational
- Usability
- Safety
- Validation

Lipton (2018) [66]
- Simulatability
- Decomposability
- Algorithmic transparency

Hoffman et al. (2018) [67]

- Correctness
- Comprehensiveness
- Coherence
- Usefulness

Fauvel et al. (2020) [69]

- Performance:

o Best
o Similar
o Below

- Explainability:

o Model comprehensibility:
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- Correctness 
- Comprehensiveness 
- Coherence 
- Usefulness 

Fauvel et al. (2020) [69] 

- Performance: 
o Best 
o Similar 
o Below 

- Explainability: 
o Model comprehensibility: 

 Black box models 
 White box models 

o Explanation granularity: 
 Global 
 Local 
 Global and local 

o Information type: 
 Importance 
 Patterns 
 Causal 

o Faithfulness: 
 Imperfect 
 Perfect 

o User category: 
 Machine learning expert 
 Domain expert 
 Broad audience 

3.6. Increasing Complexity in the Future 
The first neural networks (using a single layer) were relatively easy to understand. 

With the advent of deep learning (using multiple layers) and new types of algorithms such 

Broad audience
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3.6. Increasing Complexity in the Future

The first neural networks (using a single layer) were relatively easy to understand.
With the advent of deep learning (using multiple layers) and new types of algorithms such
as Deep Belief Networks (DBNs) [70] and Generative Adversarial Networks (GANs) [71],
made possible by the increasing computer power, artificial intelligence algorithms are
gaining complexity. In the future, this trend will likely continue, with Moore’s law still
continuing to proceed. With algorithms becoming more complex, it might also be more
difficult to make them explainable. Ongoing research in the field of XAI might make
it possible that new techniques will be developed that make it easier to explain and
understand complex AI models. For example, Explainability-by-Design [72] takes proactive
measures to include explanation capability in the design of decision-making systems so
that no post-hoc explanations are needed. However, there is also the possibility that
the complexity of AI models will overtake our ability to understand and explain them.
Sarkar [73] even talks about an “explainability crisis”, which will be defined by the point
at which our desire for explanations of machine intelligence will eclipse our ability to
obtain them, and uses the “five stages of grief” (denial, anger, bargaining, depression, and
acceptance) to describe the several phases of this crisis. The author’s conclusion is that
XAI is probably in a race against model complexity, but also that this may not be such a
big issue as it seems, as there are several ways to either improve explanations or reduce
AI complexity. Ultimately, it all will depend on the trajectory of AI development and the
progress made in the field of XAI.

4. Application Examples

XAI has been applied to healthcare in medicine in a number of ways already. AI
has been very successful in improving medical image analysis, and recently, researchers
have also been trying to combine this success (through high accuracy) with an increased
explainability and interpretability of the models created. Van der Velden et al. [74] identified
over 200 papers using XAI in deep learning-based medical image analysis and concluded
that most papers in this area used a visual explanation (mostly through saliency maps [75])
as opposed to textual explanations and example-based explanations. These saliency maps
highlight the most important features which can distinguish between diseased and non-
diseased tissue [76]. Manresa-Yee et al. [77] describe explanation interfaces that are being
used in healthcare, mostly by clinicians. They identified three main application areas for
these interfaces: prediction tasks; diagnosis tasks; and automated tasks. One example of
a clinician-facing explanation interface is the dashboard presented by Khodabandehloo
et al. [78], which uses data from sensorized smart homes to detect a decline in the cognitive
functions of the elderly in order to promptly alert practitioners.

Joyce et al. [79] studied the use of XAI in psychiatry and mental health, where the
need for explainability and understandability is higher than in other areas because of the
probabilistic relationships between the data describing the syndromes, outcomes, disorders,
and signs/symptoms. They introduced the TIFU (Transparency and Interpretability For
Understandability) framework, which focuses on how a model can be made understandable
(to a user) as a function of transparency and interpretability. They conclude that the main
applications of XAI in mental health are prediction and discovery, that XAI in mental health
requires understandability because clinical applications are high-stakes, and that AI tools
should assist clinicians and not introduce further complexity.

5. Discussion

Current privacy laws such as GDPR, HIPAA, and PIPL include clauses that state that
the handling of healthcare data should be transparent, which means that AI algorithms
that work with these data should be transparent and explainable as well. Future privacy
laws will likely be even more strict on AI explainability. However, making AI explainable
is a difficult task, and it will be even more difficult when the complexity of AI algorithms
continues to increase. This increasing complexity might make it almost impossible for end
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users in healthcare (clinicians as well as patients) to understand and trust the algorithms.
Therefore, perhaps we should not aim to explain AI to the end users but to the researchers
and developers deploying them, as they are mostly interested in the model itself. End users,
especially patients, mostly want to be sure that the predictions made by the algorithm
are accurate, which can be proven by showing them correct predictions from the past.
Another important issue is the balance between explainability and accuracy or performance.
Especially in healthcare, accuracy (and, to a lesser extent, performance) is crucial as it
could be a matter of life and death. Therefore, explainability might be considered of less
importance in healthcare compared to accuracy. If an algorithm’s accuracy is lowered
because of post-hoc explanations, it would be good to consider other methods to increase
trust. For example, trust in algorithms could also be raised by ensuring robustness and
by encouraging fairness [80]. Robustness of an algorithm in healthcare can be proven by
presenting good results based on long-term use in different patient populations. When a
model is robust, its explanation will not change much when minor changes are made to
the model [81]. The fairness of an AI algorithm is concurrent with bias minimization. A
bias could be introduced by having a training dataset with low diversity or by subjective
responses of clinicians to a questionnaire. XAI can help find these biases as well as mitigate
them [82]. These biases can be addressed during the validation and verification of the
algorithm. Finally, algorithms (scripts, but also underlying data) should be made available
for reuse when possible [83] so that the results can be reproduced, increasing trust in the
algorithm. GrC and FM can help increase trust as well by making models more interpretable
and explainable. Another solution to the explainability–accuracy trade-off might lie in
the adoption of sXAI, in which explainability is integrated into a top–down manner into
future medical AI algorithms, and Explainability-by-Design, which includes explanation
capability in the design of decision-making systems. GrC, FM, sXAI, and Explainability-
by-Design could be combined with ongoing research in privacy and security in AI (such
as XSec) to create future-proof explainable artificial intelligence for healthcare. In any
case, explainability should be considered as important as other metrics, such as accuracy
and robustness, as they all raise trust in AI. Future endeavors to make AI explainable
should be personalized, as different end users need different levels of explanations. The
explanations should be communicated to the end user in an understandable manner, for
example, through an easy-to-use user interface. Explainability should also not compromise
the privacy rights of the patients [84]. For XAI in healthcare to fully reach its potential, it
should be embedded in clinical workflows, and explainability should be included in AI
development from the start instead of adding post-hoc explanations as an afterthought.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ai4030034/s1, Table S1: PubMed publications with the search term
“explainable artificial intelligence”; Table S2: Embase publications with the search term “explainable
artificial intelligence”.
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GAN Generative Adversarial Network
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