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Abstract: Despite several solutions and experiments have been conducted recently addressing image
super-resolution (SR), boosted by deep learning (DL), they do not usually design evaluations with
high scaling factors. Moreover, the datasets are generally benchmarks which do not truly encompass
significant diversity of domains to proper evaluate the techniques. It is also interesting to remark
that blind SR is attractive for real-world scenarios since it is based on the idea that the degradation
process is unknown, and, hence, techniques in this context rely basically on low-resolution (LR)
images. In this article, we present a high-scale (8 x) experiment which evaluates five recent DL
techniques tailored for blind image SR: Adaptive Pseudo Augmentation (APA), Blind Image SR
with Spatially Variant Degradations (BlindSR), Deep Alternating Network (DAN), FastGAN, and
Mixture of Experts Super-Resolution (MoESR). We consider 14 datasets from five different broader
domains (Aerial, Fauna, Flora, Medical, and Satellite), and another remark is that some of the DL
approaches were designed for single-image SR but others not. Based on two no-reference metrics,
NIQE and the transformer-based MANIQA score, MoESR can be regarded as the best solution
although the perceptual quality of the created high-resolution (HR) images of all the techniques still
needs to improve.

Keywords: image super-resolution; artificial intelligence; deep learning; controlled experiment;
multiple domains

1. Introduction

Medical imaging [1-4], internet video delivery [5-7], surveillance and security via
person identification [8-10], and remote sensing [11-16] are just some examples of real-
world applications where image super-resolution (SR) has been used. In SR, we aim at
recovering high-resolution (HR) images from low-resolution (LR) ones. This is a non-trivial
and generally ill-posed problem since multiple HR images exist corresponding to a unique
LR image [17]. It is important to remark that, in this article, image resolution means
precisely the dimensionality of the image. For instance, an image has a resolution of W x H
pixels. This is not to be confused with other definitions of resolution existing in certain
communities, such as remote sensing (spatial resolution, radiometric resolution, temporal
resolution, ...).

Several classical methods have been designed for image SR, such as bicubic inter-
polation and Lanczos resampling [18], edge-based methods [19], statistical methods [20],
among others. But, naturally, with all the developments related to deep learning (DL) and
deep neural networks (DNNs) [21], a significant number of strategies have been proposed
addressing SR via DL/DNNs as reported in recent secondary studies [11,17]. Among
the DL techniques, convolutional neural networks (CNNs) [13,22-24], generative adver-
sarial networks (GANSs) [12,14,25,26], and attention-based networks [15,27,28] have been
employed to solve image SR problems.
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The majority of studies published up to now focus on supervised SR where models
are trained with both LR images and the corresponding HR ones [11,17]. But, in reality, it is
not easy to have images from the same scene but with distinct resolutions so that having
the pairs LR-HR for training is not as direct as it is supposed to be. Hence, in unsupervised
SR [29], only unpaired LR-HR images are available for training, so that the models are more
able to learn real-world LR-HR mappings.

But an even more attractive strategy for real-world scenarios is blind image SR [30,31]
which is based on the idea that the degradation process/kernels is/are unknown, and,
hence, techniques in this context rely basically on LR images, not requiring the high-
resolution ones. There is an increasing interest in blind image SR.

Despite the huge number of proposed techniques and experiments boosted by DL
techniques [11,17], they do not usually design evaluations with high scaling factors, capping
it at 2x or 4x. One of the exceptions is the experiment presented in [11] where authors
considered 2, 4, and 8 scaling factors. However, the authors considered a multi-sensor
remote sensing dataset consisting of mostly publicly available very HR satellite images.
Even if the images are from different satellites and regions, eventually the diversity of the
images and feature spaces are not enough to proper evaluate SR techniques.

Several other datasets have been used for training image SR approaches, such as
BSDS300 [32], BSDS500 [33], DIV2K [34], PIRM [35], Set5 [36], Set14 [37], and Urban100 [38].
These datasets comprise different categories but still lack of images of other domains. For
instance, all the datasets above do not seem to present images obtained via satellite sensors
or medical images. It is interesting to stress that images taken by sensors embedded in
satellites or airplanes have considerable differences compared to natural images due to
different shooting content and shooting methods [39]. Moreover, as previously remarked,
evaluations are usually limited to the 4x scaling factor. In [40], results are presented
for the 8 scaling factor but considering only the Set5 and Set14 datasets. We believe
that performing experiments addressing not only high scaling factors (e.g., 8 x) but also
datasets of different domains is very important to better identify the most adequate image
SR approaches.

Image quality assessment (IQA) metrics (methods) are roughly divided into two
categories: full-reference (FR-IQA) and no-reference (NR-IQA) [41]. In FR-IQA, we evaluate
the similarity between a distorted image and a given reference image, and classical metrics
which have been extensively used are peak signal-to-noise ratio (PSNR) [11] and structural
similarity index measure (SSIM) [42]. On the other hand, NR-IQA metrics are proposed
to assess image quality without a reference image, being more suitable for perceptual
quality. Natural image quality evaluator (NIQE) [43] and perception index (PI) [35] are two
traditional metrics. However, recent metrics can be devised based on DNNSs, as presented
in the New Trends in Image Restoration and Enhancement (NTIRE) workshop held in
2022 at the Conference on Computer Vision and Pattern Recognition (CVPR 2022) [41].
And, for the first time, NTIRE 2022 Challenge on Perceptual Image Quality Assessment
had a track addressing NR-IQA. We believe that for evaluating approaches in a completely
“blind” setting, NR-IQA metrics are more interesting since they do not demand reference
images, only the LR ones.

In this article, we present a high-scale (8 x) controlled experiment which evaluates
five recent DL techniques tailored for blind image SR: Adaptive Pseudo Augmentation
(APA) [44], Blind Image SR with Spatially Variant Degradations (BlindSR) [45], Deep
Alternating Network (DAN) [46], FastGAN [47], and Mixture of Experts Super-Resolution
(MOoESR) [48]. Relying basically on public sources, we adapt and create 14 LR image
datasets (each one with 100 samples) from five different broader domains: Aerial, Fauna,
Flora, Medical, and Satellite. Another distinctive characteristic of our evaluation is that
some of the DL approaches were designed for single-image SR but others not.

Two NR-IQA metrics were selected, being the classical NIQE and the recent vision
transformer(ViT)-based multi-dimension attention network for no-reference image quality
assessment (MANIQA) score [49], to assess the techniques. The MANIQA model was the
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winner of the NTIRE 2022’s NR-IQA track obtaining a performance considerably higher
than classical strategies, such as PI and NIQE.
The contributions of this study are:

1.  We design and execute a controlled experiment considering five recent blind image SR
approaches and focusing on a specific large scaling factor (8 x). Note that we decided
to present a more detailed analysis of the results, trying to explain in more depth
the behaviours of the approaches. We also perform a correlation analysis taking into
account the HR images produced by the two best DL techniques. We believe that
independent and unbiased evaluations are important to indicate the most suitable
approaches to be selected by professionals who need to work with image SR in their
practical settings;

2. Weadapt and create 14 LR image datasets from five different broader domains: Aerial,
Fauna, Flora, Medical, and Satellite. We believe that making available these datasets
to the community, obtained from quite distinct domains, is interesting to provide
other possibilities to evaluate the blind image SR techniques considering not only
single-image but non-single-image techniques (we had indeed done this);

3. We consider a recent DNN-based NR-IQA metric (MANIQA score) in addition to a
classical one (NIQE), and present some remarks by using such metrics.

This article is structured as follows. Section 2 briefly presents the theoretical back-
ground and related work. In Section 3, we show in detail the design of our experiment.
Results are in Section 4 while Section 5 discusses some important points. In Section 6,
conclusions and feature directions are pointed out.

2. Background

This section presents an overview of the theoretical background related to image SR.
More details can be seen elsewhere [11,17]. At the end, we also discuss about related work.
The goal of image SR is to recover the corresponding HR images from the LR images. The
LR image, IR, is usually modelled as the output of the following degradation

ILR :F(IHR;(S) (1)

where I' means a degradation mapping function, Iy is the corresponding HR image, and
J represents the parameters of the degradation process. When the degradation process
(I' and 0) is unknown, which is very common to happen, and only LR images are available
for the techniques, we have the so called blind image SR. In this case, the idea is to recover
an HR approximation, IH/\R, of the ground truth HR image, Iyg, from the LR image as
presented below -

Iyr = M(ILR;0) ()

where M is the SR model and 6 are the parameters of M.
Despite of the fact that the degradation process is usually unknown, several studies
model the degradation as follows

I'(Inr;6) = (Inr) + 5, {s} C ¢ (©)

where | is a downsampling operation and s is a scaling factor. But, some studies [50] do
such a degradation modelling as presented below

[(Igr;d) = (Inr ®x) L s+ @z {x,5,8} C o 4)

where IR ® k means the convolution between a blur kernel, x, and the HR image, IR,
and s is a scaling factor. Moreover, ¢z is some additive white Gaussian noise with standard
deviation ¢.
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2.1. Metrics

As previously mentioned, there are several metrics for IQA, being full-reference (FR-
IQA) or without relying on a reference (NR-IQA). We present here a brief discussion about
the two NR-IQA metrics we have considered in this research: NIQE [43] and MANIQA
score [49].

The main motivation to develop NIQE is that, at the time it was proposed, NR-
IQA models required knowledge about anticipated distortions in the form of training
samples and corresponding human opinion scores. Thus, NIQE is a completely blind
approach which only uses measurable deviations from statistical regularities observed in
natural images, without training on human-rated distorted images and, hence, without
any exposure to distorted images. The idea is to construct a “quality aware” collection of
statistical features based on a successful space domain natural scene statistic (NSS) model.

NIQE is derived by computing 36 identical NSS features from patches of the same size,
P x P, from the image to be analysed, fitting them with a multivariate Gaussian model
(MVG) [51], then comparing its MVG fit to the natural MVG model. They considered a
patch of dimension (resolution) 96 x 96, although other dimensions were also evaluated.
The quality of the distorted image is expressed as the distance between the quality aware
NSS feature model and the MVG fit to the features extracted from the distorted image, as
shown below

)
D(v1,1,%1,%0) = ((Vl -1t <Zl ;Z2> (11 — Vz)) 5)

where v; and v; are the mean vectors of the natural MVG model and the distorted image’s
MVG model, respectively. Furthermore, > and X, are the covariance matrices of the
natural MVG model and the distorted image’s MVG model, respectively. Thus, the lower
the NIQE value, the better the perceptual quality of the generated HR image.

While NIQE is a very traditional metric, the MANIQA score is a very recent one. Top
approach of the NTIRE 2022’s NR-IQA track [41], the motivation for the development of
the MANIQA model and its corresponding score is that NR-IQA metrics/methods are
limited when assessing images created by GAN-based image restoration algorithms [26,52].
As shown in Figure 1, the MANIQA model consists of four components: feature extractor
using ViT [53], transposed attention block, scale swin transformer block, and a dual-branch
structure for patch-weighted quality prediction.

Feature Map Concat Transposed Attention
1 2 3 a4 5 6 |7 8 9 — B":Ck
1.2 3
4 |5 6 Reshape
Position .. 789
Embedding Vision Transformer =
0 1 2 3 4 5 6 7 8 9 Scale Swin
Transformer Block

— A Linear Projection of Flattened Patches '_l_l
E i‘ 8 L .- ‘ Score Weight
| it i | | e Branch Branch

'%ﬁ!-‘ A 4y | L @ J

“ score

Figure 1. The MANIQA model. The score is the metric related to the image. Source: adapted
from [49].

In more detail, a distorted image is cropped into patches of dimension 8 x 8. Then,
the patches are inputted into the ViT for extracting the features. Transposed attention block
and scale swin transformer block are used to strengthen the global and local interaction. A
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dual-branch structure is proposed for predicting the weight and score of each patch. Notice
that the higher the MANIQA score, the better the perceptual quality of the generated
HR image.

2.2. Related Work

This study is a controlled experiment within blind image SR via DL/DNNs. Basically
every study within blind image SR presents experimental evaluations and, to a lesser
or greater extent, they are related to ours. As mentioned in Section 1, even if there are
many techniques and experiments proposed boosted by DL techniques, as corroborated
by secondary studies [11,17], in general the studies do not consider high scaling factors
such as 8 x. When there are exceptions [11,40], there is no significant diversity of images
and feature spaces to proper evaluate the image SR approaches, taking into account quite
distinct broader domains such as medicine images, images obtained by satellites via sensors
with different characteristics, and images more “usual” like those of animal’s faces.

It is worth noting that dealing with this range of different domains is important
to better classify the techniques in terms of their performances. In other words, the
wider/general the assessments are, the better. Furthermore, independent evaluations,
like the one presented in this article, are valuable to guide professionals in making the
correct decisions in choosing the most appropriate blind image SR solution. Our study
addresses all these previous points and these are the main differences between our effort
and other already published articles.

3. Experiment Design

In this section, we describe the main design options of the controlled experiment to
assess the performance of the five DL techniques for blind image SR: APA, BlindSR, DAN,
FastGAN, and MoESR. Figure 2 presents the workflow (activity diagram) related to this
study as a whole. Such a figure emphasises the main steps, detailed below, related to
the design of the experiment and ends with an additional discussion of relevant points
observed when carrying out the experiment (also detailed below).

e Ve A\ Y ————
Adapt/Create Downsample the Images Select the DL
the Datasets of the Datasets Techniques
N J N J S )
Y
p ~ p ~ P N
Perform Additional Analyse Results and Answer Execute the | Select the NR-IQA
Discussion the Research Questions Experiment ‘ Metrics

:
0

Figure 2. The workflow of this study.

3.1. Research Questions and Variables
The research questions (RQs) related to this experiment are:

1. RQ_1—Which out of the five algorithms for blind image SR is the best regarding the
metrics NIQE and MANIQA score? And which can be considered the best overall?
2. RQ_2—Does the two top approaches present similar behaviours when deriving

HR images?

The motivation for RQ_1 is self-explained. Regarding RQ 2, the idea here is to perceive
whether the two best approaches present similar behaviours. In other words, are the images
detected as having the best, as well as the worst, quality perceptions, based on the MANIQA
scores, somewhat “common” to both best DL techniques? Our goal here is to see whether
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the best algorithms “agree” in terms of the HR images they create based only on the LR
ones. The independent variables are the DL models. The dependent variables are the
values of the metrics, i.e., NIQE and MANIQA score.

3.2. Datasets
The 14 datasets comprise five different broader domains: Aerial, Fauna, Flora, Medical,
and Satellite. Note that the Aerial broader domain means data/images obtained at altitudes
lower than 100 km (62 miles; Kdrman Line) above the mean sea level. For example, images
obtained by sensors attached /embedded in airplanes or unmanned aerial vehicles (drones).
The Satellite broader domain relates to the space and it implies data/images obtained from
sensors, usually onboard satellites, which are at a minimum altitude of 100 km above the
mean sea level.
Tables 1 and 2 present details about the datasets we created based on publicly released
images. In Table 2, note that the original resolution of the images in the datasets are diverse.
Some source datasets, like condoaerial and massachbuildings, are formed by HR images
where all samples have the same resolution. The plantpat dataset has HR images too
but there are several different resolutions. Others like catsfaces and isaid have HR, LR,
and even medium resolution images. Three Satellite datasets, amazonial, cbers4a, and
deepglobe, are composed only by LR images and all have the same resolution.
Table 1. Datasets: description and source.
Domain Dataset Description Source
Aerial condoaerial Aerial Semantic Segmentation Drone Dataset ~ https:/ /bit.ly/3YWXNYYy (accessed on 23 July 2023)
massachbuildings Massachusetts Buildings Dataset https:/ /bit.ly /41nS4fI (accessed on 23 July 2023)
ships Ship Detection from Aerial Images Dataset https:/ /bit.ly/3ZaPEiK (accessed on 23 July 2023)
https:/ /bit.ly /3Kx]zbZ (accessed on 23 July 2023)
ufsm-flame g;i):see{g\ages from UFSM and Flame https://bit.ly/3YUwAS8B (accessed on 23 July 2023)
https:/ /bit.ly /3ZhiSMZ (accessed on 23 July 2023)
Fauna catsfaces Cats Faces Dataset https:/ /bit.ly/41gDrLv (accessed on 23 July 2023)
dogsfaces Dogs Faces Dataset https:/ /bit.ly/41gDrLv (accessed on 23 July 2023)
Flora flowers 102 Category Flower Dataset https:/ /bit.ly /3EAxH5w (accessed on 23 July 2023)
plantpat Plant Pathology 2021-FGVC8-Dataset https:/ /bit.ly /3EBCkMv (accessed on 23 July 2023)
. .. 5 e https:/ /bit.ly /3XUqELO (accessed on 23 July 2023)
Medical melanomaisic SIIM-ISIC Melanoma Classification Dataset https:/ /bit.ly/3m0AZ5b (accessed on 23 July 2023)
structretina Structured Analysis of the Retina Dataset https:/ /bit.ly /3ZjfzV] (accessed on 23 July 2023)
. . Cloudless Scene from Amazonia e
Satellite amazonial 1 Satellite Dataset https:/ /bit.ly /3m3qKTP (accessed on 23 July 2023)
cbersda SDC;t‘;‘;th"“h Clouds from CBERS-4A Satellite 1\, / /pit 1y /3m3qKTP (accessed on 23 July 2023)
deepglobe FD(;rteasS’;?erlal Images for Segmentation https:/ /bit.ly/3Eu4Nnq (accessed on 23 July 2023)
isaid Instance Segmentation in Aerial Images https:/ /bit.ly /3IpavYU (accessed on 23 July 2023)

Dataset

Given the different domains and image resolutions (in some cases, as shown in Table 2,
we just had at our disposal LR images), we therefore decided to default the input LR images
to a resolution of 128 x 128 pixels. Thus, we downsampled the images which have higher
resolution than that based on the bicubic interpolation method as many others have been
doing [11,17]. Figure 3 presents some LR images from the datasets we created.
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Table 2. Datasets: original resolution of the images.

Domain Dataset Original Resolution (W X H)
Aerial condoaerial 6000 x 4000
massachbuildings 1500 x 1500
i 568 x 526,556 x 528,550 x 570, ...,294 x 244,
Ships 266 x 254,238 x 232
ufsm-flame 4000 x 3000, 254 x 254
F taf 2954 x 3027,2893 x 3016, 2418 x 2161, ...,
auna catstaces 1024 x 837, 647 x 690, 256 x 256
dogsfaces 678 x 796,256 x 256
Flora flovers 828 x 500, 819 x 500, 764 x 500, ...,500 x 525,
500 x 507,500 x 500
5184 x 3456, 4608 x 3456, 4032 x 3024,
plantpat 4000 x 3000, 4000 x 2672, 3024 x 4032,
2592 x 1728
Medical nelanomaigic 6000 x 4000, 5184 x 3456, 4288 x 2848, ...,
1920 x 1080, 768 x 576, 640 x 480
structretina 700 x 605
Satellite amazonial 128 x 128
cbersda 128 x 128
deepglobe 256 x 256
L. 6661 x 6308, 6471 x 4479, 5963 x 5553, ...,
isaid

436 x 793,395 x 590, 211 x 521

Figure 3. LR images from our datasets. Top row, left to right: condoaerial, massachbuildings,

ships, catsfaces, dogsfaces, flowers; Bottom row, left to right: plantpat, melanomaisic,

structretina, amazonial, cbers4a, isaid.

Note that some criticise doing such a resizing because real-world cameras actually
accomplish a series of operations (demosaicing, denoising, ...) to finally produce 8-bit
Red-Green-Blue (RGB) images [17]. Thus, RGB images have lost lots of original signals,
becoming significantly different from the original images taken by the camera. Therefore, it
would not be interesting to directly use the manually downsampled RGB images obtained
via, for instance, a bicubic interpolation method for image SR.
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However, we must emphasise that our main goal is to perform an experiment using
DL techniques for blind image SR, based on different domains, in order to provide some
sort of recommendation to professionals who need to choose a technique that best fits their
needs. Although the issues cited earlier exist, they impact equally all the DL techniques
and hence they do not compromise our analysis.

In addition to standardising the resolution of the LR input images, we also considered
the same small number of images in the datasets: 100 samples. There are more details
about this point in the next section.

3.3. Amount of Required Images

Taking into account the amount of required images, recent DL techniques for image
SR are created assuming a single image, known as single-image SR, but they can also be
devised assuming that there are a few (limited) number of samples, which we can call
few-shot image SR. Note that, here, we consider that few-shot SR assumes few but more
than one image. There are also other possibilities, like zero-shot SR presented by [54],
where authors coped with unsupervised SR by training image-specific SR networks at test
time rather than training a model on huge datasets.

Traditionally, when researchers propose a new single-image SR technique, they natu-
rally compare their approach to other single-image SR strategies. However, it would be
nice to compare single-image SR techniques to non-single-image ones to perceive whether
it is advantageous to consider approaches which rely on a unique image or, eventually, it is
better to adopt solutions which require more than one image but not so many of them.

Thus, three of the selected techniques were designed addressing single-image SR, i.e.,
BlindSR, DAN, and MoESR. The other two, APA and FastGAN, are GAN-based approaches
requiring a few samples indeed and were not conceived for single-image SR. Since the
two latter did require more than one sample but not too many, we limited the size of the
datasets to 100 LR images, as mentioned in the previous section. In Section 3.4, we provide
an overview of such DL strategies.

All runnings were performed using a Bull Sequana X1120 computing node of the
SDumont supercomputer (https://sdumont.Incc.br/machine.php?pg=machine (accessed
on 23 July 2023)), where such a node has 4 x NVIDIA Volta V100 graphics processing units
(GPUs). Each run was limited to four days being considered the latest model when the
execution exceeded this time.

3.4. DL Techniques

In this section, we briefly describe the selected DL techniques starting with the single-
image approaches. In [45], authors proposed a framework that can achieve blind image
SR in a fully automated manner, while also meeting the practical scaling needs of video
production. We name it here as BlindSR and such a framework is composed of three
main components. The first one is a degradation-aware SR network used to generate an
HR image based on a LR input image and the corresponding blur kernel. Secondly, a
kernel discriminator is trained to analyse the output HR image and predict errors caused
by incorrect blur kernel input. Finally, an optimisation procedure aims to recover both
the degradation kernel and the HR image by minimising the predicted error using their
kernel discriminator.

DAN solves the blind image SR problem via an alternating optimisation algorithm
which restores an HR image and estimates the corresponding blur kernel alternately [46].
Thus, these two subproblems are handled both via convolutional neural modules namely
Restorer and Estimator, respectively. More specifically, the Restorer restores an HR image
based on the predicted Estimator’s kernel, and the Estimator estimates a blur kernel with
the help of the restored HR image.

Some blind SR techniques train a unique degradation-aware network (for multiple
kernels) on external datasets like BlindSR described above [45]. But there are performance
problems with these approaches. There are also self-supervised techniques [55] but they
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are usually costly and there is limited information to learn from a single image. Aiming at
benefiting from the best characteristics of both types of solution, MoESR [48] was proposed
considering different experts for different degradation kernels. For every input image,
the technique predicts the degradation kernel and super-resolve the LR image using the
most adequate kernel-specific expert. To predict the degradation kernel, they use two
components in combination. Image Sharpness Evaluator (ISE) assesses the sharpness of
the images generated by the experts. These evaluations are used by the Kernel Estimation
Network (KEN) to estimate the kernel and select the best pretrained expert network.

Regarding the non-single-image techniques, the greatest motivation to create APA [44]
is related to the main challenge in training GANs with limited (few) data: the risk of
discriminator overfitting which can lead to unstable training dynamics [56,57]. To deal
with this issue, the technique called Adaptive Pseudo Augmentation, or APA, regularises
the discriminator without introducing any external augmentations or regularisation terms.
Unlike previous approaches that relied on standard data augmentations [56,57], APA
leverages the generator within the GAN itself to provide the augmentation, a more natural
way of regularisation of the overfitting of the discriminator. In accordance with the authors,
the APA approach is simple and more adaptable to different settings and training conditions
than model regularisation, without requiring manual tuning.

Other few-shot image SR solution and based on GANSs is FastGAN [47]. Its authors
were driven by the realisation that training GANs on high-fidelity (HR) images often
necessitates a vast number of training images and large-scale GPU clusters. To address the
challenge of few-shot image synthesis via GAN with minimal computing costs, FastGAN
was proposed as a lightweight GAN architecture which produces high-quality results at a
resolution of 1024 x 1024 pixels. Their technique involves incorporating two techniques: a
skip-layer channel-wise excitation module and a self-supervised discriminator trained as a
feature-encoder.

3.5. Metrics

As we have already mentioned, NIQE and the MANIQA score were the selected met-
rics. NIQE was calculated considering the HR images (1024 x 1024 pixels) generated by the
techniques. However, according to its authors, the MANIQA model [49] is best suited for
224 x 224 pixel images. Thus, we downsampled the created HR image (1024 x 1024 pixels)
to a resolution of 224 x 224 pixels in order to calculate the MANIQA score.

Note that such a degradation approach accomplished to calculate the MANIQA score
was the same for all generated HR images and, therefore, there is no favouring of a certain
technique in relation to the obtained value. Furthermore, we got the MANIQA score
considering a subset of the datasets and HR images (1024 x 1024) and we did not notice a
great difference in the scores compared to when we used the reduced images (224 x 224).
Thus, we followed the authors’ suggestions and considered the images in the lowest
resolution (224 x 224) as input for calculating the MANIQA score.

As shown in Table 2, and as we have already pointed out, the original images of some
datasets are HR ones. But there are datasets which have only original LR images and not
the corresponding HR samples. In addition to that, NR-IQA metrics are more in line with
the reality when we deal with a blind setting. These are the reasons to select only NR-IQA
metrics for our experiment.

4. Results

In this section, we present the results of our experiment considering the research
questions we have defined earlier.

41.RQ_ 1
4.1.1. NIQE

Table 3 presents the NIQE values in the perspective of the broader domain. In this
case, we consider the mean NIQE values for all the datasets of a certain domain where
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the best (minimum) and worst (maximum) values, and the techniques which produced
them, are shown. On the other hand, Table 4 presents a finer analysis per dataset and also
considering the mean NIQE values. Recall that the lower the NIQE value, the better the
perceptual quality. Figure 4 shows all mean NIQE values considering all broader domains
and datasets.

Table 3. Mean NIQE values: broader domains.

Domain Min (Best) Max (Worst)
Technique NIQE Technique NIQE
Aerial MOoESR 14.648013 BlindSR 22.534419
Fauna MOoESR 14.629656 BlindSR 18.961343
Flora MoESR 14.615975 BlindSR 21.668490
Medical APA 14.520624 BlindSR 18.717661
Satellite MOoESR 14.385091 BlindSR 24.726333

Table 4. Mean NIQE values: datasets.

Domain Dataset Min (Best) Max (Worst)
Aerial condoaerial MOoESR 14.648013 BlindSR 20.611777
massachbuildings MOoESR 16.427236 BlindSR 22.199742
ships APA 17.688239 BlindSR 22.534419
ufsm-flame APA 15.492423 BlindSR 21.684649
Fauna catsfaces MOoESR 14.629656 BlindSR 18.702201
dogsfaces MOoESR 15.314877 BlindSR 18.961343
Flora flowers MoESR 14.615974 BlindSR 18.174120
plantpat APA 15.241252 BlindSR 21.668490
Medical melanomaisic APA 15.025945 BlindSR 18.717661
structretina APA 14.520624 BlindSR 16.517888
Satellite amazonial APA 16.027069 BlindSR 23.698020
cbersda APA 16.398990 DAN 17.438634
deepglobe APA 16.863639 BlindSR 24.726333
isaid MOoESR 14.385091 BlindSR 21.504252

Results show that if we consider the broader domain (Table 3), MoESR was the most
outstanding approach being the best in four out of the five domains. Only in the Medical
domain APA was the top technique. Moreover, BlindSR was the worst strategy with the
maximum NIQE values for all domains. However, in the analysis per dataset (Table 4), APA
was the best technique obtaining the minimum NIQE values in eight out of 14 datasets.
MOESR was the best in six of them. BlindSR was, again, the worst of all the techniques.

Since MoESR was the best in one perspective and APA was the winner in the other
analysis, we performed an improvement evaluation to reach a final decision in accordance
with the NIQE value. In other words, the point is not only to say that a DL technique is
better than the other but how much better it is. The improvement metric, %, is calculated
as follows
(W —B) x 100
[% = ~—Ff—— (6)

B
where B and W are the best and worst value of the metric, respectively, comparing both
techniques under the same dataset. In Table 5, we show the improvement of MoESR over
APA regarding NIQE where in all datasets in this table, MoESR was superior than APA.
As highlighted in bold, the catsfaces dataset was the one where MoESR got the highest
improvement (6.472). In this case, B = 14.629656 and W = 15.576498. Hence, to know the
APA’s NIQE (W), we calculate:



Al 2023, 4 608

I%

W:B—I—100

X B. (7)

The idea is that the improvement is the additional gain that the best approach has
compared to the worst one. This is because the lower the NIQE value the better.
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Figure 4. Mean NIQE values: all broader domains and datasets. From top left: Aerial, Fauna, Flora,
Medical, and Satellite.

In Table 6 is the other way around, where we can see the improvement of APA over
MOoESR. The reasoning is the same as presented in Equations (6) and (7). Thus, the highest
improvement (12.489) of APA over MoESR was obtained in the melanomaisic dataset.
Note that this improvement of APA is almost twice the best improvement of MoESR.
Furthermore, the average improvement (I%) is also higher favouring APA over MoESR.
Thus, based on the NIQE metric, the best approach was APA followed by MoESR. The
worst was BlindSR.
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Table 5. Improvement of MoESR over APA.

Dataset MOoESR APA 1%
condoaerial 14.648013 15.292783 4.402
massachbuildings 16.427236 16.760828 2.031
catsfaces 14.629656 15.576498 6.472
dogsfaces 15.314877 15.444758 0.848
flowers 14.615974 14.787114 1.171
isaid 14.385091 15.01201 4.358
1% 3.214

Table 6. Improvement of APA over MoESR.

Dataset APA MOoESR 1%
ships 17.688239 18.220023 3.006
ufsm-flame 15.492423 15.614556 0.788
plantpat 15.241252 15.80596 3.705
melanomaisic 15.025945 16.902496 12.489
structretina 14.520624 15.914241 9.598
amazonial 16.027069 17.041395 6.329
cbers4a 16.39899 17.037916 3.896
deepglobe 16.863639 17.43862 3.410
1% 5.403

4.1.2. MANIQA

In Table 7, the MANIQA scores are shown in the perspective of the broader domain
while Table 8 presents the per dataset analysis. As previously, we show the mean values
of the metric. Recall that the higher the MANIQA score, the better the perceptual quality.
Figure 5 shows all mean MANIQA scores considering all broader domains and datasets.

Table 7. Mean MANIQA scores: broader domains.

Domain Max (Best) Min (Worst)
Technique MANIQA Technique MANIQA
Aerial DAN 0.696858 FastGAN 0.409388
Fauna MoESR 0.713253 FastGAN 0.515693
Flora MoESR 0.698373 APA 0.430053
Medical MOoESR 0.614705 APA 0.432007
Satellite DAN 0.736443 FastGAN 0.327089

Table 8. Mean MANIQA scores: datasets.

Domain Dataset Max (Best) Min (Worst)
Aerial condoaerial MOoESR 0.657257 FastGAN 0.409388
massachbuildings DAN 0.696858 FastGAN 0.525381
ships DAN 0.577708 FastGAN 0.492311
ufsm-flame DAN 0.618042 FastGAN 0.493545
Fauna catsfaces MOoESR 0.713253 FastGAN 0.611105
dogsfaces MOoESR 0.638982 FastGAN 0.515693
Flora flowers MoESR 0.698373 FastGAN 0.533008
plantpat MOoESR 0.606683 APA 0.430053
Medical melanomaisic DAN 0.542052 FastGAN 0.449874
structretina MOoESR 0.614705 APA 0.432007
Satellite amazonial MOoESR 0.579970 FastGAN 0.417986
cbersda MOoESR 0.408773 FastGAN 0.327089
deepglobe MOoESR 0.591723 APA 0.330667

isaid DAN 0.736443 FastGAN 0.445917
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Figure 5. Mean MANIQA scores: all broader domains and datasets. From top left: Aerial, Fauna,
Flora, Medical, and Satellite.

In the broader domain perspective, MoESR was the best (three out of five top results)
followed by DAN (two best positions). Unlike the NIQE metric, where APA was considered
the best DL technique overall, it performed poorly in accordance with the MANIQA score,
occupying the penultimate place (in two domains, Flora and Medical, APA was the worst
approach). FastGAN was the worst of all the techniques. Again unlike the results presented
in the previous section, here we have complete agreement between the broader domain and
the per dataset perspectives. Thus, considering each dataset on its own, MoESR got again
the top place (nine best MANIQA scores) while DAN was the second best technique (five
best MANIQA scores). Likewise, APA got the penultimate place (three worst MANIQA
scores) and FastGAN was the worst of all the DL techniques.
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Despite such an agreement, we accomplished the improvement analysis to check these
results considering the two best DL models: MoESR and DAN. But, we slightly changed
the way to calculate the improvement metric as shown below

(B—W) x 100
e ®)
where B and W are the best and worst value of the metric, respectively, comparing both
techniques under the same dataset. And now, the idea is that the improvement is the
additional gain that the worst approach needs to reach the best one. This is because the
higher the MANIQA score the better. Thus, we use the following equation:

I% =

I(VO

100

Table 9 presents the improvement of DAN over MoESR while Table 10 shows the

opposite (MoESR over DAN). As we can see in bold in both tables, the highest improvement

of MoESR (6.069) is almost twice the highest due to DAN (3.245). Moreover, MoESR’s

average improvement is also better than the DAN’s average improvement. These results
confirm the previous conclusions and MoESR was the best technique followed by DAN.

B=W+

x W. )

Table 9. Improvement of DAN over MoESR.

Dataset DAN MOoESR 1%
massachbuildings 0.696858 0.674955 3.245
ships 0.577708 0.571233 1.134
ufsm-flame 0.618042 0.608577 1.555
melanomaisic 0.542052 0.541265 0.145
isaid 0.736443 0.72679 1.328
1% 1.481

Table 10. Improvement of MoESR over DAN.

Dataset MOoESR DAN 1%
condoaerial 0.657257 0.653125 0.633
catsfaces 0.713253 0.681594 4.645
dogsfaces 0.638982 0.605406 5.546
flowers 0.698373 0.674927 3.474
plantpat 0.606683 0.578225 4922
structretina 0.614705 0.609501 0.854
amazonial 0.57997 0.546786 6.069
cbers4a 0.408773 0.403834 1.223
deepglobe 0.591723 0.580666 1.904
1% 3.252

Considering both metrics, NIQE and MANIQA score, we can state that MoESR was
the most outstanding approach. It presented a consistent performance under NIQE, being
the second best technique, and, as we have just said, it got the top place based on the
MANIQA score. Note that we saw contradictory performances regarding APA where it
was the best strategy evaluated via NIQE and almost the worst approach, if we take into
account the MANIQA score.

42.RQ.2

Question RQ_2 is about the similarity of behaviours between the two best approaches
according to the MANIQA score: MoESR and DAN. Here, our intention is to see whether
the two best models “agree” in terms of the HR images they create. Thus, we took the
10 images with the best MANIQA scores from both techniques, for each dataset, and
generated two sets Highy; and Highp, meaning the scores of the images from MoESR and
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DAN, respectively. Hence, we just calculated the cardinality of a new set (Cg) derived from
the intersection between the previous two sets:

|Cs| = [Highym N Highp|. (10)

We also did the same and calculated the cardinality of the set of non-common elements,
N3, such that:
|nghM U nghD| — |ngl’lM N nghD‘

7 .

For instance, for the condoaerial dataset, |Cg(condoaerial)| = 7. This implies that
seven out of the 10 images with the highest MANIQA scores are common to MoESR
and DAN, and, hence, there is an agreement between both techniques regarding these
images. Thus, |[Ng(condoaerial )| = 3, representing that three out of the 10 images are not
common showing disagreement. The average value of the cardinalities of all common sets
is Cg(all) = 7.36 while for the non-common case is Ng(all) = 2.64.

We did the same with the 10 images with lowest scores and created the sets Lowy,
and Lowp due to MoESR and DAN, respectively. Likewise, we calculated the cardinality
of Cyy and Ny for each dataset, just replacing the high sets with the low ones in the
Equations (10) and (11). For example, for the amazonial dataset, |Cy (amazonial)| = 6
and |Nw (amazonial)| = 4, meaning that six images with the lowest scores are common
and four are not common. The average value of the cardinalities of all common sets is

INg| =

(11)

Cw (all) = 7.5 while for the non-common case is Ny (all) = 2.5.

Finally, we obtained the Kendall Rank Correlation Coefficient (Kendall’s T coefficient)
for two situations. The first case is considering Cy and Cp and the second situation is based
on Ny and Np. In both cases, T = 0.306912 showing a good correlation between each pair
of variables. Figure 6 shows the correlation in detail where C_W, C_B, N_W, N_B means
Cw, Cp, Nw, Np, respectively.

Kendall Rank Correlation Coefficient - High Kendall Rank Correlation Coefficient - Low

104 ° . 71 .

2 5 6 7 8 9 1 2 3 a 5 6
cw NW
(a) Correlation of C sets (b) Correlation of N sets
Figure 6. Correlation analysis.

The interpretation of these results is that the images detected as having the best,
as well as the worst, perceptual qualities, based on the MANIQA scores, are somewhat
“common” to both techniques. Hence, we can conclude that both approaches present similar
behaviours. It is important to emphasise that the relevance of this analysis is to realise
whether the two best approaches generate HR images with better or worse perception
qualities in a relatively uniform manner, taking the LR images as input.

5. Discussion

We start this section by stressing some points based on a visual analysis. Figure 7
shows two LR images and pieces of the corresponding HR images generated by the three
single-image blind SR techniques. The top HR image generated by DAN, based on an LR
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image of the isaid Satellite dataset, is the one with the highest MANIQA score (0.850084)
of all images. We clearly see that the roof divisions of the building appear more vivid in the
image created by DAN. MoESR'’s image appears blurred while BlindSR’s image seems to
present something like a salt-and-pepper noise.

On the other hand, the bottom HR image created by BlindSR is the one with the lowest
MANIQA score (0.240234) of all images. The LR image is from the cbers4a Satellite dataset
where the scene presents water and land. This is a cloudy scene obtained by the CBERS-4A
satellite and it is interesting to realise that such bright images from cbers4a, in general,
produced the lowest MANIQA scores (see Figure 5).

LR MoOESR DAN BlindSR

isaid

cbers4a

Figure 7. Visual analysis: highest and lowest MANIQA scores.

Other LR images and the corresponding pieces of HR images created by the three
single-image blind SR models are presented in Figure 8. MoESR produced the highest
MANIQA score for the top images (condoaerial, flowers, melanomaisic, amazonial)
while DAN produced the highest score for the bottom one (deepglobe).

Since APA and FastGAN are GAN-based non-single image techniques, some known
issues of GANs appeared here. In order to use APA in a custom dataset, three phases are
required: prepare the dataset, training, and inference for generating images. As usual, the
training is the more demanded step and APA indeed exceeded the limit we set up (four
days) not finishing the training. We considered its latest model for inference. We used 4 x
NVIDIA Volta V100 GPUs and the datasets are very small (100 samples). It is important
to mention that other DL techniques demanded only one out of the four GPUs and the
limit was enough for them. Thus, APA is a very “heavy” model. Furthermore, some HR
images were flipped and others upside down compared to the source LR images. There
are even cases where the images were not indeed generated (it is likely that the images are
basically noise).

Figure 9 shows these cases where we have the LR image and the corresponding APA’s
HR image. Note that we downsampled the APA images to 128 x 128 pixels for this figure
to compare to the LR images. Moreover, the deepglobe image is here just to show a sample
of the dataset since APA’s output seems to be basically noise.

As for FastGAN, the required phases to use it are training and inference, and its
training is considerably faster/lighter than APA. But both FastGAN and APA presented a
very known problem related to GANs: mode collapse [58]. It happens when the generator
model produces a not very significant set of images that fail to capture the full diversity of
the real data distribution. Thus, the fake created samples are quite similar or even identical.
In Figure 10, we see some images from FastGAN where mode collapse occurs. Again, we
downsampled the HR images for better presentation.
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Figure 8. Other created HR images by the single-image blind SR approaches.

LR APA - Flipping APA - Flipping

“al b

APA - Up Down

Figure 9. Some issues presented by APA. Top row, left to right: dogsfaces, melanomaisic; Bottom
row, left to right: catsfaces, deepglobe.

Figure 10. Mode collapse in FastGAN: condoaerial.
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Based on the MANIQA scores (Section 4.1.2), APA and FastGAN were the worst
techniques. Thus, we can conclude based on the results of our experiment that, for blind
image SR, single-image and non-GAN-based approaches are the best way to go.

Considering the best two DL techniques in accordance with the MANIQA score, we
may say that the HR images created by MoESR are sharper than the ones of DAN. Figure 11
presents the measures of the maximum overall contrast of the images with the highest
MANIQA scores taking into account both techniques and the 14 datasets. For instance, for
the amazonial dataset, the image derived by MoESR has higher MANIQA score than the
one of DAN and, thus, we considered the former and the corresponding DAN'’s image.
As for isaid, DAN’s image got higher MANIQA score and, thus, this image and the
corresponding MoESR’s image were analysed. Figure 12 follows the same reasoning but
now the images are the ones with the lowest MANIQA scores.

Contrast: Highest MANIQA Scores

—a— DAN
80 —a— MoESR
]‘0 i
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E 50
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1 2 3 4 5 & T B 9 1&3 1 12 13 14

Figure 11. Highest MANIQA scores: contrast.

Contrast: Lowest MANIQA Scores

100

Cantrast

20

Figure 12. Lowest MANIQA scores: contrast.

Since the higher the maximum overall contrast the sharper the image, we can realise
that the images of MoESR are sharper than the ones of DAN. But, note that perceptual
quality is not necessarily the same thing as sharpness. An image with higher contrast does
not imply that it has a better perceptual quality than one with lower contrast.



Al 2023, 4

616

A possible explanation for the images created by MoESR being sharper than DAN’s
images, and sometimes present oversharpening, is the combination of the perfomances of
ISE and KEN. The ISE component is trained to detect blurry or oversharpened regions and
predicts errors from the ground-truth image. Since KEN uses the sharpness measures from
ISE to estimate the kernel and select the best pretrained model, misleading evaluations of
sharpness by ISE may compromise the decision made by the KEN component.

On the other hand, HR images generated by DAN are generally blurry which might
lead to a poor perceptual quality. In DAN, the kernel is initialised by Dirac function, and it
is also reshaped and then reduced by principal component analysis (PCA) [59]. The kernel
is reduced by PCA and, thus, the estimator only needs to estimate the PCA result of the
blur kernel. There is naturally loss of information when using PCA for dimensionality
reduction, and recent evaluations show that PCA results are not as reliable and robust as it
is usually assumed to be [60]. This is a possible explanation for this issue related to DAN.

As mentioned in Section 4, there is not an agreement between the ranking of best and
worst techniques considering a classical metric (NIQE) and a DNN-based one (MANIQA
score). While APA presented the best performance under NIQE, it is almost the worst solu-
tion according to the MANIQA score. Thus, we believe that relying on a more recent NR-
IQA metric, like the MANIQA score and which presented quite superior performance [41]
than traditional metrics, is more advisable.

Notice that we do not have the mean opinion scores (MOSs) of the HR images as we
do not submit them for observers to assign it. But, looking at the HR images generated by
all DL techniques for all sets (see the datasets repository of this research), it is not difficult
to see that the perception quality of the images as a whole needs to improve. Note that, in
MOoESR and DAN, the generation of the HR images had to be done in two stages, using the
2x and 4x scaling factors in sequence. In general, there are several blurred images and
others with oversharpening. Despite the sophistication of the evaluated DNNs, we believe
that new approaches, addressing larger scaling factors, are necessary for the future.

6. Conclusions

Given the significant number of DL techniques/DNNs that are being created at a rapid
pace, it is relevant to perform independent and unbiased controlled experiments to suggest
the most suitable approaches for professionals. This article is in line with this reasoning,
where we presented a large scaling factor (8 x) experiment which evaluated recent DL
techniques tailored for blind image SR: APA, BlindSR, DAN, FastGAN, and MoESR. Some
of the techniques were designed for single-image while others for non-single-image blind
SR. In addition to selecting a larger scaling factor, another difference in this study is that
we showed a more detailed analysis of the results, also focusing on explaining in depth the
behaviours of the approaches. Mostly based on publicly released sources of images, we
adapted and created 14 LR image datasets from five different broader domains to provide
a significant range of distinct images to the techniques. We also considered two NR-IQA
metrics, the classical NIQE and the DNN-based MANIQA score.

Results show that the MoESR model was the most outstanding approach followed
by DAN. GAN-based approaches presented classical issues, such as mode collapse and
noise, in some cases. The outcomes of our experiment suggest that single-image and non-
GAN:-based techniques are more promising for blind image SR, although such a conclusion
needs more experimentation to be completely confirmed. By visually inspecting the HR
images created by the techniques, we may state that, despite the remarkable solutions, new
strategies are required for larger scaling factor requirements.

As future directions, we firstly intend to carry out even higher scaling factor ex-
periments, such as 16 x. We will also increase not only the amount of blind image SR
approaches to assess but also the number of datasets to get more evidence about the con-
clusions we have made. Other recent NR-IQA metrics will also be considered in these new
controlled experiments.
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