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Abstract: Artificial intelligence (AI) plays a critical role in the operation of robot vacuum clean-
ers, enabling them to intelligently navigate to clean and avoid indoor obstacles. Due to limited
computational resources, manufacturers must balance performance and cost. This necessitates the
development of lightweight AI models that can achieve high performance. Traditional uniform
weight quantization assigns the same number of levels to all weights, regardless of their distribution
or importance. Consequently, this lack of adaptability may lead to sub-optimal quantization results,
as the quantization levels do not align with the statistical properties of the weights. To address this
challenge, in this work, we propose a new technique called low bitwidth strong non-uniform quantiza-
tion, which largely reduces the memory footprint of AI models while maintaining high accuracy. Our
proposed non-uniform quantization method, as opposed to traditional uniform quantization, aims
to align with the actual weight distribution of well-trained neural network models. The proposed
quantization scheme builds upon the observation of weight distribution characteristics in AI models
and aims to leverage this knowledge to enhance the efficiency of neural network implementations.
Additionally, we adjust the input image size to reduce the computational and memory demands of AI
models. The goal is to identify an appropriate image size and its corresponding AI models that can
be used in resource-constrained robot vacuum cleaners while still achieving acceptable accuracy on
the object classification task. Experimental results indicate that when compared to the state-of-the-art
AI models in the literature, the proposed AI model achieves a 2-fold decrease in memory usage
from 15.51 MB down to 7.68 MB while maintaining the same accuracy of around 93%. In addition,
the proposed non-uniform quantization model reduces memory usage by 20 times (from 15.51 MB
down to 0.78 MB) with a slight accuracy drop of 3.11% (the classification accuracy is still above 90%).
Thus, our proposed high-performance and lightweight AI model strikes an excellent balance between
model complexity, classification accuracy, and computational resources for robot vacuum cleaners.

Keywords: low bitwidth; weight quantization; strong non-uniform; memory; deep learning

1. Introduction

Currently, artificial intelligence (AI) has been adopted in robot vacuum cleaners to
improve their performance and efficiency in smart building systems. For example, AI
algorithms can create room maps and plan the most efficient cleaning path to navigate
and avoid obstacles. Another exciting feature is object recognition and classification. AI
algorithms can recognize different indoor objects, such as toys, furniture, or charging
cables, and adjust the cleaning path accordingly. The use of AI techniques helps to ensure
that robot vacuum cleaners clean all room areas and avoid becoming stuck or damaging
anything. To date, several AI models have been proposed for indoor object classification to
identify cleanable litter and non-cleanable hazardous obstacles. However, these studies
mainly focus on the high accuracy in object classification, while ignoring the fact that robot
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vacuum cleaners require lightweight AI models due to their limited computational and
memory resources. As an example of edge computing devices, robot vacuum cleaners
typically have limited hardware resources (CPU, memory and power) compared to other
computing devices such as desktop computers or servers. Rather than relying on the cloud-
based computing resource, robot vacuum cleaners involve processing data and running AI
models on the device itself [1,2]. This means that they cannot handle large and complex
AI models that require high computational power, making lightweight models a better fit.
Additionally, robot vacuum cleaners need to process data in real-time to recognize objects
in video streams from built-in cameras. Lightweight AI models are often faster and more
efficient than larger models, making them better suited for real-time object classification
applications. In addition, robot vacuum cleaners are designed for mass production, which
means they need to be cost-effective. Therefore, lightweight AI models help to reduce the
cost of robot vacuum cleaners by using less powerful and low-cost hardware components,
thereby, overcoming the limitations of computational resources and implementation costs.

Generally, there are several potential techniques to reduce the complexity of AI models,
including weight quantization [3–7], network pruning [8–12], transfer learning [13,14], the
input image resizing [15,16], well-designed model architecture [17], and so on. In deep AI
models, weights are typically represented as 32-bit floating-point numbers, which require
a large amount of memory. Weight quantization allows us to represent weights using
fewer bits, reducing the memory requirements. For example, converting a 32-bit floating-
point weight to an 8-bit integer weight reduces the memory size by a factor of 4. The
researchers have presented post-training weight quantization, which involves quantizing
the weights of a pre-trained model after it has been trained [2,18], so there is no need
for retraining, making it convenient to use. In contrast, the researchers [3,6,7,19] present
quantization-aware training, which involves quantizing the weights of AI models during
training, taking into account the quantization constraints during the optimization process.
Training-aware quantization can result in more accurate quantization and reduced accuracy
loss, since it allows the model to adapt and learn to perform effectively with quantized
weights and activations. During quantization-aware training, additional techniques can
be applied to improve the performance of the quantized model. For example, techniques
like precision scaling, where different layers are assigned different bit precisions, can be
employed to optimize the model’s accuracy and efficiency further. Furthermore, post-
training quantization often requires an additional calibration step to determine optimal
quantization parameters for each layer. This calibration process can be time-consuming.
In contrast, quantization-aware training avoids the need for post-training calibration by
incorporating the quantization process directly into the training phase. Both post-training
quantization and quantization-aware training typically use linear quantization, while the
weight distribution of well-trained neural network models is often non-linear. Figure 1
plots the weight distribution curves of two typical deep neural networks (VGG-19 and
ResNet-50), respectively. It is observed that these weight distributions are centered around
zero. This means that most weights have positive and negative values, with a mean close
to zero. In addition, the weight distribution in deep neural networks is often assumed to
follow a normal or Gaussian distribution. This assumption is supported by the central
limit theorem, which states that the sum of many independent and identically distributed
random variables tends to follow a Gaussian distribution. Therefore, as the number of
layers and weights increases in a deep neural network, the weight distribution tends to
approach a Gaussian distribution. Traditional uniform quantization is insensitive to weight
distribution characteristics because they treat all weights equally, without considering the
specific distribution characteristics of weight values. Therefore, these traditional uniform
quantization methods that do not match the actual weight distribution will inevitably limit
the performance of the model.
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Figure 1. Weight distribution plots of well-trained VGG-16 and ResNet50 models, respectively.

Network pruning reduces the size of AI models by removing unnecessary weights,
neurons, or connections. Since weights that are close to zero are usually considered to be
redundant or unnecessary, removing them can result in slight performance degradation
and a significant reduction in the size of AI models. However, pruning cannot reduce
computational cost unless customized hardware accelerators are used. This is because
network pruning often leads to irregular sparsity patterns where certain connections or
weights are removed while others are preserved. This irregular sparsity poses challenges
for hardware architectures, such as CPUs or micro-controllers, which are designed for
dense matrix operations. These architectures may not efficiently utilize the sparsity in the
pruned network and still perform computations on the unused connections, resulting in
limited computational savings. Since customized hardware accelerators are not affordable
in cost-effective robot vacuum cleaners, network pruning is not a suitable approach for
reducing memory requirements in this context.

Transfer learning is another popular technique in deep learning for object classification
tasks, where a pre-trained AI model is used as a starting point for a new classification task.
The pre-trained model has already been trained on a large dataset, typically using millions
of images, and has learned to recognize a wide range of features that can be useful for many
other tasks. Transfer learning consists of four steps: choosing a pre-trained model, freezing
the pre-trained layers, replacing the classification layers, and fine-tuning the model. Despite
the benefits of transfer learning, it involves a very high training cost. Robot vacuums often
have limited computational resources and memory compared to larger computing systems
used in training deep neural networks. This can restrict the complexity and size of the
transferred model that can be deployed on the robot vacuum cleaner. The limited hardware
capabilities may hinder the performance and scalability of the transferred model, affecting
its ability to handle complex object recognition tasks.

Because the training image size affects the size of AI models, input image resizing
has significant impacts on the performance of AI models [14,15]. Larger training images
generally contain more details and information about the objects or scenes they represent.
This additional information can help the model learn more discriminative features and
improve its ability to distinguish between different classes. Consequently, using larger
training images can potentially lead to better model performance. However, if the training
images are too large, the AI model may not fit into the memory of robot vacuum cleaners,
which can slow down the training or inference process due to high memory usage or
computational cost per training iteration. On the other hand, if the input images are
too small, the AI model may not be able to capture the important visual features of the
image, which can result in lower accuracy and generalization performance. Therefore, the
architecture and size of AI models should be appropriately chosen to be compatible with
the input image size. It has been reported that the performance of well-designed model
architecture [17] can rival that of much larger models. However, the effectiveness of such
architectures heavily relies on the experience of designers. In many cases, the availability
of experienced model design experts is limited, especially when dealing with diverse
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applications. It is important to strike a balance between training image size, computational
resources, and the specific requirements of the task at hand.

In this work, we investigate and develop a lightweight AI model with low bitwidth
non-uniform quantization technique. The proposed design needs very little memory usage
and computational resources for easy deployment on resource-constrained robot vacuum
cleaners. Since the weight distribution of well-trained AI models (for example, Figure 1) has
been observed to exhibit a resemblance to a power-of-N function [20], therefore, we propose
to adopt a power-of-N quantization scheme. In this proposed scheme, weight values are
discretized into a set of predefined levels that are distributed according to the power-of-N
pattern. This proposed scheme ensures that the weight levels are distributed in a way that
aligns with the underlying power-of-N trend, capturing the statistical characteristics of the
weight distribution.

Experiments are first carried out using the same training image size (256 × 256 × 3)
as that of the existing design [4]. Compared with our recent design [4] whose memory
usage is 15.51 MB and accuracy result is 93.39%, our experimental results indicate that the
high-performance uniform quantization model could achieve half the memory footprint
(from 15.51 MB down to 7.76 MB) with a negligible accuracy drop of 0.05%. By ensuring
a classification accuracy of over 90%, the minimum memory requirement for our model
is determined to be 1.04 MB. This signifies a substantial reduction in memory, specifically
a 15-fold decrease from the initial 15.51 MB down to 1.04 MB. Experimental results also
show that when compared with the state-of-the-art AI models in the literature, the proposed
non-uniform quantized AI model achieves a 1.6-fold decrease in memory usage from
15.51 MB down to 9.69 MB while maintaining the same accuracy of around 93.39%. In
addition, the proposed strong non-uniform quantization AI model may minimize memory
usage by 20 times (from 15.51 MB down to 0.78 MB) with an accuracy drop of 3.11%
(the classification accuracy is still above 90%). These above results demonstrate that the
proposed strong non-uniform weight quantization approach is advantageous in high-
performance and low-memory applications. Next, experiments are also conducted using
smaller training image sizes (128 × 128 × 3) and (64 × 64 × 3) to evaluate their impact on
memory usage and object classification accuracy. Through the utilization of our proposed
strong non-uniform quantization and downscaled input image size of (128 × 128 × 3), we
have discovered that SqueezeNet can attain an accuracy level of 90.28% while utilizing only
0.78 MB of memory. Therefore, our proposed AI models may fit better into the available
memory on robot vacuum cleaners, without worrying about performance degradation or
even crashes. Note that existing studies in the literature only consider the parameter size
of their AI models when calculating memory usage, ignoring the memory used for the
forward and backward passes. The forward and backward passes in AI models require
a significant amount of memory because they involve a large number of matrix operations.
In the forward pass, the input data undergo multiplication with the weight matrices
and subsequently pass through activation functions. The intermediate results of these
operations are stored in memory to be used in the backward pass. The output of the
forward pass is also stored in memory for later use. In the backward pass, the gradient
of loss function concerning each weight is computed by carrying out a series of matrix
operations in reverse order. The intermediate results of these operations are also stored in
memory to be used in the weight updates. Therefore, the memory usage for forward and
backward passes often exceed the parameter size itself. In our study, we adopt a practical
approach to present the memory footprint by incorporating various factors such as input
image size, parameter size, and the memory needed for both forward and backward passes.
This enables a comprehensive understanding of the memory requirements involved in
the process.

The rest of this paper is organized as follows. Section 2 introduces related work
on several state-of-the-art deep AI models, and traditional uniform weight quantization
technique. Section 3 describes the concepts of proposed low bitwidth strong non-uniform
weight quantization and input image size adjustment. Section 4 describes the dataset
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preparation, experimental setup, and various experimental results, and comprehensive
comparison with the state-of-the-art works in the literature. Section 5 concludes the paper
and discusses future work.

2. Related Work
2.1. State-of-the-Art AI Models

In this subsection, let us review the state-of-the-art AI models of object classification
for robot vacuum cleaners in the literature. Several recent works are plotted in Figure 2 to
show their results in memory footprints and classification accuracy.
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Figure 2. Performance comparison of test classification accuracy vs. memory footprint among
existing state-of-the-art works [4,21–25] in the literature.

In [21], the researchers use the ResNet-34 model for garbage classification on grass.
ResNet-34 is a convolutional neural network (CNN) architecture that was first introduced
in 2016. ResNet-34 has 34 layers, including a convolutional layer, a pooling layer, and
multiple residual blocks. Each residual block contains multiple convolutional layers and
a shortcut connection that allow the network to bypass some layers and retain information
from earlier layers. The use of residual connections is intended to address the problem of
vanishing gradients in deep neural networks, allowing for the successful training of very
deep CNNs. As shown in Figure 2, this ResNet-34 model occupies 172 MB of memory and
achieves a classification accuracy of 93.1%.

In [22], the researchers use a 16-layer CNN model to classify food trash into either
solid or liquid categories. This model consists of nine convolutional layers and other types
of layers such as pooling and averaging layers. In typical CNN architecture, convolutional
layers are designed to learn local features from the input data by applying a set of learned
filters across the input image. On the other hand, fully connected layers take the output
of convolutional layers and apply a set of learned weights to make predictions for each
class. Because fully connected layers have to connect each neuron from the previous layer
to each neuron in this current layer, fully connected layers have more parameters than
convolutional layers. Therefore, fully connected layers are not used in [22] to minimize the
size of AI models. Consequently, the reported memory footprint is 128.5 MB and the object
classification accuracy is 93.7%.

In [23–25], the researchers propose to use the MobileNet-V2 model [26,27] for indoor
garbage classification, since MobileNet is a convolutional neural network architecture
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designed for mobile and embedded applications. MobileNet-V2 uses depthwise separable
convolutions to significantly reduce the number of parameters and computations required
compared to standard convolutions. MobileNet-V2 also uses linear bottleneck layers, which
are a combination of 1 × 1 and 3 × 3 convolutional layers that are used to increase the
non-linearity of the network while minimizing the computational cost. Due to the above
features, the memory footprint is 18.8 MB while maintaining a high classification accuracy
of 93.9%.

In [4], the researchers propose to use the SqueezeNet model [17] for indoor garbage
classification. SqueezeNet is a neural network architecture designed to be very small in
size while maintaining high accuracy on image classification tasks. SqueezeNet achieves
its small size by using a combination of techniques, including: using 1 × 1 convolutions to
reduce the number of input channels to a layer, using “fire” modules to extract features,
and using global average pooling in the final layer. With the proposed 8-bit integer uniform
weight quantization technique, the total memory footprint is 15.51 MB and the classification
accuracy is 93.39%. This total memory includes 0.75 MB for input image size, 14.53 MB for
forward/backward pass size, and 0.23 MB for parameter size.

From Figure 2, we can see that even though the use of 8-bit uniform weight quantiza-
tion helps to reduce the memory size, existing works need at least 15.51 MB of memory to
run AI models for indoor trash classification. It is worth investigating advanced weight
quantization techniques to further shrink the memory size, even down to 1 MB, which is
the memory capacity of micro-controllers such as the STM32F7 series [28].

2.2. Traditional Uniform Weight Quantization

Weight quantization aims to obtain low-precision networks with high performance. In
uniform weight quantization, all weights of AI models are quantized to the same precision,
resulting in a fixed-size memory footprint. The first step involves identifying the range of
weights across all network layers and determining the appropriate quantization bitwidth.
The next step is to quantize weights. The weight values are mapped to discrete levels within
the weight range based on the number of bits allocated. The mapping process divides the
weight range into equal intervals corresponding to the available discrete levels. Finally,
the quantized weights are stored in memory. During inference, the quantized weights are
used instead of the original full-precision weights. For example, given a weight w, which
requires b bits of precision. We first determine a scaling factor s that is the power of 2, such
that s is the largest value that can be represented by n bits.

s = 2(b−1) (1)

Then, we quantize w to the nearest value that can be represented by n bits and is
a multiple of s. The quantized value of w (denoted as q) is expressed as

q = round(w/s) ∗ s (2)

The quantization step size determines the level of granularity with which the original
range is represented by the quantized values. The quantization step is expressed as

∆q =
1

2(b−1)
(3)

Uniform quantization treats all weights equally and hence fails to leverage the infor-
mation provided by the weight distribution, potentially compromising the efficiency and
accuracy of the quantized model. As the quantization bit decreases, the quantization loss
increases, resulting in a decrease in the overall accuracy of AI models. Binary quantization
is an extreme case, where weight values can be +1 or −1. However, using fewer bits can
result in a smaller model size and faster inference times, making it a trade-off between
model size and classification accuracy. The researchers in [4] have verified the feasibility
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of 8-bit uniform weight quantization. In this work, we will investigate the classification
accuracy when the uniform quantization bitwidth is down to 2.

3. Proposed AI Models with Non-Uniform Weight Quantization and Downsized Input

To deal with the memory limitation challenge, we propose to use non-uniform weight
quantization and downsized input images. Figure 3a illustrates the conventional process of
training an AI model (forward pass for one network layer) in [21–25]. In this process, the
input undergoes a linear operation with floating-point weight, followed by the addition
of bias to the resulting output. Linear operation forms the basis of many fundamental
computations in neural networks, such as matrix multiplications in fully connected layers
or convolutions in convolutional layers. It helps in transforming the input data into
a higher-dimensional space, enabling the network to learn complex patterns and make
predictions. Next, information is subjected to batch normalization to normalize the values,
and then it is passed through an activation function (for example, ReLU) to obtain the final
output. Due to the utilization of floating-point weights, there is a significant demand for a
large memory footprint (for example, 172 MB in [21], 128.5 MB in [22], 18.8 MB in [23–25]).
Figure 3b illustrates the model training process in [4], where weights undergo 8-bit uniform
quantization. 8-bit quantization reduces the precision of weights to only 8 bits, resulting in
a limited range of possible values. This reduction in precision helps in reducing memory
requirements and computational complexity, but it may introduce some loss of accuracy
compared to using floating-point weights. In order to further minimize the memory size,
we propose to perform low-bitwidth non-uniform quantization, as depicted in Figure 3c.
The weights of a neural network are quantized to a reduced number of bits, typically
much less than 8 bits, while using a non-uniform quantization scheme. This is particularly
beneficial for deployment on resource-constrained devices or in scenarios where memory
efficiency is critical.

Input

Linear

Weight 
(float)

Output (float)

AddBias

Batch Norm

Input

Linear

Weight (float)

Output (float)

8-bit Uniform 
Quantization
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Batch Norm
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Linear

Weight (float)

Low-bitwidth Non-
Uniform Quantization

AddBias

Batch Norm
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ReLU
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Output (float)

Figure 3. (a) Traditional AI model training process (forward pass for one network layer) without
weight quantization [21–25], (b) AI model training process (forward pass for one network layer) with
8-bit uniform quantization [4], and (c) AI model training process (forward pass for one network layer)
with proposed low-bitwidth non-uniform quantization.

3.1. Low-Bitwidth Strong Non-Uniform Weight Quantization

Compared to uniform weight quantization where the step sizes between quantization
levels are constant, the quantization step size of non-uniform quantization varies and
depends on the value being quantized. Non-uniform quantization allows for a better
representation of data, especially in cases where the weight distribution is skewed. Please
note that the effectiveness of the power-of-N quantization scheme may vary depending
on the specific AI model, dataset, and application domain. Experiments are necessary to
determine the optimal values of N and evaluate the impact on model accuracy, memory
footprint, and computational efficiency. The choice of N plays a crucial role in determining
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the non-linearity and uniformity of the quantization levels. A larger N implies that the
levels are spaced farther apart, resulting in a more significant distinction between adjacent
quantization values. In other words, the probability of weight values falling into each
quantization level is not evenly distributed. The introduction of nonlinearity and non-
uniformity through a larger N value allows the power-of-N quantization scheme to better
adapt to the specific distribution of weights in AI models. It can capture the fine-grained
variations in weight values while allocating quantization levels in a way that reflects the
underlying statistical properties of the well-trained model. However, it is essential to strike
a balance when selecting the value of N. If N is chosen to be excessively large, it may
result in an overly fine-grained quantization scheme. Therefore, careful consideration and
experimentation are necessary to determine the optimal value of N based on the specific
model, dataset, and weight bitwidth.

Table 1 shows how the number of weight elements vary with quantization bitwidth.
In this work, the relationship between the bitwidth b and the number of weight elements e
for weight quantization can be expressed as:

e = 2b − 1 (4)

This equation shows that the number of weight elements e grows exponentially with
increasing bitwidth b. For example, if b = 4, then the number of weight elements would
be 15. If b = 5, then the number of weight elements would be 31. Therefore, reducing
the bitwidth can significantly reduce the number of weight elements, which can lead
to a smaller model size and faster inference on resource-constrained devices. However,
reducing the bi-width too much (for example, b = 2 or 3) may result in a loss of accuracy
or failed convergence. This is because very low-bit width neural networks have limited
representation capacity. As a result, the quantized weights may struggle to capture the full
richness of the original model with high precision.

Table 1. Bitwidth versus the number of weight elements for weight quantization.

Bit Weights The Number of Weight Elements

5 bits 31
4 bits 15
3 bits 7
2 bits 3

As shown in Table 2, we adopt five different non-uniform quantization options: power-
of-2 [29,30], power-of-3, power-of-4, power-of-5, and power-of-6. The idea of power-of-
2 quantization is based on the fact that many processors or circuits can perform operations
on binary numbers faster than on other number bases. By quantizing weights to power-
of-2 values, the computations can be performed using simple shift and add operations,
rather than using more complex multiplication and division operations. This leads to
faster execution times and reduced memory requirements, which are critical for resource-
constrained environments such as mobile and embedded systems. In [29], power-of-
2 quantization has demonstrated great advantages on 8-bit AI models in terms of power
and hardware resources. According to [31], in well-trained deep AI models, the weight
values often follow a skewed distribution, with many values heavily clustering around
zero and a few large values representing important weights. In other words, the majority of
weights are concentrated around zero, while a small fraction of weights have much larger
magnitudes. Being inspired by [29] and the skewed weight distribution histograms, we
think stronger non-uniform weight quantization (for example, power-of-4) is considered
better than the existing power-of-2 quantization for low bitwidth (such as 4–5 bits), because
it allows for a more efficient use of the available bits by allocating more bits to important
weight values around zero and fewer bits to less important ones. Stronger non-uniform
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quantization can take advantage of this heavily skewed weight distribution to achieve
higher accuracy with fewer bits.

Within the weight range of [−1, 1] across all layers, symmetric weight quantization
is applied where the range of weights is divided symmetrically around zero. This means
that both the positive and negative values are represented with the same number of
elements. For example, in a 3-bit symmetric weight quantization, the range of weights
would be divided into 6 intervals, with 3 intervals for positive values and 3 intervals for
negative values. This symmetrical approach is preferred because it enables the use of
signed arithmetic and leads to efficient hardware implementation and faster inference time.

Table 2. List of non-uniform weight values.

Non-Uniform Quantization Option Weight Elements

power-of-2 (−1,−0.5,−0.25,−0.125, . . . , 0, . . . , 0.125, 0.25, 0.5, 1)
power-of-3 (−1,−0.33,−0.11, . . . , 0, . . . , 0.11, 0.33, 1)
power-of-4 (−1,−0.25,−0.0625, . . . , 0, . . . , 0.0625, 0.25, 1)
power-of-5 (−1,−0.2,−0.04,−0.008, . . . , 0, . . . , 0.008, 0.04, 0.2, 1)
power-of-6 (−1,−0.167,−0.028, . . . , 0, . . . , 0.028, 0.167, 1)

3.2. Input Image Size Adjustment

The complexity of an AI model varies with the input image size. Typically, as the
input image size increases, the number of parameters in the model also increases to handle
the increased information. This is because larger images contain more fine-grained details
that require a more complex model to capture and process. On the other hand, reducing
the input image size can simplify the model by reducing the number of parameters and
computations required, but it may also lead to a loss of information and reduced accuracy.
It is important to balance the input image size with the model complexity to achieve optimal
performance.

Downsizing input images for neural networks has both positive and negative impacts
on their performance and computational efficiency. On the positive side, downsizing input
images reduces the computational burden on the network, which makes training and
inference faster and requires less memory. This is especially important when working with
resource-limited devices. On the negative side, downsizing input images can lead to a loss
of information and details, which can negatively impact the accuracy of the network. This
is especially true for tasks that require high precision, such as object detection or image
segmentation, where small details can be crucial. Additionally, if the downsizing factor is
too large, the network may lose the ability to recognize certain objects or features, which
can severely limit its usefulness.

Overall, the impact of downsizing input images on neural network performance
depends on the specific task and the extent of the downsizing. It is important to carefully
consider the trade-offs between computational efficiency and accuracy when deciding on
an appropriate image size for a given neural network. In this work, the original input image
size is 256 × 256 × 3, we downsize it to be 128 × 128 × 3, and 64 × 64 × 3, respectively.
Table 3 displays the number of trainable parameters and multiplier–adder operations for
each model, respectively. It is apparent that decreasing the input image size significantly
reduces the computational complexity of AI models. Table 4 lists their breakdown of
memory usage results when 8-bit quantization is employed. As we reduce the size of input
images, we observe a significant decrease in the required memory usage. In the next section,
we will run experiments to the corresponding object classification results.
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Table 3. Number of trainable parameters, and number of multiplier–adder operation usage for
different input image sizes.

Memory Usage (MB) 256 × 256 × 3 128 × 128 × 3 64 × 64 × 3

trainable parameters 60,230 15,462 4070

multiplier-adder operation 18,000 4000 1000

Table 4. Memory usage for different input image sizes when 8-bit quantization is employed.

Memory Usage (MB) 256 × 256 × 3 128 × 128 × 3 64 × 64 × 3

Input size 0.75 0.19 0.05

Forward/backward pass size 14.53 1.82 0.23

Parameter size 0.23 0.06 0.02

Estimated total size 15.51 2.07 0.29

4. Experimental Discussion
4.1. Dataset Preparation and Experimental Setup

A large-scale and high-quality dataset with balanced classes and good annotation has
been created in our recent work [4]. The number of samples for the training set, validation
set, and testing set are 14,000, 3000, and 3000, respectively. This dataset is used for this
study to make a fair comparison with existing works in the literature. Table 5 provides
instances of indoor litters that can be cleaned and obstacles that cannot be cleaned. In
general, any objects larger than 2 cm will be avoided by robot vacuums. Figure 4 shows
several images in the dataset for pet feces, soybean, sunflower seed shell and rock.

Figure 4. Several sample images for pet feces, soybean, sunflower seed shell, and rock.
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Table 5. Examples of indoor cleanable litters and non-cleanable obstacles in our dataset [4].

Cleanable Non-Cleanable

rice, sunflower seed shell, soybean, red bean power cord, key chain, shoe, sock, rock
millet, cat litters, cat food, dog food pet feces, kids toy, oil bottle, power strip

Python and TensorFlow are utilized for programming and coding the architectures of
AI models in this work. We specify quantized weight elements by using custom quantiza-
tion tables. For example, within the weight range of [−1, 1], the custom weight table for 3-bit
power-of-4 quantization includes (−1,−0.25,−0.0625,−0.0156, 0, 0.0156, 0.0625, 0.25, 1).
Low-bitwidth quantization-aware training is carried out. The network is trained using
a combination of full-precision and low-bitwidth quantized weights. The full-precision
weights are used to update the weights and biases of the network, while the low-bitwidth
quantized operations are used to simulate the effects of quantization during inference.
In order to reduce the effects of randomness and ensure the robustness of the AI model,
the training process uses different seeds to generate average results. In other words, we
train the same model architecture multiple times with different random initializations of
the model parameters. To expedite the training and evaluation process, experiments are
conducted on a GPU machine.

In our experiment setup, the SqueezeNet models are trained using the SGD optimizer
with a momentum of 0.875. We employ a learning rate configured as an exponential
decay function, gradually reducing the learning rate from an initial value. Specifically,
we set the initial learning rate and the decay rate to 0.1 and 0.0001, respectively. The
CosineAnnealingLR scheduler is used to adjust the learning rate during the training
process based on a cosine annealing schedule. The training process is conducted over
100 epochs, which has been empirically determined to ensure satisfactory convergence. To
accommodate computational resource limitations, we utilize a mini-batch size of 32 for
SqueezeNet during training. In order to obtain statistically reliable results, we perform
multiple runs to measure the inference performance of baseline architectures. Different
seeds are used to initialize network weights with different random values. This prevents
weights from becoming stuck in local minima during training.

4.2. Results of Low-Bitwidth Uniform Quantization

Figure 5 plots the results of using low-bitwidth uniform quantization for the input
image size of 256 × 256 × 3. The classification accuracy of using floating-point weights is
reported to be 93.54%. It is evident the SqueezeNet model achieves good convergence and
attains an accuracy of approximately 93%, when the bitwidth is 4 or higher. If the bitwidth is
2, the SqueezeNet model fails to converge, which is because the precision loss in weight and
gradient updates makes gradients become too small or too large during backpropagation.
Therefore, big discrepancy between the gradients and actual weights makes it difficult for
gradient descent algorithms to converge effectively. Figure 6 plots the required memory
for each uniform weight quantization solution. We can see that the 4-bit uniform weight
quantization needs 7.76 MB to realize an accuracy of 93.34%. Compared with the existing
work [4], there is a slight accuracy drop of 0.05% with a memory reduction of 7.75 MB.

In addition, we evaluate the performance and memory usage of AI models when the
input images were downsized from 256 × 256 × 3 to 128 × 128 × 3, and even further
to 64 × 64 × 3. Figures 7 and 8 plot the inference accuracy when using 128 × 128 × 3
and 64 × 64 × 3 as input image size, respectively. Table 6 illustrates that SqueezeNet
models face convergence challenges when the bitwidth is set to 5. Therefore, these results
indicate that a minimum bitwidth of 6 is required for uniform quantization, thereby limiting
the further reduction in memory usage. With a memory budge of 1 MB, 6-bit uniform
quantization is unable to attain a classification accuracy of at least 90%, which may be
achievable by using strong non-uniform quantization.
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Input figure size: 256 256 3

Figure 5. Classification performance when uniform quantization is performed to SqueezeNet model
for input figure size of 256 × 256 × 3.

Input figure size: 256 256 3

Figure 6. Memory footprint when uniform quantization is performed to SqueezeNet model.
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Input figure size: 128 128 3

Figure 7. Classification performance when uniform quantization is performed to SqueezeNet model
for input figu size of 128 × 128 × 3.

Input figure size: 64 64 3

Figure 8. Classification performance when uniform quantization is performed to SqueezeNet model
for input figure size of 64 × 64 × 3.

Table 6. Accuracy and memory usage for three different input sizes and uniform quantization.

Accuracy @ Memory 256 × 256 × 3 128 × 128 × 3 64 × 64 × 3

5-bit 93.62% @ 9.69 MB 90.93% @ 1.29 MB 77.63 % @ 0.18 MB

4-bit 93.34% @ 7.76 MB 90.03% @ 1.04 MB 77.50 % @ 0.15 MB

3-bit 91.62% @ 5.82 MB 89.44% @ 0.78 MB 75.09 % @ 0.11 MB

2-bit 67.18% @ 3.88 MB 86.35% @ 0.52 MB 73.19 % @ 0.07 MB
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4.3. Results of Low-Bitwidth Strong Non-Uniform Quantization

Figure 9 plots the inference accuracy results of using low-bitwidth strong non-uniform
quantization for the input image size of 256 × 256 × 3. As the bitwidth decreases from 5, it
becomes increasingly difficult for uniform or power-of-2 quantization to converge. When
bitwidth is down to 2, the uniform or power-of-2 quantization scheme fails to converge. On
the other hand, other forms of strong non-uniform quantization (for example, power-of-4,
-5, or -6) are easy to converge and still exhibit promising classification accuracy. As shown
in Figure 9, it is feasible to achieve an accuracy of 91.03% at a bitwidth of 2 when using
a strong non-uniform quantization, specifically power-of-6. Please note that for power-of-6
quantization with a bitwidth of 2, there are only five weight elements available: −1, −0.17,
0, 0.17, and 1.

Figures 10 and 11 show the inference accuracy of trained SqueezeNet model using
an input image size of 128 × 128 × 3 and 64 × 128 × 3, respectively. Regarding the
training image size of 128 × 128 × 3, as depicted in Figure 10, the accuracy gradually drops
with a decrease in the weight bitwidth. If the bitwidth is equal to or greater than 3, the
power-of-2 quantization leads to an accuracy exceeding 90%. If the bitwidth is 2, the best
quantization scheme is power-of-3, which results in an accuracy of 87.92%. These findings
indicate that reducing the size of training images slightly diminishes the accuracy of the
network. As illstrated in Figure 11, when the training image size is further reduced, even
with strong non-uniform quantization schemes, the resultant inference accuracy falls below
80%. The observed phenomenon can likely be attributed to the loss of fine-grained details
in downsized images, which subsequently hampers the network ability to capture and
represent the learned features effectively.

Input figure size: 256 256 3

Figure 9. Classification performance when non-uniform quantization is performed to SqueezeNet
model and the input image size is 256 × 256 × 3.
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Input figure size: 128 128 3

Figure 10. Classification performance when non-uniform quantization is performed to SqueezeNet
model and the input image size is 128 × 128 × 3.

Input figure size: 64 64 3

Figure 11. Classification performance when non-uniform quantization is performed to SqueezeNet
model and the input image size is 64 × 64 × 3.

Table 7 summarizes the best classification accuracy for each input image size, when
low bitwidth non-uniform weight quantization is applied. When the input image size
is 128 × 128 × 3, if 3-bit power-of-4 quantization is chosen, the resulting classification
accuracy is 90.28%. However, if the input image is further downsized to 64 × 64 × 3, the
resulting accuracy is significantly lower than 80%, even though the memory usage is much



AI 2023, 4 546

smaller. Therefore, we consider the combination of an image size of 128 × 128 × 3 and
3-bit power-of-3 quantization to be a better design choice.

Table 7. Accuracy and memory usage for three different input sizes and non-uniform quantization.

Accuracy @ Memory 256 × 256 × 3 128 × 128 × 3 64 × 64 × 3

5-bit 93.36% @ 9.69 MB 90.77% @ 1.29 MB 77.64% @ 0.18 MB

4-bit 93.07% @ 7.76 MB 90.51% @ 1.04 MB 77.43% @ 0.15 MB

3-bit 92.87% @ 5.82 MB 90.28% @ 0.78 MB 77.21% @ 0.11 MB

2-bit 91.03% @ 3.88 MB 87.92% @ 0.52 MB 76.80% @ 0.07 MB

The simulation results of validation accuracy are plotted in Figures 12 and 13 for the
input training image size of 128 × 128 × 3. Figure 12 corresponds to floating-point weights
(no quantization), while Figure 13 represents 4-bit power-of-3 quantization. After the
training is complete, the weight distributions for both cases are plotted in Figures 14 and 15.
We can see that these floating-point weights exhibit a distribution resembling a normal or
Gaussian distribution centered around zero. On the other hand, these quantized weights
are only confined to a specific set of values, namely −1,−0.333,−0.111,−0.037, 0, 0.037,
0.111, 0.333, and 1.

Input figure size: 128 128 3

Figure 12. Validation accuracy of the SqueezeNet model with the input image size of 128 × 128 × 3
and floating-point weights (no quantization).

4.4. Comprehensive Results Comparison

The accuracy of this work and other state-of-the-art methods in the literature is plotted
against memory usage in Figure 16, where the results of both the uniform and strong
non-uniform quantization are plotted for comparative analysis. Compared to the recent
work [4], if 4-bit uniform quantization is applied across all layers, it leads to memory
reduction by a factor of 2, albeit with a 0.05% decrease in accuracy. Furthermore, 4-bit
non-uniform (power-of-2) quantization achieves a memory reduction by a factor of 2, albeit
with a 0.22% decrease in accuracy. When selecting an appropriate training image size and
employing lower bitwidth quantization, non-uniform quantization outperforms uniform
quantization. Figure 16 shows the experimental results of using 3-, 4-, and 5-bit quantization
with the training image size of 128 × 128 × 3. The accuracy of 5-bit uniform or non-uniform
quantization approaches is nearly 91%. However, as we decrease the bitwidth to 4 or 3,



AI 2023, 4 547

non-uniform quantization surpasses uniform quantization in terms of performance. From
example, compared to the recent work [4], the memory footprint is reduced by a factor
of 20, 3-bit uniform and non-uniform quantization leads to 3.95% and 3.11% reduction
in accuracy, respectively. In this scenario, the memory requirement of is approximately
0.78 MB, and the resultant accuracy of non-uniform quantization remains above 90%. This
work enables constraints-aware software and hardware co-design for AI systems.

Input figure size: 128 128 3

Figure 13. Validation accuracy of the SqueezeNet model with the input image size of 128 × 128 × 3
and 4-bit power-of-3 quantization. The weight elements include: −1,−0.333,−0.111,−0.037, 0, 0.037,
0.111, 0.333, and 1.

Input figure size: 128 128 3
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Figure 14. Weight distribution plots of SqueezeNet with the training image size of 128 × 128 × 3 and
floating-point weights (no quantization).
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Input figure size: 128 128 3
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Figure 15. Weight distribution plots of SqueezeNet with the training image size of 128 × 128 × 3
and 4-bit power-of-3 quantization. The weight elements include: −1,−0.333,−0.111,−0.037, 0, 0.037,
0.111, 0.333, and 1.
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Figure 16. Performance comparison of test classification accuracy vs. memory footprint between this
work and existing state-of-the-art works in the literature.

5. Conclusions and Future Works

One of the key challenges in robot vacuum cleaners is to develop lightweight AI
models that enable the robot vacuum to effectively navigate and clean environments while
using limited computational resources and memory. Lightweight AI models are easier
to deploy and update in resource-limited devices, as they require less storage space and
bandwidth. In this work, we propose low-bitwidth strong non-uniform quantization and
use input image downsizing techniques to address the above challenge. The proposed
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strong non-uniform weight quantization provides the flexibility to allocate bits based on
the weight distribution. It enables data-driven bit allocation schemes that adaptively assign
more bits to important weights and fewer bits to less important ones. This adaptability helps
to maximize the classification accuracy while maintaining a low bitwidth. Experimental
results show that the proposed AI model can achieve comparable classification accuracy
around 93%, while also reducing the memory footprint by a factor of 2. By adjusting the
training image size and using low bitwidth non-uniform quantization, it is feasible to build
an AI model that fits with a memory budget of 0.78 MB (that is a 20-fold memory reduction)
and retains classification accuracy above 90%. Therefore, our proposed AI models may
fit better into the available memory on robot vacuum cleaners, without worrying about
performance degradation or even crashes.

One area of future work is to investigate the impact of different quantization schemes
on AI model performance. While strong non-uniform quantization has shown promising
results, there may be other quantization schemes that could achieve even better perfor-
mance or memory reduction. There may exist an optimal quantization technique for each
individual network layer of AI models. It is interesting to explore how non-uniform quanti-
zation could be combined with other techniques, such as network pruning or knowledge
distillation, to create even more efficient and accurate AI models.

Right now, we provide simulation results using PyTorch Platform on GPU machines
for fast evaluation and assessment. The PyTorch Platform reports the memory usage
information and object classification accuracy. This is a typical way for machine learning
researchers to evaluate new quantization methods. Our proposed model can be applied
to the real world (i.e., integration the trained AI model within a robotic vacuum cleaner)
with the technical support of robotic vacuum manufacturers. Since it is a time-consuming
process to negotiate and interact with interested robotic vacuum manufacturers, we have
not implemented it in robotic vacuum cleaners now. We will continue to make efforts to
apply our developed AI model to the real world.
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