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Abstract: Primary care has the potential to be transformed by artificial intelligence (AI) and, in
particular, machine learning (ML). This review summarizes the potential of ML and its subsets in
influencing two domains of primary care: pre-operative care and screening. ML can be utilized in
preoperative treatment to forecast postoperative results and assist physicians in selecting surgical
interventions. Clinicians can modify their strategy to reduce risk and enhance outcomes using
ML algorithms to examine patient data and discover factors that increase the risk of worsened
health outcomes. ML can also enhance the precision and effectiveness of screening tests. Healthcare
professionals can identify diseases at an early and curable stage by using ML models to examine
medical pictures, diagnostic modalities, and spot patterns that may suggest disease or anomalies.
Before the onset of symptoms, ML can be used to identify people at an increased risk of developing
specific disorders or diseases. ML algorithms can assess patient data such as medical history, genetics,
and lifestyle factors to identify those at higher risk. This enables targeted interventions such as
lifestyle adjustments or early screening. In general, using ML in primary care offers the potential to
enhance patient outcomes, reduce healthcare costs, and boost productivity.

Keywords: artificial intelligence; machine learning; deep learning; primary care

1. Introduction

Artificial intelligence (AI) is a field of study that attempts to replicate natural human
intelligence in machines [1]. The machines can then independently perform activities
that would otherwise require human intelligence. AI can be broken down into several
subsets, such as machine learning (ML) and deep learning (DL) [2]. ML makes a software
application more accurate in predicting outcomes by feeding it with data rather than explicit
programming. Comparatively, DL, a subset of ML, builds a hierarchy of knowledge based
on learning from examples. These fundamental ideas of AI are utilized to develop analytic
models to turn this productive technology into practice. Since its introduction in the 1950s,
AI has made significant strides in manufacturing; sports analytics; autonomous vehicle;
and more recently, primary care and preventive medicine [3].

Primary care and preventive medicine, otherwise expressed as day-to-day health-
care practices including outpatient settings, are a growing sector in the realms of AI and
computer science. Although AI has endless applications in healthcare, particular sectors
of primary care have been more progressive and accepting of AI and its potential. For
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instance, the Forward clinic is a primary care service incorporating standard doctor-led
programs with technology to provide a more inclusive and long-term care [3]. The addition
of the technology allows for 24/7 monitoring, skin cancer screening, testing of genes, and
biometric monitoring. As with all AI interventions, the Forward clinic endures multiple
challenges, such as additional physician training and fees. Although the Forward clinic
is just a singular example of how AI can be integrated into primary care, AI’s implemen-
tation into primary care can be further broken down into sections of healthcare, such as
pre-operative care and screening. This review summarizes AI’s, specifically ML’s, short yet
productive impact on primary care and preventive medicine and aims to inform primary
care physicians about the potential integration of ML (Figure 1 and Table 1).
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Figure 1. Current methods vs. AI-assisted methods in primary care. Figure Description: AI has the
potential to assist current primary care methods in three domains: pre-operative care, screening, and
detection. In pre-operative care, this includes using AI for predictions of outcomes and mortality. For
screening, AI serves a prominent role in screening tools for numerous diseases. Similarly, AI can be
used for real-time detection tools and AI-assisted histopathology tools.

Table 1. Abbreviations.

Name Abbreviation

Acute kidney injury AKI
Adaptive boosting ADA
Age-related macular degeneration AMD
Artificial intelligence AI
Atherosclerotic cardiovascular disease ACSVD
Atrial fibrillation AF
Blood pressure BP
Chronic kidney disease CKD
Chronic obstructive pulmonary disease COPD
Convolutional neural network CNN
Coronary artery calcium score CACS
Coronary artery disease CAD
Decision tree DT
Deep learning DL
Deep neural network DNN
Deep vein thrombus DVT
Diabetes mellitus DM
Electronic health records EHR
Extreme gradient boosting XGB
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Table 1. Cont.

Name Abbreviation

Familial hypercholesterolemia FH
Generative adversarial network GAN
Gradient boosting GB
Gradient boosting tree GBT
Heart failure HF
Human immunodeficiency virus HIV
K-nearest neighbors KNN
Logistic regression LR
Low-density lipoprotein LDL
Machine learning ML
Neural network NN
Obstructive sleep apnea syndrome OSAS
Photoplethysmogram PPG
Potential pre-exposure prophylaxis PrEP
Pulmonary embolism PE
Pulmonary hypertension PH
Random forest RF
Support vector machine SVM
Urinary tract infection UTI

2. Pre-Operative Care

Pre-operative risk prediction and management have been promising areas of AI
research and its application. PubMed and Google Scholar were searched using keywords
for English literature published from inception to December 2022 (Figure 2). Studies
were included if they reported outcomes regarding the effectiveness of ML models in
pre-operative care or similar domains. Studies have utilized AI to predict mortality and
postoperative complications. Such applications are necessary for clinical decision-making,
forethought of healthcare resources such as ICU beds, the cost of the patient, and the
possible need for transition of care [4]. Typically, researchers utilize a designated number of
electronic health records (EHR) to train the analytic model and the remainder to test it. For
instance, Chiew et al. utilized EHRs to predict post-surgical mortality in a tertiary academic
hospital in Singapore [5]. The study compared five candidate models (Random Forest (RF),
Adaptive Boosting (ADA), Gradient Boosting (GB), and Support Vector Machine (SVM))
and found that all GB was the greatest performing model (specificity (0.98), sensitivity
(0.50), PPV (0.20), F1 score (0.28), and AUROC (0.96)). Five other studies by Fernandes
et al., Jalai et al., COVIDSurg Collaborative, Sahara et al., and Pfitzner et al. have also
evaluated how differing types of analytic models (Logistic Regression (LR), RF, Neural
Network (NN), SVM, Extreme GB (XGB), Decision Tree (DT), GB, Deep Neural Network
(DNN), GRU, and classification tree) can predict postoperative mortality [6–10]. The
patient population included those undergoing cardiac surgery, pancreatic surgery, or
hepatopancreatic surgery or those infected with SARS-CoV-2. Of the studies undergoing
cardiac surgery, the selected ML models were good predictors of mortality and prolonged
length of stay. In Fernandes et al., when utilizing pre-operative and intra-operative risk
factors alongside intraoperative hypotension, XGB was the best performing model (AUROC
(0.87), PPV (0.10), specificity (0.85), and sensitivity (0.71) [6]. In the other study by Jalai
et al., deep neural network (DNN) was the best performing of the five models (accuracy
(89%), F-score (0.89), and AUROC (0.95)) [7]. Neither study compared its models with
established pre-operative risk scores, such as the Revised Cardiac Risk Index or Gupta score.
Similarly, Pfitzner et al. used pre-, intra-, and short-term post-operative data on a number
of models to assess its ability to predict pre-operative risk for those undergoing pancreatic
surgery [8]. The study found maximum AUPRCs of 0.53 for postoperative complications
and 0.51 for postoperative mortality, with LR as the best model. As for those undergoing
hepatopancreatic surgery, Sahara et al. found that the classification tree model better
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predicted 30-day unpredicted deaths than the traditional American College of Surgeons
National Surgery Quality Improvement Program surgical risk calculator [9]. Finally, a
COVIDSurg Collaborative study that generated 78 AI models found that when combining
an LR model with four features (ASA grade, RCRI, age, and pre-op respiratory support),
an AUC of 0.80 in the testing dataset was achieved. This generated model was the best
performing in predicting postoperative mortality among those infected with SARS-CoV-
2 [10]. Ultimately, ML models present great promise in its integration into pre-operative
care, particularly for simplifying pre-operative evaluations, as observed in Figure 3.
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Post-Operative Complications

Other pre-operative risk prediction objectives include assessing models on postopera-
tive complications [11–13]. These studies have evaluated how varying ML models (SVM,
LR, RF, GBT, DNN, GBT, and XGB) can predict a number of post-operative complications.
One study utilized electronic anesthesia records (pre-operative and intra-operative data) to
predict deep vein thrombus (DVT), delirium, pulmonary embolism, acute kidney injury
(AKI), and pneumonia [11]. GBT was the most promising model, with AUROC scores
of 0.905 (pneumonia), 0.848 (AKI), 0.881 (DVT), 0.831 (pulmonary embolism), and 0.762
(delirium). Similarly, Corey et al. utilized EHR data, including 194 clinical features, to
train ML models on 14 postoperative complications [12]. Amongst the models, AUC scores
ranged from 0.747 to 0.924, with the Lasso penalized regression being the best performing
(sensitivity (0.775), specificity (0.749), and PPV (0.362)). Comparably, Bonde et al. trained
three multi-labels DNNs to compete against traditional surgical risk prediction systems on
post-operative complications [13]. The mean AUCs for the test dataset on models 1, 2, and 3
were 0.858, 0.863, and 0.874, all of which outperformed the ACS-SRC predictors. Ultimately,
ML methods appear to be high-performing for predicting post-operative complications,
but additional studies comparing models are required to validate the findings.
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Figure 3. Example of AI in pre-operative evaluation. Figure Description: The integration of AI into
pre-operative care allows for the refinement of more effective guidelines. For instance, in Figure 2,
current guidelines recommend a seven-step pre-operative evaluation before surgery for patients with
CAD risk factors. In this process, AI could be utilized to provide risk prediction and MET monitoring
through wearable technology, ultimately cultivating a more straightforward process.

3. Screening

The applications of AI in screening are by far the most precedented. PubMed and Google
Scholar were searched from inception to December 2022, and the databases were searched
for studies investigating the role of ML in screening for several diseases and disorders.
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3.1. Hypertension

One of these leading domains is hypertension, where studies have assessed the risk of
hypertension and predicted resistant hypertension while concurrently estimating blood pres-
sure (BP). Zhao et al. compared four analytical models (RF, CatBoost, MLP neural network,
and LR) in predicting the risk of hypertension based on data from physical examinations [14].
RF was the best-performing model with an AUC of 0.92, an accuracy of 0.82, a sensitivity of
0.83, and a specificity of 0.81. In addition, no clinical or genetic data was utilized for training
the models. Similarly, Alkaabi et al. utilized ML models (DT, RF, and LR) to assess the risk
of developing hypertension in a more effective manner [15]. RF was the best-performing
model (accuracy (82.1%), PPV (81.4%), sensitivity (82.1%), and AUC (86.9)). Clinical factors,
such as education level, tobacco use, abdominal obesity, age, gender, history of diabetes,
consumption of fruits and vegetables, employment, physical activity, mother’s history of
high BP, and history of high cholesterol, were all significant predictors of hypertension.
Ye et al. investigated an XGBoost model that had AUC scores of 0.917 (retrospective) and
0.870 (prospective) in predicting hypertension. Similarly, LaFreniere et al. investigated
an NN model which had 82% accuracy in predicting hypertension given the chosen risk
factors [16,17]. Regarding BP, Khalid et al. compared three ML models (regression tree, SVM,
and MLR) in estimating BPs from pulse waveforms derived from photoplethysmogram
(PPG) signals [18]. The regression tree achieved the best systolic and diastolic BP accuracy,
−0.1 ± 6.5 mmHg and −0.6 ± 5.2 mmHg, respectively. In summary, ML appears to be an
effective tool for predicting hypertension and BP, though its clinical utility remains to be
delineated, since hypertension can be diagnosed through non-invasive procedures.

3.2. Hypercholesterolemia

AI applications on hypercholesterolemia have outputted similar findings, as seen in
Myers et al. [19]. Using data on diagnostic and procedures codes, prescriptions, and labora-
tory findings, the FIND FH model was trained on large healthcare databases to diagnose
familial hypercholesterolemia (FH). The model achieved a PPV of 0.85, a sensitivity of 0.45,
an AURPC of 0.55, and an AUROC score of 0.89. This model effectively identified those
with FH for individuals at high risk of early heart attack and stroke. Comparatively, Pina
et al. evaluated the accuracy of three ML models (CT, GBM, and NN) when trained on ge-
netic tests to detect FH-causative genetic mutations [20]. All three models outperformed the
clinical standard Dutch Lipid score in both cohorts. Similar findings have been produced
for hyperlipidemia, where Liu et al. trained an LTSM network on 500 EHR samples [21].
The model achieved an ACC score of 0.94, an AUC score of 0.974, a sensitivity of 0.96, and a
specificity of 0.92. Regarding low-density lipoproteins (LDLs), Tsigalou et al. and Cubukcu
et al. concluded that ML models were productive alternatives to direct determination
and equations [22,23]. In both studies, ML models (MLR, DNN, ANN, LR, and GB trees)
outperformed the traditional equations: the Friedewald and Martin–Hopkins formulas.
Although the researched algorithms show great potential, additional studies are warranted
to validate these conclusions.

3.3. Cardiovascular Disease

Arguably, the largest field of primary care in which AI has made significant strides is
predicting and assessing cardiovascular risk. As cardiovascular diseases are the leading
cause of death globally, any advancements in risk prediction and early diagnosis are
of substance. In 2017, Weng et al. compared four ML models (RF, LR, GB, and NN)
in predicting cardiovascular risk through EHR [24]. The AUC scores of RF, LR, GB,
and NN were 0.745, 0.760, 0.761, and 0.764, respectively. The study concluded that the
applications of ML in cardiovascular risk prediction significantly improved the accuracy.
Zhao et al. reproduced a similar study with LR, RF, GBT, CNN, and LSTM trained on
longitudinal EHR and genetic data [25]. The event prediction was far better using the
longitudinal feature for a 10-year CVD prediction. Kusunose et al. applied a CNN to
identify those at risk of heart failure (HF) from a cohort of pulmonary hypertension
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(PH) patients using chest x-rays [26]. The AUC scores of AI, chest x-rays, and human
observers were 0.71, 0.60, and 0.63, respectively. In a unique perspective, Moradi et al.
employed generative adversarial networks (GANs) for data augmentation on chest x-rays
to assess its accuracy in detecting cardiovascular abnormalities when a CNN model was
trained on it [27]. The GAN data augmentation outperformed traditional and no data
augmentation scenarios on normal and abnormal chest X-ray images with accuracies of
0.8419, 0.8312, and 0.8193, respectively. Studies have also compared ML models relative to
traditional risk scores, such as a study by Ambale-Venkatesh et al. [28]. A random survival
forest model was assessed in its prediction of six cardiovascular outcomes compared
with the Concordance index and Brier score. The model outperformed traditional risk
scores (decreased Brier score by 10–25%), and age was the most significant predictor.
Similarly, Alaa et al. compared an AutoPrognosis ML model with an established risk score
(Framingham score), a Cox PH model with conventional risk factors, and a Cox PH model
with all 473 variables (UK Biobank) [29]. The AUROC scores were 0.774, 0.724, 0.734,
and 0.758, respectively. Pfohl et al. developed a “fair” atherosclerotic cardiovascular
disease (ACSVD) risk prediction tool through EHR data [30]. The experiment ran through
four experiments (standard, EQrace, EQgender, and EQage) and achieved AUROC scores of
0.773, 0.742, 0.743, and 0.694, respectively. The tool has reduced discrepancies across races,
genders, and ages in the prediction of ACSVD. Generally, AI can aid in mitigating gaps
in ACSVD risk prevention guidelines, as observed in Figure 4. In the United States alone,
one in every three patients undergoing elective cardiac catheterization is diagnosed with
obstructive coronary artery disease (CAD). This begs the question of new methodologies
to better diagnose the population. Al’Afref et al. assessed how applying an XGBoost
model on Coronary Computed Tomography Angiography can predict obstructive CAD
using clinical factors [31]. The ML model achieved an AUC score of 0.773, but more
notably, when combined with the coronary artery calcium score (CACS), the AUC score
was 0.881. Therefore, an ML model and CACS may accurately predict the presence of
obstructive CAD. Based on the present literature, AI models screen effectively and predict
cardiovascular risks while predominantly outperforming established risk scores.

3.4. Eye Disorders and Diseases

Another area of primary care that has used ML is vision-centric diseases, such as
diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD). Ting et al.
assessed AI’s metrics in this sector by training a DL system on retinal images (76,370 im-
ages of diabetic retinopathy, 125,189 images of possible glaucoma, and 72,610 images of
AMD) [32]. For referable diabetic retinopathy, the model achieved an AUC of 0.936, a
sensitivity of 0.905, and a specificity of 0.916. As for vision-threatening retinopathy, the
AUC was 0.958, sensitivity was 1.00, and specificity was 0.911. For possible glaucoma im-
ages, the model achieved an AUC of 0.942, a sensitivity of 0.964, and a specificity of 0.872.
Finally, the model on AMD testing retinal images achieved an AUC of 0.931, a sensitivity
of 0.923, and a specificity of 0.887. Retinal fundus images can also be used by AI models
to extract further information, such as predicting cardiovascular risk factors in the case
of the study by Poplin et al. [33]. After training the model on 284,445 and validating it on
two datasets, the model could predict age (mean absolute error (MAE) within 3.26 years),
gender (AUC 0.97), smoking status (AUC 0.71), systolic blood pressure (MAE within
11.23 mmHG), and major adverse cardiac events (AUC 0.70). In another study, Kim et al.
utilized retinal fundus images for training a CNN model to predict age and sex [34].
The MAE for patients, those with hypertension, those with diabetes mellitus (DM), and
smokers were 3.06 years, 3.46 years, 3.55 years, and 2.65 years, respectively. Ultimately,
well-trained ML models appear to be effective in predicting eye diseases.
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3.5. Diabetes

More than 400 million individuals globally are diagnosed with DM. AI’s implemen-
tation into primary care has been shown to be effective when targeting this widespread
disease’s risk prediction. In one study, Alghamdi et al. used medical records of cardiores-
piratory fitness to train and compare five models (DT, naïve bayes, LR, logistic model
tree, and RF) in predicting DM. When RF, logistic model tree, and naïve bayes were en-
sembled with the developed predictive model classifier, a maximum AUC (0.92) was
achieved. Similarly, through administrative data, Ravaut et al. trained a GB decision tree on
1,657,395 patients to predict T2DM 5 years prior to onset [35]. While validating the model
on 243,442 patients and testing it on 236,506 patients, an AUC score of 0.8026 was achieved.
In another study, Ravaut et al. also assessed if a GB decision tree can predict adverse
complications of diabetes, including retinopathy, tissue infection, hyper/hypoglycemia,
amputation, and cardiovascular events [36]. After being trained (1,029,366 patients), vali-
dated (272,864 patients), and tested (265,406 patients) on administrative data, the model
achieved an AUC score of 0.777. To support the conclusion on DM, Deberneh et al. found
reasonably good accuracies in a Korean population, with DT (77.87%), LR (76.13%), and
ANN having the lowest accuracy (73.23%) [37]. In Alhassan et al., when predicting T2DM,
the LTSM and gated-recurrent unit outperformed MLP models with a 97.3% accuracy [38].
In India, Boutilier et al. attempted to find the best ML algorithm for predicting DM and
hypertension in limited resource settings [39]. RF models had a higher prediction accuracy
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than established UK and US scores, with an improved AUC score from 0.671 to 0.910 for
diabetes and from 0.698 to 0.792 for hypertension. With the current evidence, ML methods
appear to be exceptionally effective in predicting diabetes; however, there lacks discussion
on the benefits of using ML over a simple blood draw.

3.6. Cancer

In 2020, cancer was responsible for nearly 10 million deaths globally, making it a
hotspot for ML implementations and strategies in primary care [40]. Fortunately, ML
models have been proven to have potential in the early diagnosis and screening of lung,
cervical, colorectal, breast, and prostate cancer [41]. Regarding lung cancer, Ardilla et al.
trained a DL algorithm on CT images to predict the risk of lung cancer in 6716 national trial
cases [42]. The model achieved an AUC score of 0.944. Similarly, Gould et al. compared
an ML model in predicting a future lung cancer diagnosis with the 2012 Prostate, Lung,
Colorectal and Ovarian Cancer Screening Trial risk model (mPLCOm2012) [43]. The novel
algorithm outperformed the mPLCOm2012 in AUC scores (0.86 vs. 0.79) and sensitivity
(0.401 vs. 0.279). Using NNs, Yeh et al. developed a model to screen patients at risk of
lung cancer on EHR data [44]. For the overall population, the algorithm achieved an AUC
score of 0.90 and 0.87 for patients over the age of 55 years. Guo et al. trained ML models
on low-dose CT and found an accuracy of 0.6778, a F1 score of 0.6575, a sensitivity of
0.6252, and a specificity of 0.7357 [45]. More notably, the interactive pathways were BMI,
DM, first smoke age, average drinks per month, years of smoking, year(s) since quitting
smoking, sex, last dental visit, general health, insurance, education, last PAP test, and last
sigmoidoscopy or colonoscopy. Concerning cervical cancer, CervDetect, a number of ML
models that evaluate the risk of cervical cancer elements forming, has been a leader in this
subject. In 2021, Mehmood et al. used cervical images to evaluate CervDetect and found a
false negative rate of 100%, a false positive rate of 6.4%, an MSE error of 0.07111, and an
accuracy of 0.936 [46]. Similarly, DeepCervix is another DL model that attempts to combat
the high false-positive results in pap smear tests due to human error. Rahaman et al. trained
DeepCervix, a hybrid deep fusion feature technique, on pap smear tests [47]. The DL-based
model achieved accuracies of 0.9985, 0.9938, and 0.9914 for 2-class, 3-class, and 5-class
classifications, respectively. Considering that 90% of cervical cancer is found in low-middle
income settings, Bae et al. set out to implement an ML model onto endoscopic visual
inspection following an application of acetic acid images [48]. Although resource-limited,
the KNN model was the best performing, with an accuracy of 0.783, an AUC of 0.807, a
specificity of 0.803, and a sensitivity of 0.75. In parallel, Wentzensen et al. developed a DL
classifier with a cloud-based whole-slide imaging platform and trained it on P16/Ki-67
dual-stained (DS) slides for cervical cancer screening [48]. The model achieved a better
specificity and equal sensitivity to manual DS and pap, resulting in lower positivity than
manual DS and cytology. With respect to breast cancer screening, multiple studies have
been conducted to achieve better accuracy in its diagnosis. Using screening mammograms,
Shen et al. trained a DL algorithm on 1903 images and achieved an AUC of 0.88, and
the four-model averaging improved the AUC score to 0.91 [49]. Similarly, using digital
breast tomosynthesis images, Buda et al. achieved a sensitivity of 65% with a DL model for
breast cancer screening [50]. Similarly, Haji Maghsoudi et al. developed Deep-LIBRA, an
AI model trained on 15661 digital mammograms to estimate breast density and achieved
an AUC of 0.612 [51]. The model had a strong agreement with the current gold standard.
Another study by Ming et al. compared three ML models (MCMC GLMM, ADA, and
RF) to the established BOADICEA model by training them on biennial mammograms [52].
When screening for lifetime risk of breast cancer, all models (0.843 ≤ AUROC ≤ 0.889)
outperformed BOADICEA (AUROC = 0.639. Similar findings have been concluded in
prostate cancer, where three studies (Perera et al., Chiu et al., and Bienecke et al.) compared
numerous ML models (DNN, XGBoost, LightGBM, CatBoost, SVM, LR, RF, and multiplayer
perceptron) [53–55]. Although all studies trained their respective models differently (PSA
levels, prostate biopsy, or EHRs), all concluded that the ML algorithms were efficacious in
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predicting prostate cancer. Ultimately, there appears to be a substantial body of literature
supporting the effectiveness of ML methods in predicting different types of cancer.

3.7. Human Immunodeficiency Virus and Sexually Transmitted Diseases

Another sector of primary care requiring additional applications to assist in its diagno-
sis and screening is the human immunodeficiency virus (HIV) and sexually transmitted
diseases (STDs). In 2021, Turbe et al. trained a DL model on the rapid diagnostic test to
classify rapid HIV in rural South Africa [56]. Relative to traditional reports of accuracy
varying between 80 and 97%, this model achieved an accuracy of 98.9%. Similarly, Bao et al.
compared 5 mL models predicting HIV and STIs [57]. GBM was the best performing, with
AUROC scores of 0.763, 0.858, 0.755, and 0.68 for HIV, syphilis, gonorrhea, and chlamydia,
respectively. Another study, Marcus et al., developed and assessed an HIV prediction
model to find potential pre-exposure prophylaxis (PrEP) patients [58]. Using EHR data to
train the model, the study reported an AUC score of 0.84. In terms of future predictions,
Elder et al. compared 6 mL algorithms when determining patients at risk of additional STIs
within the next 24–48 months through previous EHR data [59]. The Bayesian Additive RT
was the best-performing model with an AUROC score of 0.75 and a sensitivity of 0.915. A
number of studies have also reported plausible applications of AI on urinary tract infec-
tions (UTIs). Gadalla et al. have assessed how AI models can identify predictors for a UTI
diagnosis through training on potential biomarkers and clinical data from urine [60]. The
study concluded that clinical information was the strongest predictor, with an AUC score of
0.72, a PPV of 0.65, an NPV of 0.79, and an F1 score of 0.69. Comparatively, in Taylor et al.,
vitals, lab results, medication, chief complaints, physical exam findings, and demographics
were all utilized for training, validating, and testing a number of ML algorithms to predict
UTIs in ED patients [61]. The AUC scores ranged from 0.826 to 0.904, with XGBoost being
the best-performing algorithm. Therefore, the benefits of using ML models to predict and
screen for HIV and STDs are evident.

3.8. Obstructive Sleep Apnea Syndrome

There are a number of studies that have reported the use of ML for detecting obstruc-
tive sleep apnea syndrome (OSAS). For OSAS, findings have generally been positive, as
in the case of a study by Tsai et al. [62]. LR, k-nearest neighbor, CNN, naïve Bayes, RF,
and SVM were all compared for screening moderate-to-severe OSAS by being trained on
demographic and information-based questionnaires. The study found that BMI was the
most influential parameter, and RF achieved the highest accuracy in screening for both
types. In another study, Alvarez et al. trained and tested a regression SVM on polysomnog-
raphy and found that the dual-channel approach was a better performer than oximetry
and airflow [63]. Mencar et al. used demographic and information questionaries again to
predict OSAS severity [64]. SVM and RF were the best in classification, with the strongest
average in classification being 44.7%. This study demonstrates some variability in studies
attempting to define a conclusion between AI and OSAS. Overall, there is lack of literature
to make a comprehensive conclusion regarding the use of ML for OSAS.

3.9. Osteoporosis

Regarding osteoporosis and related diseases, four studies have compared a number of
AI models (XGBoost, LR, multiplayer perceptron, SVM, RF, ANN, extreme GB, stacking
with five classifiers, and SVM with radial basis function kernel) [65–68]. Models were
trained on EHR, CT and clinical data, or abdomen-pelvic CT. All studies concluded that
ML methods were valid and presented great potential in screening for osteoporosis. An
additional study trained ML models (RF, GB, NN, and LR) on genomic data for fracture
prediction [69]. The study found that GB was the best-performing model, with an AUC
score of 0.71 and an accuracy of 0.88. Ultimately, more studies are required to confirm the
effectiveness of ML for predicting osteoporosis.
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3.10. Chronic Conditions

Chronic obstructive pulmonary disease (COPD) is characterized by permanent lung
damage and airway blockage. To enhance life quality and lower mortality rates, COPD
must be diagnosed and treated early. The early identification, diagnosis, and prognosis of
COPD can be aided by ML methods [70]. The likelihood of hospitalization, mortality, and
COPD exacerbations have all been predicted using ML algorithms. These algorithms create
predictive models using a variety of data sources, including patient demographics, clinical
symptoms, and imaging data. For instance, Zeng et al. developed an ML algorithm trained
on 278 candidate features [71]. The model achieved an AUROC of 0.866. Another chronic
condition, chronic kidney disease (CKD), is characterized by a progressive decline in kidney
function over time. Kidney failure can be prevented, and patient outcomes can be enhanced
by early detection and care of CKD. The early detection, diagnosis, and management
of CKD can be helped by ML algorithms. For instance, Nishat et al. developed an ML
system to predict the probability of CKD. Eight supervised algorithms were developed,
and RF was the best-performing mode reporting an accuracy of 99.75% [72]. At the final
stage of CKD, known as ESKD, patients require dialysis or a kidney transplant. The early
detection, diagnosis, and management of ESKD can be facilitated by ML algorithms. ML
algorithms have been used to forecast mortality and the risk of ESKD in CKD patients.
These algorithms create predictive models using a variety of data sources, including medical
records, test results, and demographic information. For instance, Bai et al. trained five
ML models on a longitudinal CKD cohort to predict ESKD [73]. LR, naive Bayes, and
RF achieved similar predictability and sensitivity and outperformed the Kidney Failure
Risk Equation. Since chronic conditions are a critical aspect of primary care, more studies
involving a variety of ML models are needed to confirm MLs’ potential.

3.11. Detecting COVID-19 and Influenza

ML has shown great promise in detecting and differentiating between common condi-
tions, propagating more effective recommendations and guidelines (Figure 5). Specifically,
detection research has rocketed with the rise and timeline of the COVID-19 virus [74]. Zhou
et al. developed an XGBoost algorithm to distinguish between influenza and COVID-19 in
case there are no laboratory results of pathogens [75]. The model used EHR data to achieve
AUC scores of 0.94, 0.93, and 0.85 in the training, testing, and external validation datasets.
Similarly, in Zan et al., a DL model, titled DeepFlu, was utilized to predict individuals at
risk of symptomatic flu based on gene expression data of influenza A viruses (IAV) or the
infection subtypes H1N1 or H3N2 [76]. The DeepFlu achieved an accuracy score of 0.70
and an AUROC of 0.787. In another study, Nadda et al. combined LSTM with an NN model
to interpret patients’ symptoms for disease detection [77]. For dengue and cold patients,
the combination of models achieved AUCs of 0.829 and 0.776 for flu, dengue, and cold,
and 0.662 for flu and cold. For influenza, Hogan et al. and Choo et al. trained multiple ML
models on nasopharyngeal swab samples and the mHealth app, respectively, for influenza
diagnosis and screening [78,79]. Both studies concluded that ML methods are capable of
being utilized for infectious disease testing. Similar findings were presented for chronic
coughs in Luo et al., where a DL model, BERT, could accurately detect chronic coughs
through diagnosis and medication data [79]. Additionally, in Yoo et al., severe pharyngitis
could be detected through the training of smartphone-based DL algorithms on self-taken
throat images (AUROC 0.988) [80]. In summary, ML appears to be effective in screening
and distinguishing between COVID-19, influenza, and related illnesses.

3.12. Detecting Atrial Fibrillation

Another large center for AI detection is atrial fibrillation (AF). Six studies have eval-
uated unique ways to detect AF through ML models [80–84]. Through wearable devices,
countless algorithms (SVM, DNN, CNN, ENN, naïve Bayesian, LR, RF, GB, and W-PPG
algorithm combined with W-ECG algorithm) have been trained on primary care data, RR
intervals, W-PPG and W-ECG, electrocardiogram and pulse oximetry data, or waveform
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data. All studies concluded that ML is capable and has the potential to detect AF through
wearable devices and through a number of different information. However, more studies
to confirm these findings are required.
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Figure 5. Example of AI in Pulmonary Embolism Evaluation. Figure Description: Current guidelines
for a suspected pulmonary embolism (PE) in a patient without hemodynamic instability requires a
clinical probability assessment of the PE. Based on the clinical judgment and a potential D-dimer test,
a CT pulmonary angiogram is conducted to determine whether treatment or no treatment will occur.
AI has the potential to be integrated into this process by potentially detecting deep vein thrombosis,
detecting high moderate vs. moderate PE phenotypes, and predicting the risk of thrombectomy.

4. Limitations

While AI’s applications have been relatively positive, several limitations have set back
its implementation. For one, the introduction of AI into healthcare practices raises a number
of concerns, such as a lack of trust, ethical issues, and the absence of accountability [85].
Certain human traits, such as empathy, comfort, and trust, are essential to a doctor–patient
relationship, and the use of AI makes these components an issue. To add on, traditionally,
physicians and healthcare workers are held accountable for their practice [86]. There is no
law to keep ML models intact, and there is no defined ownership to take responsibility
when an AI algorithm is at fault. This drawback raises several legal and ethical concerns
yet to be answered. The common novelty in ML applications across primary care requires
additional clinical trials to support the potential advantages. Table 2 presents all ongoing or
completed clinical trials registered in ClinicalTrials.gov and found through the keywords
“Artificial Intelligence” and “Primary Care”, which were searched for ongoing or completed
clinical trials investigating the role of AI in primary care. In addition, there remains mixed
findings regarding the potential benefits of ML-based prediction models. For instance, in
one systematic review of 71 studies, there was no evidence of a better performance from ML
models compared with LR [87]. An additional drawback is that the implementation of ML
is costly and would require additional education for incoming medical practitioners [88].
Regarding AI research, many studies suffer from a number of drawbacks that limit the
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quality of the results. These include a small sample, retrospective data, the inability to
separate pre-operative and intra-operative data, missing data, the absence of external
validation, data from a single institution, and several biases.

Table 2. Clinical Trials on Artificial Intelligence in Primary Care.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05166122 1600
Use AI to screen
for diabetic
retinopathy

>18 years, screened for
diabetic retinopathy, with
diabetes, can take retina
pictures

Part of community hospital
with ophthalmologist,
previously diagnosed with
some retinal conditions,
laser retinal treatment, has
other eye diseases

Recruiting

NCT05286034 4000

AI ChatBot to
improve women
participation in
cervical cancer
screening program

30–65, did not perform pap
smear in last 4 years, living
in deprived clusters

Outside age group, had pap
smear in last 3 years, had
hysterectomy including
cervix, pregnant beyond 6
months, already scheduled
screening appointment

Not yet
recruiting

NCT04551287 16,164

Cervical cancer AI
screening for
cytopathological
diagnosis

25–65 years old, availably of
confirmed diagnosis results
of cytological exam

Unsatisfactory samples of
cytological exam, women
diagnosed with other
malignant tumors

Completed

NCT05435872 2000

AI for
gastrointestinal
endoscopy
screening

Patients received
gastroscopy and
colonoscopy, endoscopic
exam with AI can be
accepted

Patients refusing to
participate, patients with
intolerance or
contraindications to
endoscopic exams

Recruiting

NCT05697601 2905

Finding predictors
of ovarian and
endometrial cancer
for AI screening
tool

Women with gynecological
symptoms, women
underwent routine
gynecological exam

Unable to undergo serial
gynecological exam Recruiting

NCT04838756 100,000
AI for
mammography
screening

Women eligible for
population-based
mammography screening

None Active, not
recruiting

NCT05452993 330
AI screening for
diabetic
retinopathy

Adult patients with
diabetes, ongoing diabetes
treatment, regular pharmacy
customer, informed consent

Unable to read, write, or
give consent, refusing to
share results with general
practitioner

Not yet
recruiting

NCT04778670 55,579 AI for large-scale
breast screening

Participants in regular
population-based breast
cancer

Incomplete exam, breast
implant, complete
mastectomy, participant in
surveillance program

Active, not
recruiting

NCT05139797 300
AI-guided echo
screening of rare
diseases

Patients with high suspicion
for cardiac amyloidosis by
AI

Patients that decline to be
seen at specialty clinic,
patients that passed away

Recruiting

NCT05139940 2432
AI-enabled TB
screening in
Zambia

18 years or older with
known HIV status

Individuals that do not meet
inclusion criteria Recruiting
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04743479 5000 AI screening of
pancreatic cancer

Subject can provide
informed consent, detailed
questionnaire filled, and
subject has one of several
listed conditions

Subject has been diagnosed
with pancreatic cancer or
other malignant tumors in
past 5 years, subject
contraindicates MRI or CT,
subjects is in another clinical
trial

Recruiting

NCT04949776 27,000 AI for breast
cancer screening

50–69 years old, women
studied in the program in
the set period and for the
first time

Unable to give consent,
breast prostheses,
symptoms or signs of
suspected breast cancer

Recruiting

NCT05587452 950 AI screening for
colorectal cancer

Informed consent, provide
blood samples, diagnosed
with colorectal cancer or
colorectal adenoma

Pregnant or breastfeeding,
diagnosed with another
cancer, selective exclusions
for colorectal cancer and
healthy people

Recruiting

NCT05456126 125 AI for infant motor
screening

Mothers older than 20, no
history of recreational drugs,
married or live with fathers.
Specific criteria for term and
preterm infants

None Recruiting

NCT05024591 32,714 AI for breast
cancer screening

Eligible for national
screening, provides consent

History or current breast
cancer, currently pregnant
or plans to become
pregnant, history of breast
surgery, has mammography
for diagnostic purposes

Recruiting

NCT04732208 410

AI screening of
diabetic
retinopathy using
smartphone
camera

Over 18 years, informed
consent, established cases of
DM, subjects dilated for
ophthalmic evaluation

Acute vision loss,
contraindicated for fundus
imaging, treated for
retinopathy, other retinal
pathologies, at risk of acute
angle closure glaucoma

Completed

NCT05311046 2400 AI screening for
pediatric sepsis

3 months–17 years of age,
diagnosed with sepsis,
blood sample collection

Participating in outside
interventions, parents or
LARs that do not speak
English or Spanish,
pregnancy

Recruiting

NCT05391659 1200
AI screening for
diabetic
retinopathy

Diagnosed with DM,
>18 years old, informed
consent, fluent in written
and oral Dutch

History of diabetic
retinopathy or diabetic
macular edema treatment,
contraindicated for imaging
by fundus imaging

Recruiting

NCT04307030 5000

AI screening for
congenital heart
disease by heart
sounds

0–18 years of age, children
with or without congenital
heart disease, informed
consent

>18 years of age, unable to
undergo echo, not able to
provide informed consent

Not yet
recruiting

NCT04000087 358
ECG AI-guided
screening for low
ejection fraction

Primary care clinicians who
are part of a participating
care team

Primary care clinicians
working in pediatrics, acute
care, nursing homes, and
resident care teams

Completed
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04156880 1000

AI in
mammography-
based breast cancer
screening

Women had undergone
standard mammography,
histopathology-proven
diagnosis

Concurring lesions on
mammograms, no available
pathologic diagnosis or long
term follow up exams,
undergone breast surgery,
diagnosed with other kinds
of malignancy

Recruiting

NCT05645341 400

AI screening of
malignant
pigmented tumors
on ocular surface

Dark-brown lesions on
ocular surface

Non-pigmented ocular
surface tumors and image
quality does not meet
clinical requirements

Recruiting

NCT05048095 15,500 AI in breast cancer
screening

Women participating in
regular breast cancer
screening program

Women with breast
implants or other foreign
implants in mammogram
and women with symptoms
or signs of suspected breast
cancer

Completed

NCT04894708 1572
AI for polyp
detection in
colonoscopy

>35 years, planned
diagnostic colonoscopy’s
screening colonoscopy for
men >50 or women >55

Colon bleeding, colon
carcinoma, known polyps
for removal, IBD, colonic
stenosis, other suspected
colon disease, follow-up
care after colon cancer
surgery, anticoagulant
drugs, poor general
condition, incomplete
colonoscopy planned

Recruiting

NCT04160988 703
AI for screening
diabetic
retinopathy

>20 years, DM, image taken
by color fundus, include
includes macula and optic
nerve

Color fundus image
previously use, macula,
optic nerve or other part is
unclear

Completed

NCT04213183 1789
DL screening for
hepatobiliary
diseases

Quality of fundus and
slit-lamp images is
acceptable, more than 90%
of fundus image area
includes four main regions,
more than 90% of slit-lamp
image area includes three
main regions

Images with light leakage
(>10% of the area) Completed

NCT04832594 2500
AI screening for
breast cancer for
supplemental MRI

Four-view screening
mammography exam

Women in surveillance
program, breast implants,
prior breast cancer, breast
feeding, MRI
contraindication

Recruiting

NCT05704491 100
AI screening for
diabetic
retinopathy

DM diagnosis, diabetes
duration >5 years, >18 years
old, informed consent,
fluent in writing and
speaking German

History of laser treatment,
contraindication to fundus
imaging systems

Not yet
recruiting

NCT04699864 630
AI for screening
diabetic
retinopathy

>18 years and older,
informed consent,
diagnostic for diabetes,
diabetic patient followed
and referred by physician

Patients less than 18 years
old, no informed consent,
patient already had
treatment for retinal
condition

Not yet
recruiting
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04859634 2000
AI for detecting
multiple ocular
fundus lesions

Participants who agree to
take ultra-widefield fundus
images

Patients that cannot
cooperate with
photographer, no informed
consent

Recruiting

NCT05734820 312 AI screening
colonoscopy

>45 years old, referred for
screening colonoscopy,
adequate bowel preparation,
authorized for endoscopic
approach

Pregnancy, clinical
condition making
endoscopy inviable, history
of colorectal carcinoma, IBD,
no informed consent

Recruiting

NCT04859530 5886
AI smartphone for
cervical cancer
screening

Informed consent

No initiation of sexual
intercourse, pregnancy,
condition altering cervix
visualization, previous
hysterectomy, health not
sufficient

Recruiting

NCT03773458 500
AI for large-scale
screening of
scoliosis

Pretreatment back photos
and whole spine standing
X-ray or ultrasound images

Patients considered as
non-idiopathic scoliosis Completed

NCT05704920 2722 AI for lung cancer
screening

50–80 years old, active or
ex-smoker, smoking history
of at least 20 pack-years,
informed consent, affiliated
with French social security

Clinical signs of cancer,
recent chest scan, health
problems affecting life
expectancy or limiting
ability to undergo lung
surgery, vulnerable people

Not yet
recruiting

NCT05236855 200

AI and
spectroscopy for
cervical cancer
screening

Women undergoing
standard HPV screening NA Not yet

recruiting

NCT05527535 34,500
AI for diabetic
retinopathy
screening

T1DM or T2DM, no
full-time ophthalmologist,
>18 years old, eligible for
fundus photo imaging

T1DM or T2DM with an
ophthalmologist, previous
diagnosed with macular
edema, history of retinal
laser, other ocular disease,
not eligible for fundus
imaging

Not yet
recruiting

NCT05745480 2 NLP for screening
opioid misuse

Adults hospitalized at UW
health NA Recruiting

NCT05490823 1000 AI smartphone for
anemia screening Informed consent Ophthalmic or fingernail

surgery in past 30 days Recruiting

NCT04896827 244 DL and AI for
DNIC

18–70 years old, chronic or
no chronic pain, informed
consent

CVD, Raynaud syndrome,
severe psychiatric disease,
injuries or loss sensitivity,
pregnant women

Recruiting

NCT05752045 1389 AI for screening
eye diseases

>18 years, T1DM or T2DM,
presenting screening for
diabetic retinopathy,
benefits of social security
scheme, informed consent

Patient with known DR, any
condition affecting study,
presenting social or
psychological factors,
participates in another
clinical research study

Not yet
recruiting
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Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05243121 5000
AI for MRI in
screening breast
cancer

Patients with clinical
symptoms, undergoing full
sequence BMRI exam, at
least 6 months of follow-up
results

Received therapy,
contraindications of
breast-enhanced MRI exams,
prosthesis is implanted in
affected breast, patients
during lactation or
pregnancy

Recruiting

NCT04996615 924

AI for identifying
diabetic
retinopathy and
diabetic macular
edema

Routine exams, routine laser
treatment, diagnosed with
T1DM or T2DM, presents
visual acuity

Currently using AI system
integrated into clinical care,
inability to provide
informed consent

Recruiting

NCT03975504 6000 AI for lung cancer
screening

Eligible participants aged
45–75 years with one of
several risk factors

Had CT scan of chest in past
12 months, history of any
cancer within 5 years

Recruiting

NCT05626517 2000
Developing risk
stratification tools
using AI

21 years or older, sufficient
English or Chinese language
skills, informed consent

<21 years old, cardiac event,
no informed consent

Not yet
recruiting

NCT04994899 800 AI screening for
mental health

13–79 years old,
English-speaking

Previous participant, unable
to verbally respond to
standard questions, cannot
participate in virtual visit,
no informed consent

Recruiting

NCT05195385 2400
Lung cancer
screening with
low-dose CT scans

50–74 years, smoked at least
20 pack years, quit less than
15 years ago, gives consent,
affiliated with social security
system

Presence of clinical
symptoms suggesting
malignancy, evolving cancer,
history of lung cancer,
2-year follow-up not
possible, chest CT scan
performed

Recruiting

NCT04240652 500,000
AI for diabetic
retinopathy
screening

T2DM or T1DM, subjects
from other medical
institutes are diabetes,
non-diabetic patients and
healthy participants

History of drug abuse, STDs,
any condition not suitable
for study

Recruiting

NCT04126239 1610
AI for food
addiction
screening test

BMI >30, able to give
informed consent

Non-French speaker, unable
to use internet tools Recruiting

NCT04603404 430

Multimodality
imaging in
screening,
diagnosis, and risk
stratification of
HFpEF

LVEF > 50%, NT-proBNP >
220pg/mL or BNP >
pg/mL, symptoms and
syndromes of HF, at least
one criteria of cardiac
structure

Special types of
cardiomyopathies,
infarction, myocardial
fibrosis, severe arrhythmia,
severe primary cardiac
valvular disease, restrictive
pericardial disease, refuses
to participate in study

Recruiting

NCT05159661 1000

AI for screening
brain connectivity
and dementia risk
estimation

Male and female
60–75 years, MCI diagnosis
with MMSE > 25, MCI
diagnosis with MoCa > 17

Confirmed dementia,
history of cerebrovascular
disease, AUD identification
test, severe medical
disorders associated with
cognitive impairment,
severe head trauma, severe
mental disorders

Recruiting
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Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05650086 700 AI for breast
screening

Understands the study,
informed consent, complies
with schedule, >21 years,
fits cohort specific criteria

Does not fit cohort specific
criteria, unable to complete
study procedures

Recruiting

NCT05426135 3000 AI for tumor risk
assessment

Participants with suspected
cancer, informed consent,
detailed EHR data, healthy
participants

Participants with primary
clinical and pathological
missing data, lost to
follow-up, poor medical
image quality

Recruiting

NCT05639348 650

AI for risk
assessment of
postoperative
delirium

Surgical patients, >60 years
old, planned postoperative
hospital stay >2 days,
informed consent

Preoperative delirium,
insufficient knowledge in
German or French,
intracranial surgery, cardiac
surgery, surgery within two
previous weeks, unable to
provide informed consent

Recruiting

NCT05466864 120 Screening of OSA
using BSP

Hospitalized with acute
ischemic stroke, 18–80,
informed consent

History of AF, LVEF < 45%,
aphasia, unstable
cardiopulmonary status,
recent surgery including
tracheotomy in 30 days,
narcotics, on O2, PAP
device, ventilator, unable to
understand instructions

Recruiting

NCT05655117 440
AI for detecting
eye complications
in diabetics

Diabetic patients aged 18–90 Severely ill patient or
patient with cancer

Not yet
recruiting

NCT03688906 3275
AI colorectal
cancer screening
test

Differs across three cohorts Differs across three cohorts Completed

NCT05246163 1500
AI smartphone for
skin cancer
detection

Patients with one or two
lesions meeting one of
several criteria, informed
consent

Lack of informed consent Recruiting

NCT05730192 950

AI for detection of
gastrointestinal
lesions in
endoscopy

Screening or surveillance
colonoscopy, age 40 or older,
informed consent

Emergency colonoscopies,
IBD, CRC, previous colonic
resection, returning for
elective colonoscopy,
polyposis syndromes,
contraindications

Not yet
recruiting

NCT05566002 2000
AI evaluation of
pulmonary
hypertension

>18 years, previous received
diagnostic imaging

Patients without RHC,
quality of exams cannot
meet requirement, severe
loss of results

Recruiting

5. Implementing AI in Primary Care

Choosing the correct ML model for a primary care task depends on several factors,
including the nature of the task, the available data, and the desired outcome (Table 3). First,
a definition of the problem and the necessary data must be identified to select the appropri-
ate model [89]. Subsequently, a suitable AI technique, such as supervised, unsupervised, or
reinforcement learning, must be chosen. Following the selection of the model, evaluation
of the model’s performance using validation data and fine-tuning is necessary [89]. Several
factors must be considered to evaluate the benefits and risks of implementing a specific AI
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model into a primary care routine. Accuracy and reliability must be assessed by testing the
ML model’s performance on validation data [89]. Clinical relevance must be determined
by evaluating whether the model is based on relevant risk factors and whether the predic-
tions are helpful for clinical decision-making. Potential benefits such as improving patient
outcomes, reducing medical errors, increasing efficiency and productivity, and enhancing
the quality of care must also be assessed. Ethical implications of using the AI model in
primary care, such as the responsibility of healthcare providers to explain how the AI
model works and how decisions are made, and potential issues related to patient autonomy
and informed consent, must be considered. Finally, the cost-effectiveness of implementing
the AI model, considering the costs of development, implementation, maintenance, and
training, as well as potential cost savings and benefits, must be evaluated [90]. Finally, we
can anticipate a number of ML technologies, such as sophisticated chatbots and virtual
assistants, decision support tools, predictive analytics, wearable technology, and population
health management, to become commonplace in primary care during the next two years.
These tools could aid primary care providers in making better judgements, delivering
more individualized care, and spotting high-risk patients or those needing more intense
interventions. However, regulatory approval, patient and healthcare provider acceptance,
and integration into current clinical workflows will all be necessary before ML can be
deployed. Despite these obstacles, there will likely be major advancements in integrating
AI into primary care in the upcoming years, given the rate of technological advancement
and the growing desire for more individualized and effective healthcare.

Table 3. Machine learning models.

ML Model Advantages Limitations Clinical Applications in
Primary Care

Logistic Regression
Easy to implement and interpret,
handles binary and multi-class

classification

Does not perform well with
outliers, assumes linear

relationship

Diagnostic tests, selection of
treatment, prognostic modeling,

predicting disease risk

Convolutional Neural
Network

Excels in video and image
recognition, learns hierarchical

features

Needs a lot of data and
resource, interpretation is

limited

Image classification, diagnosing
from medical imaging

Support Vector
Machine

Handles non-linear decision
boundaries, great generalization

Precise kernel function and
hyperparameters selection,

difficult with noisy data

Diagnosing disease, risk
stratification, classifying clinical

data

K-Nearest Neighbors Easy, simple, handles non-linear
decision boundaries

Needs a lot of memory and
time, sensitivities to certain

features

Assisting in disease progression
through forecasting

Random Forest
Performs well with

high-dimensional data, handles
non-linear effects

Hard to interpret, overfits
noisy data

Identifying risk factors,
predicting outcomes,

Adaptive Boosting
Handles regression and

classification problems, combines
weak learners

Overfits with weak learners,
sensitive to noisy data

Predicting risk of disease, and
detecting high risk

Gradient Boosting
Performs with large datasets,

handles regression and
classification

Overfits with weak learners,
sensitive to noisy data

Forecasting outcomes and
diagnosing disease

Neural Network
Handles large datasets, performs

well on speech and image
recognition

Needs a lot of computational
resources and data, overfits if

complex

Diagnosing disease, selecting
treatment, predicting risk of

disease

Extreme Gradient
Boosting

Fast with large datasets, handles
regression and classification

Needs tuning of
hyperparameters, overfits

with complex weak learners

Predicting outcomes, detecting
high-risk patients, diagnosing

disease
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Table 3. Cont.

ML Model Advantages Limitations Clinical Applications in
Primary Care

Decision Tree Simple, easy, handles categorical
and numerical data

Overfits with noisy data,
sensitivity to variations in

training

Identifying risk factors,
diagnosing disease, predicting

risk of disease

Deep Neural Network
Good performer with large datasets,

automatically learns hierarchical
features

Requires a lot of data, overfits
with complex network

Diagnosing disease, detecting
high-risk patients, predicting

the risk of disease

Gated Recurrent Unit
Great performer with time-series

data, handles variable-length
sequences

Sensitivity to some conditions
and parameters, poor

generalization to new data

Predicting risk of disease,
diagnosing diseases, and

determining outcomes

XGBoost Fast, accurate, handles regressions
and classification problems

Needs tuning of
hyperparameters, overfits

with noisy data

Predicting outcomes,
identifying risk factors

CatBoost
Handles categorical data, handles

regression and classification
problems

Needs resources and data,
needs tuning of

hyperparameters

Identifying risk factors,
forecasting outcomes

Naïve Bayes Simple, efficient, handles
high-dimensional data

Independent between
features, poor performer with

correlated features

Diagnosing diseases, forecasting
risk of disease

Logistic Model Tree Combination of DT and LR to get
non-linear effects

Overfits with noisy data,
needs tuning of

hyperparameters

Determining risk factors,
predicting risk of disease

Long Short-Term
Memory

Good performer with time-series
data, handles variable-length

sequence

Computational complexity,
difficult interpretation,

overfitting, difficult to handle
long sequences

Forecasting outcomes,
diagnosing diseases, forecasting

risk of disease

6. Conclusions

AI in primary care and preventive medicine is a relatively new field of study that has
developed endless possibilities. The applications are widespread, as seen through a number
of studies on all facets of primary care. Although there is some variability within the findings
of studies in specific fields, the general development and implementation of ML algorithms
are successful and constructive. The models are usually more effective than previously
established models or scores. Future research should focus on tackling the aforementioned
limitations and furthering the research on promising sectors of primary care.
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