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Abstract: In this paper we propose a procedure to enable the training of several independent
Multilayer Perceptron Neural Networks with a different number of neurons and activation functions
in parallel (ParallelMLPs) by exploring the principle of locality and parallelization capabilities of
modern CPUs and GPUs. The core idea of this technique is to represent several sub-networks as
a single large network and use a Modified Matrix Multiplication that replaces an ordinal matrix
multiplication with two simple matrix operations that allow separate and independent paths for
gradient flowing. We have assessed our algorithm in simulated datasets varying the number of
samples, features and batches using 10,000 different models as well as in the MNIST dataset. We
achieved a training speedup from 1 to 4 orders of magnitude if compared to the sequential approach.
The code is available online.
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1. Introduction

Machine Learning models are used to solve problems in several different areas. The
techniques have several knobs that must be chosen before the training procedure to create
the model. The choice of these values, known as hyper-parameters, is a highly complex
task and directly impacts the model performance. It depends on the user experience
with the technique and knowledge about the data itself. Also, it is generally difficult for
non-experts in modelling and the problem to be solved due to a lack of knowledge of
the specific problem. The user usually has to perform several experiments with different
hyper-parameter values to maximize the model’s performance to find the best set of hyper-
parameters. Depending on the size of the model and the data, this can be very challenging.

The hyper-parameter search can be performed manually or using search algorithms.
The manual hyper-parameter search can be done by simply testing different sets of hyper-
parameters. One of the most common approaches is to use a grid search. The grid-search
process assesses the models by testing all the possible combinations given a set of hyper-
parameters and their values. Search algorithms can also be applied by using knowledge of
previous runs to test promising hyper-parameter space during the next iteration, such as
evolutionary and swarm algorithms, Gaussian processes [1]. In this paper, we focus on the
hyper-parameter search for Artificial Neural Networks since it is an effective and flexible
technique due to its universal approximator capabilities [2] applied to tabular datasets
since it is a prevalent type of data used in the real world by several companies.

The best set of hyper-parameters could be chosen if the technique could be assessed
using all the possible values for each variable. However, this is usually prohibitive due to
the model training time. Two paths can be taken to accelerate the process: (i) reducing the
training time of each model or (ii) assessing the model in the most promising points of the
hyper-parameter space. The second point can be challenging because it is hard to perform
a thorough search using a few points.
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GPUs are ubiquitous when training Neural Networks, especially Deep Neural Net-
works. Given the computational capacity that we have today, we can leverage the par-
allelization power of CPUs that contain several cores and threads and GPUs with their
CUDA [3] cores to minimize the training time. The parallelization is commonly applied dur-
ing matrix multiplication procedures, increasing the overall speed of the training process.
However, if the data and the model that is being used do not produce big matrices, GPUs
can decrease the training time if compared to CPUs due to the cost of CPU-GPU memory
transfers [4]. Also, the GPUs might not saturate their usage when using small operations.
If we aggregate several MLPs as a single network with independent sub-networks, the
matrices become more extensive, and we can increase the GPU usage, consequentially in-
creasing the training speed. In this paper, we designed a single MLP architecture that takes
advantage of caching mechanisms to increase speed in CPUs or GPUs environment, called
ParallelMLPs from now on, that contains several independent internal MLPs and allow us
to leverage the parallelization power of CPUs and GPUs to train individual and indepen-
dent Neural Networks, containing different architectures (number of hidden neurons and
activation functions) simultaneously. This is an embarrassingly parallel alternative to train
MLPs as the internal subnetworks’ results and computations are performed independently
of each other.

2. Background

In this section, we present important aspects of hyper-parameter search, computer
organization, training speed of machine learning models.

2.1. Hyper-Parameter Search

Hyper-parameters can be defined as the general configurations to create the models
and control the learning process. They might be discrete, such as the (i) number of layers,
(ii) number of neurons, (iii) activation functions, or continuous such as (i) learning rate
and (ii) weight regularization penalty, among others. There are several ways to perform a
hyper-parameter search. The most common and simple one is the Manual Search. The user
can run a grid search to try all the possible combinations given a set of possibilities for every
hyper-parameter being searched. In [5], the authors claim that performing a Random Search
is more efficient than running a grid search. We believe that the random search is more
critical for continuous values since it is more difficult to find the correct answer for that
specific hyper-parameter. Nevertheless, a grid search might be the complete assessment of
the best discrete hyper-parameter settings for the discrete ones. More knowledge regarding
the function space leads to a better choice of the optimized point. In other words, if
more architectures are tested, more information is gained about the hyper-parameter that
maximizes the performance on a given task.

2.2. Computer Organization and Model Training Speed

Several factors can impact the computational speed of an algorithm. Consequentially,
there are several ways to improve the efficiency of an algorithm. One of the most important
is through the Big-O analysis [6]. However, once the algorithm is optimized regarding Big-
O, usually hardware efficiency is related to the algorithm speed. The computer architecture
is made up of several components. The Von Neumann model [7] describes the architecture
of digital computers. In this architecture, the computer must have (i) a Central Processing
Unit (CPU) that controls everything, containing an Arithmetic and Logic Unit (ALU),
a program counter (PC), and processor registers (ii) primary memory to store data and
instructions, external mass storage, and input/output mechanisms. All the communication
happens in a shared bus. This shared bus can be a bottleneck as it can limit the throughput
between CPU and memory. Most modern computers operate with multi-core processors
containing several cache levels between the CPU and RAM [8] to mitigate this bottleneck.
Algorithms aware of memory hierarchy management and computer organization can have
severe speedups during execution [9].
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The ParallelMLPs training algorithm was designed to mainly take advantage of prin-
ciple of locality [10]. When using several models as a single model (i.e., fusing several
matrices), we store this data contiguously, which can be very useful for caching mecha-
nisms to exploit the spatial locality, pre-fetching from memory the input data and model
parameters’ neighbourhood. Since we are presenting a specific batch for several models
simultaneously, the temporal locality can also be exploited once this data might be retained
for a certain period. The instructions can also be cached efficiently since, in big matrix
multiplication, the instructions will be repeated several times.

The CPU and GPU processors are an order of magnitudes faster than memory transfer
operations (RAM or VRAM). When training sequentially, the processors can waste several
cycles waiting for specific operations such as batch creation (RAM access, CPU to GPU
transfers, CUDA global memory to CUDA shared memory). When training 10,000 models
sequentially for 10 epochs in 1000 samples, we will have to randomly access memory (bad
caching locality properties) to create the batches 10, 000 ∗ 10 ∗ 1000 = 100, 000, 000 times.
Several cache misses can happen during batch fetching. When we use ParallelMLPs, we
increase the chance of cache hit since we are using the current batch on 10,000 models
simultaneously. Probably the batch is in the cache closest to the processor during the tensor
operations. At the same time, we decrease the number of memory access in case of cache
misses to 10 ∗ 1000 = 10, 000 at maximum. Of course, everything described here depends
on the computer it is being applied to due to different memory layouts and the number
of cores.

2.3. Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a prevalent and powerful machine learning
model [11]. There are some challenges to training it since the architecture definition is not
an easy task and is very dependent on the user experience. The training process achieves
the parameter adjustment of an MLP. It can be divided into two phases: forward and
backward. In the forward phase, we project the input space into a hidden/latent space,
usually applying a non-linear function to a weighted sum of the inputs, projecting this
latent space into the output space again to have the predictions. These predictions are
compared against the targets that the model is trying to learn through a loss function that
measures how good the models’ predictions are. In the backward phase, we take the partial
derivatives of each parameter w.r.t. the error to propagate it toward the input, updating
the parameters accordingly and hopefully decreasing the prediction errors in the following
forward phase.

3. Materials and Methods

In order to facilitate the methodology explanation, we will write the tensors in capital
letters. Their respective dimensions can be presented as subscripts such as W[3,4] meaning
a two-dimensional tensor with three rows and four columns.

An example of a MLP architecture with 4 inputs, 3 hidden neurons and 2 outputs
(4− 3− 2) can be seen in Figure 1. The weights are also explicit with notation wij meaning
a connection from neuron j in the current layer to neuron i in the next layer. The first weight
matrix with shape [3, 4] projects the input representation (4 dimensions) into the hidden
representation (3 dimensions). In contrast, the second matrix with shape [2, 3] projects the
hidden representation (3 dimensions) into the output representation (2 dimensions).

The training procedure of an MLP is usually performed by the Backpropagation
algorithm [12]. It is divided into two phases. We perform several non-linear projections
in the forward phase until we reach the final representation in the backward phase. Then,
we can calculate the error using a loss function to backpropagate them using the gradient
vector of the error w.r.t. the parameters to update the parameters of the network in order to
minimize its error.
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Figure 1. Simple MLP with 4 inputs, 3 hidden neurons, and 2 outputs and its weight matrices.

The forward calculation can be described as two consecutive non-linear projections of
the type H = X×WT

1 . and Y = H ×WT
2 . We need two different weight matrices w1 with

shape [3, 4] and w2 with shape [2, 3]. We also would want two bias vectors, but we will not
use them to facilitate the explanations and figures.

The forward phase in our example can be visualized as a three-step procedure.

1. Input to hidden matrix multiplication, Hbatch,hid = Xbatch,in ×WT
hid,in.

2. Hidden activation function application, H′batch,hid = σ(Hbatch,hid).
3. Hidden activated to output matrix multiplication, Ybatch,out = H′batch,hid ×WT

out,hid.

To train the model, we need to apply a loss function to compare the numbers in step 3
against the targets which the model is trying to learn. After the loss calculation, the gradient
of each parameter w.r.t. the loss is estimated and used to update the parameters of the
network.

Since MLP architectures usually do not saturate GPUs, we can change the architecture
to create MLPs that share the same matrix instance but have their own independent set
of parameters. It allows them to train in parallel. Suppose we want to train two MLPs
in the same dataset with architectures MLP1 = 4 − 1 − 2 and MLP2 = 4 − 2 − 2. To
leverage the GPU parallelization, we can fuse both architectures as a single architecture
(ParallelMLPs), in the form 4 − 3 − 4. In Figure 2 we can see both internal networks
represented as a single architecture (ParallelMLPs) with different colours. The number of
inputs does not change; the number of hidden neurons is summed, while the number of
output neurons is multiplied by the number of independent MLPs we want to train. The
layout of ParallelMLP was designed to take advantage of temporal and spatial locality
principles in caching [10] and overall parallelization mechanisms.

In order to maintain the internal MLPs independent of each other, we cannot follow the
same steps previously described because, in that case, we would mix the gradients of all the
internal models during the backpropagation. The matrix multiplication can be understood
as two consecutive operations: (i) element-wise vector multiplication (rows ∗ columns)
and (ii) reduced sum of the previous vectors. We need to change how we perform the
matrix multiplication in step 3. The main idea is to divide the matrix multiplication into
two procedures: (i) matrix element-wise multiplication and (ii) summation. However,
the summation needs to be carefully designed such that we do not reduce-sum the entire
vector but different portions of the axis. We can use broadcast techniques implemented
in every tensor library, and a special case of summation called Scatter Add to make these
two procedures memory efficient. We will refer to this procedure as Modified Matrix
Multiplication (M3) [13].



AI 2023, 4 20

0

1

2

3

0

1

2

0

1

2

3

w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

whid,in

wout,hid w00 w21 w22

w10 w31 w32

w00 w21+w22

w10 w31+w32

Rout,#models

Figure 2. Two independent MLPs are represented as a single MLP with four inputs, 1 and 2 hidden
neurons, and two outputs. The weight matrices are also highlighted to understand the parameter
mapping from the single MLP architecture to its two internal MLP architectures. The red colour is
related to the 4− 1− 2 MLP, while the blue colour is related to the 4− 2− 2 MLP. Rout,#models contain
the result after applying the Scatter Add operation.

This M3 procedure might be useful to handle sparse NN. Most of the time, sparsity is
treated with masking. Masking tends to be a waste of resources since the original amount
of floating point calculations are still being done, and additional masking floating point
operations are being added to the process.

The Scatter Add (φ(D, S, I)) operation takes a dimension D to apply the operation
and two tensors as inputs. The source tensor S contains the numbers that we want to
sum up and the indices tensor I, which informs which elements in the source tensor must
be summed and stored in the result tensor. When applied to two-dimensional tensors as
φ(1, S, I), the result tensor R (initialized as zeros) can be calculated as:

• R[I[i, j], j] = R[I[i, j], j] + S[i, j] if dimension = 0
• R[i, I[i, j]] = R[i, I[i, j]] + S[i, j] if dimension = 1

A very simple example of the scatter add operation would be when:

• D = 1,
• S[1,6] = [[1, 2, 3, 4, 5, 6]],
• I[1,6] = [[0, 1, 1, 2, 2, 2]],
• R[1,3] = φ(1, S, I)[1,3] = [[1, 5, 15]],

with I informing how to accumulate values in the destination tensor R, with the first
element (0) accumulating only the first element of S, the second destination element (1)
accumulating the second and third values of S, and the latest element (2) accumulating
the fourth, fifth and sixth element of S. This operation is implemented in parallel in any
popular GPU tensor library. In our architecture represented in Figure 2, in order to have
the two separated outputs, one for each internal MLP, we would have to sum across the
lines using a matrix I as follows:

I[2,3] =

[
0 1 1
0 1 1

]
It would generate an output matrix [2, 2] where each line is related to each inter-

nal/individual MLP.
The Scatter Add operation is responsible for keeping the gradients after the loss

function application not mixed during the backpropagation algorithm, allowing us to train
thousands of MLPs simultaneously in an independent manner.
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To summarize, the steps to perform the parallel training of independent MLPs are:

1. Input to hidden matrix multiplication, Hbatch,hid = Xbatch,in ×WT
hid,in.

2. Hidden activation function application, H′batch,hid = σ(Hbatch,hid).
3. Hidden activated element-wise multiplication with multi-output projection matrix,

Sbatch,out,hid = H′batch,1,hid �W1,out,hid (broadcasted element-wise multiplication)
4. Finally, the Scatter Add operation to construct the independent outputs Ybatch,model,out =

φ(1, Sbatch,out,hid, Ibatch,out,hid)

After that, a loss function is applied to calculate the gradients and update all the
internal MLPs parameters independently.

We can go further and use not only a single activation function that should be ap-
plied to all the internal MLPs, but several of them by repeating the original number of
architectures as many times as we have for activation functions. Since this is often not
enough to use all the GPU resources, one can also have repetitions of the same architecture
and activation function. In order to use several activation functions, the last step must
be modified such that we can apply different activation functions to different portions of
the matrix O. This can be done using a tensor split operation, applying each activation
function iterativelly in different continuous portions of the representations, and finally
concatenating the activated representations again.

The Python pseudocode of our proposal is described in Pseudocode 1. The complete
code is available at Github (https://github.com/fariasfc/parallel-mlps).

Pseudocode 1: High-level description of the ParallelMLPs operations.

1 import torch
2 class ParallelMLPs:
3 def __init__(self, in_features, out_features, min_neurons,

max_neurons, step_neurons, activations, repetitions):↪→

4 neurons_structure = torch.arange(min_neurons, max_neurons +
1, step).tolist()↪→

5 num_activations = len(activations)
6 num_parallel_mlps = len(neurons_structure) *

num_activations * repetitions↪→

7 total_hidden_neurons = neurons_structure.sum() *
num_activations * repetitions↪→

8

9 self.activations = activations
10 self.hidden_layer = Linear(in_features,

total_hidden_neurons)↪→

11 self.hidden_neuron_model_id = # tensor mapping a hidden
neuron to the subnetwork id↪→

12

13 # Equivalent to the output_layer
14 self.weight = Parameter(
15 torch.Tensor(out_features, total_hidden_neurons)
16 )
17 self.bias = Parameter(
18 torch.Tensor(num_parallel_mlps, self.out_features)
19 )
20

21 def forward(self, x: Tensor) -> Tensor:
22 batch_size = x.shape[0]
23 x = self.hidden_layer(x) # [batch_size,

total_hidden_neurons]↪→

https://github.com/fariasfc/parallel-mlps
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24 x = self.apply_activations(x) # [batch_size,
total_hidden_neurons]↪→

25

26 x = (
27 x[:, :, None] * self.weight.T[None, :, :]
28 ) # [batch_size, total_hidden_neurons, 1] * [1,

total_hidden_neurons, out_features] = [batch_size,
total_hidden_neurons, out_features]

↪→

↪→

29

30 adjusted_out = (
31 torch.zeros(
32 batch_size, self.num_unique_models,

self.out_features, device=x.device↪→

33 ).scatter_add_(
34 1,
35 self.hidden_neuron__model_id[None, :, None].expand(
36 batch_size, -1, self.out_features
37 ), # [batch_size, total_hidden_neurons,

out_features], expand does not consume extra
memory.

↪→

↪→

38 x,
39 )
40 ) + self.bias[None, :, :]
41

42 # [batch_size, num_unique_models, out_features]
43 return adjusted_out

3.1. Experiments

Simulations were performed in order to compare the speed of the Parallel training
against the Sequential approach.

3.1.1. Computing Environment

A Machine with 16 GB RAM, 11 GB NVIDIA GTX 1080 Ti, and an I7-8700K CPU @
3.7 GHz containing 12 threads were used to perform the simulations. All the code was
written using PyTorch [14].

3.1.2. Model Architectures

We have created architectures starting with one neuron at the hidden layer until
100, resulting in 100 different possibilities. For each architecture, we have assessed ten
different activation functions: Identity, Sigmoid, Tanh, ReLU, ELU, SeLU, GeLU, LeakyReLU,
Hardshrink, Mish. It increases the number of independent architectures to 100 ∗ 10 = 1000.
We have repeated each architecture 10 times, totalling 1000 ∗ 10 = 10, 000 models. It is
worth mentioning that this design is not limited to these circumstances. One could create
arbitrary MLP architectures such as 3 different networks with 3, 19, and 200 hidden neurons
and still would be able to leverage the speedup from ParallelMLPs.

3.1.3. Datasets

We have created controlled training datasets with 100, 1000, and 10,000 samples. With
5, 10, 50, and 100 features. Giving a combination of 12 different datasets. For all the
simulations, 12 epochs were used, ignoring the first two epochs as a warm-up period. For
the MNIST dataset, we kept the same amount of model architectures, and investigated
only the GPU approach with batch size of 64 due to memory restrictions as the number of
features increased to 784.
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3.1.4. Training Details

All the samples are stored in GPU at the beginning of the process to not waste much
time of GPU-CPU transfers. It favours the Sequential processing speed more than the
Parallel since the former would have 10,000 more CPU-GPU transfers throughout the entire
experiment.

The data is used only as train splits because this phase is where the gradients are
calculated, and the two operations of forward and backward are used. Therefore, the
training split processing is much more expensive than validation and test splits.

4. Results

The following tables contain the average training time of 10 training epochs (forward
and backward steps, no validation, and no test loops) when varying the number of samples
(columns) and the number of features (rows) for strategies: (i) Parallel (using ParallelMLPs),
(ii) Sequential (training one model at the time), and (iii) the percentage of ParallelMLPs
training times against the Sequential strategy (Parallel/Sequential). The CPU and GPU
results are presented in Table 1 and Table 2, respectively.

Table 1. Average of 10 epochs to train 10,000 models using a CPU.

Number of Samples

100 1000 10,000

Batch Size

32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)

5 0.525 0.463 0.472 5.248 4.709 4.717 52.737 46.929 47.133

10 0.539 0.466 0.475 5.338 4.722 4.742 53.351 47.089 47.153

50 0.658 0.505 0.501 6.144 4.943 4.887 62.664 49.791 48.85

100 0.809 0.547 0.551 7.373 5.366 5.1 74.661 53.09 50.965

Sequential (Seconds)

5 13.437 6.097 5.994 112.054 56.999 48.852 1097.599 564.428 483.278

10 13.36 6.115 6.01 111.84 57.094 49.015 1097.503 564.701 484.91

50 13.884 6.571 6.467 116.303 58.993 49.546 1134.955 583.468 491.269

100 14.283 6.671 6.592 120.297 59.259 50.371 1179.405 586.267 493.744

Parallel/Sequential (%)

5 3.91 7.59 7.88 4.684 8.262 9.656 4.805 8.314 9.753

10 4.038 7.625 7.905 4.773 8.27 9.674 4.861 8.339 9.724

50 4.739 7.69 7.753 5.282 8.379 9.863 5.521 8.534 9.944

100 5.664 8.198 8.362 6.129 9.056 10.126 6.33 9.056 10.322

We also have compared the same architectures being trained on MNIST, containing
60,000 samples with 784 features using 64 as the batch size. We could increase the batch size
if we reduce the number of parallel architectures. However, we decided to keep the same
architectures for better comparisons. To train 10,000 models for 10 epochs using GPU, we
have an average of 118.3 s per epoch using the parallel strategy, while 6348.3 s per epoch
using the sequential strategy, the parallel approach corresponds to 1.86% of the time used
by the sequential approach.
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Table 2. Average of 10 epochs to train 10,000 models using a GPU.

Number of Samples

100 1000 10,000

Batch Size

32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)

5 0.024 0.002 0.001 0.269 0.177 0.203 2.676 1.756 2.426

10 0.025 0.002 0.001 0.276 0.178 0.206 2.745 1.767 2.439

50 0.033 0.002 0.001 0.351 0.193 0.218 3.483 1.926 2.569

100 0.043 0.002 0.001 0.449 0.215 0.233 4.438 2.128 2.75

Sequential (Seconds)

5 22.911 8.646 8.511 189.411 73.503 57.02 1857.653 722.915 566.592

10 22.983 8.619 8.515 188.966 73.462 56.941 1859.14 722.925 568.583

50 23.025 8.628 8.519 189.147 73.364 57.134 1858.07 719.359 567.847

100 22.993 8.581 8.503 189.015 72.849 57.129 1854.881 717.543 566.248

Parallel/Sequential (%)

5 0.106 0.019 0.017 0.142 0.241 0.355 0.144 0.243 0.428

10 0.11 0.019 0.017 0.146 0.243 0.362 0.148 0.245 0.429

50 0.142 0.019 0.017 0.185 0.264 0.381 0.187 0.267 0.452

100 0.186 0.018 0.017 0.237 0.294 0.408 0.239 0.297 0.486

5. Discussion

Suppose one is training for 100 epochs of the previously mentioned 10,000 models
in a dataset with 10,000 samples and 100 features with 32 as the batch size. In that case,
CPU-Sequential can take more than 32 h (1179.405 ∗ 100/3600 = 32.76), while CPU-Parallel
only 2 h (100 ∗ 74.661/3600 = 2.07) would be necessary to perform the same training. The
same case with batch size of 256 samples, we would have approximately 14 h and 1.5 h
for CPU-Sequential and CPU-Parallel, respectively. In this case, the CPU-Parallel is 15.8
for the first scenario and 9.3 for the second scenario times faster than CPU-Sequential.
The CPU-Parallel experiments took between 3.9% and 10.3% of the CPU-Sequential time,
considering all the variations we have performed. As one can see, the CPU speed improves
when using larger batch sizes probably to better exploration of the principle of locality.

If we analyze the same experiments in GPUs, more than 51 h (1854.881 ∗ 100/3600 =
51.5) would be necessary for GPU-Sequential, and 7.4 min when using GPU-ParallelMLPs
for the 32 batch experiment and 15.5 h for GPU-Sequential and 4.6 min for the 256 batch size.
It gives us a speed improvement on GPU-Parallel of 417.6 and 202.17 times, respectively,
when compared to GPU-Sequential. The GPU-Parallel experiments range from 0.017% to
0.486% of the GPU-Sequential time for all the assessed experiments. As one can see, the
GPU speed improves when using larger batch sizes probably to better exploration of the
principle of locality and also a better parallelization in the GPU kernel.

At first glance, the GPU training time should be faster than the CPU training time.
However, when we compare GPU-Sequential against the CPU-Sequential, the GPU ver-
sion is slower than CPU one. This slowness may be explained by the high number of
function/kernel calls to perform cheap operations (small matrix multiplications). As the
single-core of a CPU is optimized to perform a specific computation very quickly (high
clock rate) and the single-core of a GPU is much slower than CPU, it is reasonable that CPUs
can take advantage in this scenario. On the other hand, GPUs contain much more cores than
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the CPU, and they can run computations in parallel, therefore we can see huge differences
as this is often the scenario in which GPUs will outperform CPUs. As we increase the size
of matrices to be multiplied in GPU-ParallelMLP (with more architectures or bigger batch
sizes), a considerable amount of speed can be delivered compared to CPU-ParallelMLP.

It is essential to mention that the GPU memory consumption of the 10,000 parallel
models using 100 features and batch size of 256 (the worst case scenario for our experiments
w.r.t. memory allocation) was less than 4.8 GB, meaning that (i) simpler GPUs can be used
and still take advantage of our approach, and (ii) is probably possible to improve the speed
if using more models in parallel to make a better usage of the GPU memory.

As we can perform a very efficient grid-search in the discrete hyper-parameters space
that will define the network architecture, it is much easier for the user to select a suitable
model since several number of neurons and activation functions can be trained in parallel,
mainly for beginners in the field who have difficulties to guess the best number of neurons
and activation function, since the hyper-parameter definition is highly dependent on the
user experience. Also, researchers that use any search method that proposes an MLP
architecture in a specific problem can now train the models in parallel. The ParalleMLPs
can be applied for both classification and regression tasks. We believe this M3 operation
can be optimized and lead to even more speed improvements if a specialized CUDA kernel
could be written.

6. Conclusions

We have demonstrated how to parallelize a straightforward core operation of Neural
Networks by carefully choosing alternative operations with a high degree of parallelization
in modern processors (CPUs or GPUs).

The ParallelMLPs algorithm described in Section 3 was able to accelerate the training
time of several independent MLPs with a different number of architectures and activation
functions from 1 to 4 orders of magnitude by simply proposing an efficient memory
representation layout that fuses several internal MLPs as a single MLP and using the M3
strategy to perform the matrix projection in an independent way. It allows us to explore
better the principle of locality and the parallelization in modern processors (CPUs and GPUs).
The technique can be helpful in several areas to decrease the training time and increase
the number of model assessments. Since we are able to train thousand of networks in a
reasonable time, we can investigate the distribution of models for a specific dataset in a
large scale. Also, it might be a good way to represent sparse NN.

7. Future Works

We believe the ideas proposed in this paper can inspire other researchers to develop
parallelization of other necessary core operations/modules such as Convolutions, Attention
Mechanisms, and Ensemble fusion of heterogeneous MLPs.

In future works, we would like to investigate if the M3 operation can be used from
the second transformation until the last layer to train MLPs with more than one hidden
layer since only during the first transformation (from input to the first hidden layer) all
the previous neurons are sum-reduced instead of a sparse version of them. We can see an
example of this idea into Figure 3.
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Figure 3. Two independent two hidden layers MLPs represented as a single MLP by ParallelMLP.
The first with architecture in red being 4− 1− 2− 2 and the second in blue 4− 2− 3− 2. The weight
matrices were removed to ease the readability of the figure.

An interesting work would be to perform feature selection using ParallelMLPs by
repeating the MLP architecture and creating a mask tensor to be applied to the inputs
before the first input to hidden projection. We also plan to perform model selection in the
large pool of trained MLPs in a specific dataset. Also, we plan to automatize the number
of neurons and the number of layers. After we finish the ParallelMLP training, we can (i)
remove the output layer or (ii) use the output layer as the new representation of the dataset
to be the input of a new series of ParallelMLP training. It is also possible to use the original
features concatenated with the previously mentioned outputs like residual connections [15].
After each ParallelMLP training, we can pick the best MLP to create the current layer,
continuously increasing the number of layers until no more improvements are perceived. A
further investigation is needed to verify if similar ideas could be used for convolutional and
pooling layers since they are basic building blocks for several Deep Learning architectures.
We also would like to investigate what happens if an architecture containing a backbone
representing the input space into a latent space and MLP at the end, such as [16] to perform
the classification would be replaced by a parallel layer with several independent set of
outputs, but sharing the backbone’s parameters. One hypothesis is that the backbone would
be regularized by different update signals from a heterogeneous set of MLP heads. This
technique can also be similar to a Random Forest [17] of MLPs where during the training
phase, the inputs could be masked depending on the individual network to mimic bagging
or mask specific features, or even simulate a Random Subspace [18]. Our technique can
be used to find the best random initialized model given that [19] was able to found good
sub-networks without any training–extending the idea of Lottery Ticket Hypothesis [20].
There is space to parallelize even more hyper-parameters such as batch size, learning rate,
weight decay, and initialization strategies. One straightforward way is to use boolean
masks to treat each case or hooks to change the gradients directly, but it might not be
the most efficient way. A handy extension of our proposition would be to automatically
calculate the hyper-parameter space to saturate the GPU.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



AI 2023, 4 27

Acknowledgments: We would like to acknowledge the Centro de Tecnologias Estratégicas do
Nordeste (CETENE) for providing computational resources (FACEPE APQ-1864-1.06/12) as well as
CNPq and CAPES (Brazilian Research Agencies) for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A python library for model selection and hyperparameter

optimization. Comput. Sci. Discov. 2015, 8, 014008. [CrossRef]
2. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Netw. 1993, 6, 861–867. [CrossRef]
3. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel programming with cuda: Is cuda the parallel programming model

that application developers have been waiting for? Queue 2008, 6, 40–53. [CrossRef]
4. Gregg, C.; Hazelwood, K. Where is the data? Why you cannot debate CPU vs. GPU performance without the answer. In

Proceedings of the (IEEE ISPASS) IEEE International Symposium on Performance Analysis of Systems and Software, IEEE,
Washington, DC, USA, 10–12 April 2011; pp. 134–144.

5. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
6. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2022.
7. von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 1993, 15, 27–75. [CrossRef] [PubMed]
8. Edelkamp, S.; Schrödl, S. Chapter 8—External Search. In Heuristic Search; Edelkamp, S., Schrödl, S., Eds.; Morgan Kaufmann: San

Francisco, CA, USA, 2012; pp. 319–365.
9. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Proceedings of the Deep Learning

and Unsupervised Feature Learning Workshop, NIPS 2011, Granada, Spain, 12–17 December 2011.
10. Ali, A.; Syed, K.S. Chapter 3—An Outlook of High Performance Computing Infrastructures for Scientific Computing. In Advances

in Computers; Advances in Computers; Memon, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 91, pp. 87–118.
11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
12. Werbos, P.J. Applications of advances in nonlinear sensitivity analysis. In System Modeling and Optimization; Springer:

Berlin/Heidelberg, Germany, 1982; pp. 762–770.
13. Ahn, J.H.; Erez, M.; Dally, W.J. Scatter-add in data parallel architectures. In Proceedings of the 11th International Symposium on

High-Performance Computer Architecture, IEEE, Edinburgh, UK, 12–16 February 2005; pp. 132–142.
14. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Vancouver, BC, Canada,
2019; pp. 8024–8035.

15. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

16. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, PMLR, Online, 13–14 August 2020; pp. 1597–1607.

17. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
18. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
19. Malach, E.; Yehudai, G.; Shalev-Schwartz, S.; Shamir, O. Proving the lottery ticket hypothesis: Pruning is all you need. In

Proceedings of the International Conference on Machine Learning, PMLR, online, 13–18 July 2020; pp. 6682–6691.
20. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1109/85.238389
http://www.ncbi.nlm.nih.gov/pubmed/22714521
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Background
	Hyper-Parameter Search
	Computer Organization and Model Training Speed
	Multi-Layer Perceptron

	Materials and Methods
	Experiments
	Computing Environment
	Model Architectures
	Datasets
	Training Details


	Results
	Discussion
	Conclusions
	Future Works
	References

