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Abstract: Alfalfa is critical to global food security, and its data is abundant in the U.S. nationally, but
often scarce locally, limiting the potential performance of machine learning (ML) models in predicting
alfalfa biomass yields. Training ML models on local-only data results in very low estimation accuracy
when the datasets are very small. Therefore, we explore synthesizing non-local data to estimate
biomass yields labeled as high, medium, or low. One option to remedy scarce local data is to train
models using non-local data; however, this only works about as well as using local data. Therefore,
we propose a novel pipeline that trains models using data synthesized from non-local data to estimate
local crop yields. Our pipeline, synthesized non-local training (SNLT pronounced like sunlight),
achieves a gain of 42.9% accuracy over the best results from regular non-local and local training on
our very small target dataset. This pipeline produced the highest accuracy of 85.7% with a decision
tree classifier. From these results, we conclude that SNLT can be a useful tool in helping to estimate
crop yields with ML. Furthermore, we propose a software application called Predict Your CropS
(PYCS pronounced like Pisces) designed to help farmers and researchers estimate and predict crop
yields based on pretrained models.

Keywords: machine learning; data synthesis; generative models; alfalfa; biomass; precision agriculture;
classification; climate change; yield prediction; deep learning

1. Introduction

The alfalfa crop is an important livestock feed and is crucial to global food security. In
previous work, we used climate data to estimate alfalfa biomass yields. We compared the
accuracies of feature selection techniques and machine learning (ML) models for this task.
We obtained promising results using local training data with R2 values over 0.90, as we
had access to rich curated datasets from state university variety trials [1]. However, since
our team is developing a software application to aid real-world farmers, whose datasets
may be much smaller, the current work addresses the problem of estimating yields for very
small target datasets. We find that local training on very small target datasets results in
very low accuracy, while, non-local training on much larger datasets performs only about
as well as local training. Our solution combines ideas inspired by [2], which shows success
using pretrained models and sparse datasets, with ideas inspired by [3,4], which show the
promise of deep learning generative models like the adversarial autoencoder (AAE) [3] and
generative adversarial networks (GANs) [4]. We propose a novel pipeline where models
are trained with data generated or synthesized by other deep learning (DL) models. In
this pipeline, the synthesized training data are synthesized from non-local sources, and the
resulting classifiers estimate local targets. We call this synthesized non-local training (SNLT
pronounced like sunlight), and we show it consistently achieves better accuracy than both
local and non-local training. We extend the work of Xu et al. [5] by using their conditional
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tabular GAN (CTGAN) and tabular variational autoencoder (TVAE) synthesizers in our
pipeline. The highest accuracy we obtained from SNLT was 85.7% using a decision tree
classifier (DT) with CTGAN. We also obtained good results using data synthesized by
TVAE, especially when training extreme gradient boosting models (XGBoost), scoring as
high as 75.0% and 70.0% classification accuracy. One long-term goal of this work is to
develop a software application called Predict Your CropS (PYCS, pronounced like Pisces) [6].
PYCS is a research software application and what-if tool that farmers and others can use
to build, train, and run ML models to potentially predict future crop yields based on
climate or weather data. Though the current iteration of PYCS is not based on time series,
and therefore does not forecast future yields or trends, that is the ultimate goal for the
application. However, the current iteration is a potentially useful what-if tool. For example,
a farmer could design worst-case and best-case scenarios and input these hypothetical
features into PYCS to create what-if predictions. This could help the farmer understand
how large or small their yields might be, so they could prepare in advance to handle good,
fair, and bad years appropriately and manage their resources wisely.

Alfalfa is so crucial to food security that many U.S. universities support initiatives to
research this crop and publish data on the experimental growth, cultivation and harvesting
of available varieties of alfalfa. These variety trial reports often include crop yield data for
multiple cuts each year, contributing to the richness of the nationally available yield data.
Very recent work by [7] highlights the relevance of alfalfa research, as their data come from
the same variety trial reports as ours. They focus on the effects of rain on yield gaps and,
like us, primarily look at rainfed rather than irrigated sites [7]. The importance of alfalfa
and this abundance of alfalfa data, along with recent strides forward in ML, motivate our
team to apply ML to the problem of estimating and predicting crop yields, with a focus on
the alfalfa crop. As in our team’s previous work [1], we use aggregated climate and yield
data detailed in Tables 1 and 2.

Table 1. Shows the five features used to train all KY and GA models plus year harvested and class,
assigned according to standard deviation and yield; these are the 7 records in the very small GA
target dataset.

Year Yield
(tons/acre) Class Solar Radiation

(MJ/m2)
Total Rainfall

(mm)
Avg Min

Temp (◦C)
Avg Max

Temp (◦C)
Avg Soil

Moisture (%)

2009 2.40 0 3400.10 740.67 16.10 27.88 0.19

2008 3.33 1 3810.06 664.88 18.44 29.26 0.12

2008 3.35 1 3545.32 413.28 12.54 24.64 0.13

2008 5.20 1 4463.92 599.97 15.77 28.37 0.19

2009 5.92 1 5320.75 1323.90 15.69 26.19 0.14

2009 6.26 2 3915.63 925.56 16.31 27.22 0.13

2010 6.50 2 4092.75 847.82 16.28 28.33 0.13

Mitigating the effects of climate change is another motivator behind this work. Ev-
idence suggests that traditional approaches to forecasting crop yields are becoming less
reliable as the Earth’s climate becomes less predictable [8–15]. As the global effort to combat
climate change continues, led in part by the United Nations [16], we hope this work is a
positive force toward these efforts.

This work is part of an ongoing project that explores the benefits of using ML to predict
biomass yields for crops. We focus on the alfalfa crop, but this research could be expanded
to other crops. Our first paper concentrates on feature selection, as it presents results from
a battery of tests of the following feature selection techniques: correlation-based feature
selection (CFS), ReliefF method, and a wrapper method. The data for that paper is a
curated mixture of alfalfa biomass yields from variety trials in Georgia (GA) and Kentucky
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(KY) combined with weather and soil moisture sourced from the National Oceanic and
Atmospheric Association (NOAA) [1].

Table 2. Shows the four features used to train all SD and OH models plus year harvested and class,
assigned according to standard deviation and yield; these are the 10 records in one very small OH
target dataset.

Year Annual Avg Yield
(tons/acre)

Annual Avg
Min Temp (◦C)

Annual Avg
Max Temp (◦C)

Total Accumulated
Rain (mm)

Total Accumulated
Radiation (W/m2) Class

2019 1.36 7.56 17.82 7462.16 552,381.90 1

2019 1.54 6.32 16.84 13,854.04 1,009,929.62 1

2010 1.80 6.76 17.44 3764.83 561,106.56 2

2010 1.24 5.88 16.98 9814.53 1,054,700.52 0

2011 1.28 6.16 17.26 6155.62 574,282.91 0

2011 1.89 6.19 16.88 7295.27 1,033,772.80 2

2011 0.88 5.74 16.81 15,084.74 1,518,744.53 0

2012 1.30 6.31 17.48 10,412.91 1,014,862.70 0

2012 1.57 6.37 17.09 11,656.76 1,459,165.91 1

2012 1.59 5.10 16.46 4568.04 400,766.84 1

Our second paper focuses on comparing the ML models themselves, presenting R,
R2, and MAE scores for most of the same models in the current and previous works. That
paper expands the dataset to include the U.S. states of Pennsylvania (PA), Wisconsin (WI),
and Mississippi (MS). Those results show that larger datasets lead to higher accuracies
when the states are all combined into one large dataset. That work also revealed that while
data from multiple sites can be combined to train one model with good R2 scores above
0.90, training a model with strictly non-local data to estimate yields in a separate locality
did not produce usable results with regression models [17]. This motivated us to reframe
this as a classification problem in the current work, and the results are much better.

We reframed our regression problem from [17] as a classification problem with three
tiers for yields: high, medium, and low. We swapped the regression models in our original
application programmer interface (API) from [1,17] for analogous classification models
from ScikitLearn [18]. For this work, as we are interested in estimating very small target
datasets, we reduce the original target GA dataset in [1] to one alfalfa variety per year, and
we annualize the cuts as detailed in Section 3, resulting in only seven records detailed in
Table 1. We repeat this procedure for Ohio (OH) and South Dakota (SD), producing very
small OH target datasets of 8 and 10 records and producing very small datasets for one SD
town, also of 8 and 10 records. Table 2 shows our annualized, one-variety per year target
data from OH with its four features. OH’s features are slightly different from GA’s and KY’s
in that OH lacks soil moisture data. OH and SD follow the same schema. In Tables 1 and 2,
class labels 0, 1, and 2 correspond to low, medium, and high yields, respectively.

Though CTGAN consistently outperforms TVAE in [5], TVAE was competitive in
the current work, especially when combined with XGBoost in the SNLT pipeline. The
synthetic datasets generated by CTGAN train our most accurate predictor when training
with KY and classifying GA, but those generated by TVAE beat CTGAN in our SD and
OH experiments. SNLT trained with TVAE data produced highest accuracies of 75.0% and
70.0% using random forest (RF) and XGBoost models. SNLT trained with CTGAN data,
however, produces the highest accuracy of 87.5%. Other accuracies using synthetic datasets
achieved modest accuracies of 62.5% and 60.0%, but this is a significant improvement over
local-only and non-local training. We determined through experimentation that accuracies
increased as sample sizes increased up to 1000 or 2000, but we noticed diminishing returns
after that on all models except XGBoost, so we chose 1000 or 2000 samples for all other
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models. For XGBoost, which trains far faster than all the other models, we experimented
with synthetic sample sizes up to 200,000, though 5000 usually delivered similar accuracies
faster; therefore, all but one of our XGBoost models generate 5000 samples, and the other
generates 200,000, as summarized in Section 4′s results tables. Overall, non-local and
local training result in low classification accuracies, with no clear winner between the
two; however, our SNLT accuracies are significantly higher than non-local training or
local training.

2. Related Work

While results in this team’s previous papers are very promising and show very high
accuracies using rich datasets collected by scientists and researchers, the current work
considers the problem of very small datasets potentially collected by farmers at real-world
farms. In previous experiments, our high accuracies are aided by the coexistence of many
varieties of alfalfa growing in the same location, providing plenty of data to train and
predict locally or on datasets of combined locations. On the other hand, the current work’s
end goal is to create a practical application that is useful to actual farmers, and we contend
that farms in the real world will typically have much smaller datasets. This presents a
problem where strong, accurate models are difficult or impossible to train. As a solution,
PYCS offers the option to use already-trained models to estimate users’ yields, even if their
datasets are very small.

Our previous work has detailed some of the related work in the domain of ML and
precision agriculture. Overall, the literature shows many complex techniques involving
remote sensors, unmanned aerial vehicles (UAVs) or drones, computer vision, and image
processing to develop vegetation indices to measure crop health [1,17]. Our work diverges
from this trend in that our data come from public sources and simple weather data. More
recently, Baral et al. at Kansas State University published a study of the effects of rain gaps
on alfalfa yields across the United States. They aggregated alfalfa yield and weather data for
10 states, and like the current work, they obtained their yield data from university variety
trials [7]. This helped inform the current work’s use of data from South Dakota (SD) State
University and Ohio (OH) State University, and as [7] is only interested in rainfed alfalfa,
it provides a helpful guide of rainfed locations for our team to use in future experiments.
The exhaustiveness of [7] inspires us to explore as many states as possible. Furthermore,
they measure alfalfa yield over growing degree days (GDD), which means they do not
consider days where the temperature did not meet some threshold alfalfa requires to grow,
so that concept may help inform our future work [7]. Otherwise, the current work bares
little similarity to [7]. That work essentially analyzed the cost in alfalfa of dry periods (rain
gaps) using frontier function analysis and boundary function analysis. They also used
conditional inference trees (CITs) to determine which weather features most affect crop
yields. They did not compare ML models’ ability to predict or estimate alfalfa yields, and
they do not mention a goal of forecasting future yields using time series and ML, as the
current work does.

The current work takes advantage of one DL model that has shown great promise in
recent years—the generative adversarial network (GAN). Training a GAN requires finding
the Nash equilibrium in a minimax game, an idea which precipitated a breakthrough in
economics in the 20th century [19]. The GAN applies game theory to DL training, as a
competition between two entities drives up the performance of each. One entity, called the
generator, creates simulated, fictitious data that resembles the real training data. The other
entity, called the discriminator, looks at real and simulated data and tries to determine which
are which. As the discriminator improves at guessing, this causes the generator to generate
more convincing fakes, which causes the discriminator to continue to become a better
guesser, and so on. This equates to a game where each player maximizes its own chances
of winning by minimizing its opponent’s chances, also known as a minimax game [4].
Though mainly leading to breakthroughs in the computer vision domain, GANs have
also shown promise in other applications such as differential privacy with DPGAN [20],
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generating private tabular health record data with medical GAN (MedGAN) [21], and
synthesizing table data with TableGAN in [22]. Refs. [20–22] demonstrate a GAN’s ability
to generate data that is statistically similar to the training data but introduces enough
noise that connections between real people and the data are broken, protecting individuals’
privacy. MedGAN combines a GAN with an autoencoder to apply this concept to health
records, where privacy is a clear concern that may inhibit individuals’ willingness to share
data, but also where abundant data can make ML more useful in helping cure illness [21].

CTGAN is called a conditional GAN because it uses a conditional generator and
training-by-sampling to address class imbalance in discrete columns. CTGAN introduces a
technique called “mode-specific normalization” to normalize columns individually, and its
underlying networks are fully connected [5].

We also investigate the usefulness of variational autoencoders (VAEs) in synthesizing
table data, as VAEs are another class of generative neural network that has received a lot
of attention and shown promising results in recent years [5]. Specifically, this work uses
the tabular variational autoencoder (TVAE) proposed in [5], which adapts a plain VAE to
address distribution concerns particular to generating table data.

Another somewhat recent development that helped our pipeline produce some of
its best results is extreme gradient boosting or the XGBoost model. Generally, boosting
combines an ensemble of weak learners to create one strong learner. One popular boosting
algorithm called Adaboost often works well with random forest (RF) or decision tree (DT)
models trained iteratively, where each iteration improves on the errors of the previous
by weighting incorrect predictions higher in subsequent iterations, until some predefined
depth or maximum accuracy is reached [23]. In XGBoost, DTs are trained to minimize
prediction errors using gradient descent, creating an optimized strong learner, and this
results in extremely fast training times, facilitating training on very large datasets [24].

3. Materials and Methods

Our alfalfa yield data come from publicly available alfalfa variety trials conducted
by the University of Georgia [25], University of Kentucky [26], South Dakota State Uni-
versity [27], and Ohio State University [28]. Our weather data in GA and KY come from
various NOAA resources, while our weather data for SD and OH comes from the Daymet
tool, provided by Oak Ridge National Laboratory in Oak Ridge, TN and supported by
NASA [29]. We provide our curated, aggregated datasets along with source code at
the Github repository for this project: www.github.com/thejonathanvancetrance/SNLT
(accessed on 29 November 2022). Every record in the original KY and GA datasets include
the following 15 features: State, City, Date Sown, Variety, Date of Cut, Julian Day, Yield
(tons/acre), Time Since Sown (Days), Time Since Last Harvest (Days), Total Radiation
(MJ/m2), Total Rainfall (mm), Avg Air Temp (◦C), Avg Min Temp (◦C), Avg Max Temp (◦C),
Avg Soil Moisture (%). Table 1 depicts the five most salient features we settled on for
training for KY and GA experiments, minus class, year, and yield: average minimum tem-
perature, average maximum temperature, total rainfall, solar radiation, and soil moisture.
In SD and OH experiments, we omitted soil moisture, because we cannot consistently
obtain soil moisture data for most locations as explained in Section 5. We set the thresholds
of our yield classes according to standard deviation, where we label yields less than −1
standard deviations below the mean as low (class 1), yields between −1 and +1 standard
deviations as medium (class 2), and yields more than +1 standard deviations above the
mean as high yield in GA and KY. Our yield thresholds for all locations are summarized in
Table 3. We settled on the hyperparameters shown in Appendix A via experimentation.

www.github.com/thejonathanvancetrance/SNLT
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Table 3. We calculated the standard deviations (stdvs) of the yields to assign class labels for yields in
each location; we used three different thresholds (1, 0.8, 0.5) to avoid high class imbalance.

Location Class 1 (Low Yield) Class 2 (Medium Yield) Class 3 (High Yield)

KY & GA <−1 stdvs below mean −1 < +1 stdvs below/above mean >+1 stdvs above mean

SD & OH <−0.5 stdvs below mean −0.5 < +0.5 stdvs below/above mean >+0.5 stdvs above mean

SD & Highmore, SD <−0.8 stdvs below mean −0.8 < +0.8 stdvs below/above mean >+0.8 stdvs above mean

We began the current work with the same GA and KY data, plus the code base
and API that we used in [1,17]. We reduced the target GA dataset to seven records by
including only one variety per year and annualizing the data. A real-world farm’s dataset
may not include multiple varieties, so we attempt to simulate this in our target datasets.
Additionally, annualizing our data helps reduce the influence of short-term anomalous
weather conditions on our models. Furthermore, some variety trial data, such as PA data,
are only reported annually, so some of our data were originally annualized to be compatible
with those. We expect this annualized data to simulate accuracies we might expect from
PYCS when using already-trained models to estimate very small datasets. In GA and
KY, the alfalfa yields are total annual yields. As this project is ongoing and evolving, we
used total yields originally to match data from other states that report annually. As we
expanded our data to include OH and SD, we decided that the average yield from all cuts
in a year may be more informative when multiple cut information is available, mainly
because some years have more cuts than others, potentially inflating the total annual yield.
The current work is intended as a step toward forecasting future yields, but we are not
truly forecasting yet, as we train with data from the entire year up to the date of the final
cut in GA and KY. Therefore, our total rainfall, total solar radiation, average minimum and
maximum temperature, and average soil moisture data typically represent about the first
eight or nine months of that year in GA and KY. In SD and OH, those features represent
the totals and averages over the lifetime of one planting, which may be several years,
up to the last cut of that year. Table 1 lists “Solar Radiation” and “Total Rainfall” while
Table 2 lists “Total Accumulated Radiation” and “Total Accumulated Rain” because of
these differing approaches, where Table 1 reflects one year’s weather until the final cut,
and Table 2 reflects weather totals over the lifetime of that planting up to the final cut of
that year. The average minimum and maximum daily temperatures are sums of each day’s
minimum and sum of each day’s maximum temperatures, divided by the number of days
considered. Table 1 weather data is sourced from the NOAA, which reports solar radiation
as solar irradiation in MJ/m2, while Table 2 weather data is sourced from Daymet, which
reports solar radiation as solar irradiance in W/m2. Though Tables 1 and 2 reflect slightly
different annualization processes, we think both are reasonable approaches.

The annualization process reflected in Table 2 resulted in a target dataset of 10 records
of OH data, then we removed two arbitrary records to create an eight-record dataset for
better comparison with GA results. Once again, we followed this process with SD data,
creating a local target ten-record dataset of data from only Highmore, SD, leaving the other
SD locations for non-local training and synthesis; then, we again arbitrarily removed two
records to create an eight-record Highmore dataset for comparison. We also annualized the
SD training dataset.

We modified the original code base to build classification models instead of their
regression counterparts, using the ScikitLearn [18] ML library for the Python programming
language along with NumPy [30]. We swapped [18]’s k-nearest neighbors (KNN) regressor
for a KNN classifier, random forest (RF) regressor for a RF classifier, linear regression
for logistic regression (LR), support vector regressor for a support vector classifier (SVC),
decision tree regressor for decision tree classifier (DT), and the multilayer perceptron (MLP)
regressor for an MLP classifier (which we refer as the artificial neural network or ANN
interchangeably). We added ScikitLearn’s XGBoost classifier, not tried in our previous
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work, to our cast of models. Since the task is now one of classification, we modified the API
used in [1] to provide accuracy percentage scores indicating percent of estimates correct,
rather than correlation coefficients or mean absolute errors (MAEs). We used Matplotlib to
generate confusion matrices [31].

For local training, we trained all models on our very small GA, OH, and SD datasets
reflected in Tables 1 and 2, then we used those models to classify those same datasets,
resulting in low accuracies as shown in Tables 4–8. For regular non-local training, we
trained all models on: the KY dataset with 183 records from Lexington, KY; the complete
SD dataset with 767 records; and the SD dataset minus Highmore with 604 records. Next,
we used those models to classify the local GA, OH, and Highmore, SD datasets, resulting
in the different but mostly unimproved accuracies shown in Tables 4–8.

Our third and featured set of experiments explored our SNLT pipeline, depicted in
Figure 1. SNLT begins by choosing a dataset that is not local to the target area that is being
classified as high, medium, or low yield. That non-local dataset is fed to a data synthesizer,
which in the case of the current work is either CTGAN or TVAE. Figure 1 depicts SNLT
using a fully connected deep CTGAN, but other synthesis techniques could be used in
place of this in the SNLT pipeline. The synthesizer outputs a larger training dataset than
the original non-local dataset, and the size of the new dataset is an adjustable parameter of
SNLT. As our experiments confirmed, these larger synthesized datasets usually train more
accurate classifiers than those trained by the non-local data. Next, a model is selected for
training with the synthesized data. We experimented with ANN, KNN, RF, DT, SVC, LR,
and XGBoost, and since DT and XGBoost produced the best results, Figure 1 depicts SNLT
as using a tree-style model, though the others are also valid. Finally, the trained model
is used to classify the target dataset’s alfalfa yield. This dataset would typically be too
small to adequately train most models or effectively split into test and training. Based on
sun, rain, temperature, and soil moisture when available, the model classifies target alfalfa
yields as low, medium, or high, and SNLT produces accuracy scores as compared to the
true class labels.

Our experiments begin with the same labeled KY and SD non-local training data as
before, but we feed them through a generative model that synthesizes the data, resulting
in larger datasets of 1000 to 200,000 records. The generative model in the pipeline is
interchangeable with any generative model or synthesis technique, but the current work
explores CTGAN and TVAE [5]. Next, we use these synthetic source states’ data to train all
our models, and we again use those trained models to classify labels for our small GA, OH,
and SD targets, resulting in the promising accuracies depicted in Tables 4–8.

Table 4. Train KY, test GA: best accuracies from GA local training, non-local training (KY), and
SNLT with CTGAN and TVAE (KY), each for three class labels (high, medium, and low yield), with
synthetic dataset size of 1000 samples, except XGBoost, which is 200,000 samples. Highest accuracy
is bold.

Model Local Non-Local SNLT (TVAE) SNLT (CTGAN)

ANN 28.6% 42.8% 57.1% 57.1%

KNN 28.6% 28.6% 42.8% 57.1%

LR NA * 14.3% 14.3% 57.1%

DT 42.8% 28.6% 57.1% 85.7%

SVC 14.3% 14.3% 57.1% 57.1%

RF 28.6% 42.8% 42.8% 57.1%

XGB 28.6% 28.6% 28.6% 57.1%
* failed to train, omitted.
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Table 5. Train SD, test OH with 8 samples: best accuracies (bold) from OH local training, non-local
training (SD), and SNLT with CTGAN and TVAE (SD), each for three class labels (high, medium, and
low yield), plus size of synthesized dataset.

Model Local Non-Local SNLT (TVAE) SNLT
(CTGAN) Sample Size

ANN 25.0% 12.5% 62.5% 62.5% 5000

KNN 25.0% 12.5% 62.5% 50.0% 2000

LR 25.0% NA * 25.0% 50.0% 2000

DT 37.5% 12.5% 62.5% 62.5% 3000

SVC 25.0% 12.5% 50.0% 50.0% 2000

RF 12.5% 12.5% 75.0% 62.5% 2000

XGB NA * 50.0% 75.0% 62.5% 5000
* failed to train, omitted.

Table 6. Train SD, test OH with 10 samples: best accuracies (bold) from OH local training, non-local
training (SD), and SNLT with CTGAN and TVAE (SD), each for three class labels (high, medium, and
low yield), plus size of synthesized dataset.

Model Local Non-Local SNLT
(TVAE)

SNLT
(CTGAN) Sample Size

ANN 20.0% 10.0% 50.0% 40.0% 2000

KNN 10.0% 40.0% 50.0% 40.0% 2000

LR 10.0% 10.0% 30.0% 40.0% 2000

DT 10.0% 20.0% 50.0% 50.0% 2000

SVC 20.0% 20.0% 40.0% 60.0% 2000

RF 30.0% 30.0% 50.0% 50.0% 2000

XGB 10.0% 50.0% 70.0% 60.0% 5000

Table 7. Train SD, test Highmore, SD only one variety per year resulting in 10 target samples: best
accuracies (bold) from Highmore local training, non-local training (rest of SD), and SNLT with
CTGAN and TVAE (rest of SD), each for three class labels (high, medium, and low yield), plus size of
synthesized dataset.

Model Local Non-Local SNLT
(TVAE)

SNLT
(CTGAN) Sample Size

ANN 20.0% 60.0% 50.0% 50.0% 2000

KNN 40.0% 40.0% 50.0% 50.0% 2000

LR 30.0% 50.0% 50.0% 60.0% 2000

DT 30.0% 50.0% 60.0% 50.0% 2000

SVC 40.0% 50.0% 60.0% 50.0% 2000

RF 20.0% 60.0% 60.0% 50.0% 2000

XGB 30.0% 60.0% 70.0% 50.0% 5000
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Table 8. Train SD, test Highmore, SD only one variety per year and 8 target samples: best accuracies
(bold) from Highmore local training, non-local training (rest of SD), and SNLT with CTGAN and TVAE
(rest of SD), each for three class labels (high, medium, and low yield), plus size of synthesized dataset.

Model Local Non-Local SNLT
(TVAE)

SNLT
(CTGAN) Sample Size

ANN 25.0% 37.5% 62.5% 50.0% 2000

KNN 12.5% 50.0% 50.0% 50.0% 2000

LR 25.0% 50.0% 50.0% 50.0% 2000

DT 12.5% 25.0% 62.5% 50.0% 2000

SVC 37.5% 37.5% 62.5% 50.0% 2000

RF 12.5% 37.5% 62.5% 50.0% 2000

XGB 25.0% 50.0% 75.0% 75.0% 5000
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4. Results

Whereas we previously found non-local training unviable for regression [17], our
classification version of non-local training resulted in meaningful, though low accuracies
which do not always beat local training, as indicated in Tables 4–8. Our SNLT pipeline
produced the highest accuracy score of 85.7% (Table 4) out of these three general approaches,
training a DT model with 1000 samples of data synthesized from KY using CTGAN,
and classifying a very small target GA dataset of seven records. Figure 2 depicts these
results as a confusion matrix. On other states’ datasets of sizes 8 and 10 samples, SNLT
achieved top accuracies of 75.0% and 70.0%, respectively. As Table 5 shows, SNLT achieved
75.0% accuracy training on data synthesized from SD and classifying OH, training RF and
XGBoost models with 2000 and 5000 records, respectively, using TVAE, and classifying a
very small target OH dataset of eight records. Figure 3 depicts these results as a confusion
matrix. As Table 6 shows, SNLT achieved 70.0% accuracy training on data synthesized
from SD and classifying OH, training an XGBoost model with 5000 records, using TVAE,
and classifying a very small target OH dataset of ten records. As Table 7 shows, SNLT
achieved 70.0% accuracy training on data synthesized from most of SD and classifying
Highmore, SD, training an XGBoost model with 5000 records, using TVAE, and classifying
a very small target Highmore, SD dataset of ten records. Figure 4 depicts these results
as a confusion matrix. Finally, as Table 8 shows, SNLT achieved 75.0% accuracy training
on data synthesized from most of SD and classifying Highmore, SD, training an XGBoost
model with 5000 records, using TVAE and CTGAN, and classifying a very small target
Highmore, SD dataset of eight records. Even when SNLT resulted in underwhelming
accuracies of 60.0% and 62.5%, it beat regular non-local training and local training soundly
and consistently as indicated in Tables 4–8. We were pleased to see XGBoost surface as
a consistent top performer, as this was the only model in our cast that would train in an
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acceptable timeframe on tens to hundreds of thousands of records, and the only model that
did not drop in accuracy with larger sample sizes. Almost everywhere our results indicate
good scores using SNLT with XGBoost using 5000 samples, we received the same results
using 100,000 and 200,000 samples, though we emphasize the smaller sample sizes of 5000
because they are effectively cheaper. Each run of SNLT produces a new synthetic dataset
and a new trained model, and while not all runs are equally successful, once we produce a
relatively successful model and dataset, we can store them for repeated classifications.
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5. Discussion

Our results show that we can significantly improve estimation accuracy using our
SNLT pipeline over training with non-local data or with training and estimating on the
same local target dataset if it is very small. It was key for us to convert our regression
problem to a classification problem. Our results are encouraging, and we think further
efforts may increase our accuracies. For example, our best accuracy is higher in KY and
GA experiments, where the soil moisture feature is included, and this leaves us wondering
whether soil moisture is key to higher accuracies. Unfortunately, we found it difficult to
obtain soil moisture data consistently throughout the U.S. Compared to our previous work,
the current work aggregates yield data with much more precise weather data for SD and
OH based on latitude and longitude, using the Daymet tool [30]. Before, our weather and
soil moisture data came from those NOAA stations nearest to where each variety trial was
conducted, which is often dozens of miles away or more. These NOAA data often include
soil moisture data, but it is not always present or complete. Ideally, we would harvest
data from a source that allows us to look up weather data by geolocation and would also
include soil moisture data for that precise location, so we note this gap in publicly available
data as well as this opportunity for someone to create such a tool.

Our results are promising enough to warrant further development of PYCS, which
is still in its infancy, and the results facilitate a better understanding of how PYCS might
perform and be useful in the real world. For future work, we are continuing to develop
PYCS, which will provide predictions for future yields based on the past, thus providing
actual crop forecasting. We have reported our best results, which come from combinations
of our most accurate models with our best synthesized datasets. Our pipeline features
storable models and datasets for reusability, so the live PYCS tool can estimate unseen
locations using these top performers once they are created.

We are also working on gradually expanding our dataset to cover the entire contigu-
ous United States (CONUS), or at least those where alfalfa variety trials are performed,
especially where the crops are rainfed and not exclusively “Roundup Ready”, as explained
below. Using the Daymet [30] tool has vastly increased our efficiency with curating data
and allows us to obtain weather data for any precise location where we have access to
variety trials, so we expect to accelerate the growth of our datasets going forward. Since we
are trying to contribute to mitigating the effects of climate change, we are more interested
in rainfed crops, as rain is a climate factor, not to mention that artificial irrigation might
cloud the significance of rain as a feature.

Glyphosate herbicide, known under the trade name Roundup, is a very common
tool for battling pests in many crops, including alfalfa. Glyphosate kills virtually any
plant it contacts, except those whose seeds are genetically engineered to be immune to
glyphosate, and such modified seeds are called “Roundup-Ready”. Crops grown from
Roundup-Ready seeds are tolerant to glyphosate, meaning that fields where these crops
are grown can be treated with the chemical, which will kill surrounding plants and weeds
but not the crop itself [32]. However, in recent years, the World Health Organization
determined that glyphosate is a “probable carcinogen” that may negatively affect the health
of humans, animals, and our ecosystem, and that more research is necessary to determine
the health consequences of such a ubiquitous product [33]. While research connecting
glyphosate and related pesticides to cancer is not proven, our team generally subscribes to
a non-invasive approach to precision farming, adopting the perspective that we can more
effectively mitigate climate change by adapting to our environment than manipulating
it. Noting this recent controversy surrounding Monsanto’s Roundup herbicide, its active
chemical glyphosate, and its potential carcinogenic qualities and negative environmental
impacts, our work considers this product to be potentially at odds with efforts to combat
climate change in a non-invasive way; therefore, our work focuses on crops that do not
use glyphosate.

The next phase of our team’s research will focus on true forecasting of future alfalfa
yields based on time series data and models. We are exploring known time series models
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like autoregressive integrated moving average (ARIMA) and vectorized autoregression
(VAR), but we are also investigating a pretraining technique where we retune models
already trained according to a sliding time window. We are happy to provide our data and
code publicly at https://www.github.com/thejonathanvancetrance/SNLT (accessed on
29 November 2022) so that others may reproduce and extend this work.

6. Conclusions

The main contributions of this work are: we show that training classifiers with syn-
thesized data often produces more accurate classifiers than training with real data, when
the synthesized dataset is larger than the real one, and the target dataset is very small;
we propose the novel SNLT pipeline, which trains more accurate models than local and
non-local training; we propose the PYCS application, which offers a graphical user inter-
face to perform crop yield estimation; we provide a publicly available, growing dataset
of aggregated alfalfa yield and weather data. Furthermore, this work sets the stage for
true forecasting of future yields, which we plan to include in future iterations of PYCS.
SNLT produced the highest accuracy of 85.7% with a decision tree classifier, scored above
70% accuracy with an XGBoost classifier, and beat non-local and local training by over
40%. These results indicate that the SNLT pipeline is useful, and that it is a good feature to
include in the PYCS application. When a farmer using PYCS wants to estimate alfalfa yields
for a location where data is too scarce to train ML models, and when non-local training
data from a nearby location is more abundant, yet too scarce to train strong models, we
can synthesize larger datasets, which greatly improve the classification accuracy of our ML
models. Furthermore, as researchers, we can expand the data and train and store more
models as we use SNLT to conduct further experiments on new locations. Admittedly,
we would like to see higher accuracies on larger target datasets with greater consistency,
but we may have merely gotten our foot in the door with demonstrating this technique’s
usefulness. XGBoost has consistently produced encouraging results and trained very fast
on very large datasets, so we plan to include it and similar models in future work, moving
beyond the traditional models in our early work. A deeper study of XGBoost may reveal
tuning or modifications we should perform to achieve better results. Most importantly, our
results show 70% or greater accuracy in multiple locations on multiple runs, fairly well
convincing us that our pipeline is useful and merits further exploration.
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Appendix A

The grid for the hyperparameters of each model is as follows:
Decision Tree

• ‘criterion’: [‘gini’];
• ‘max_depth’: [5, 10, 25, 50, 100].

Random forest-

• ‘n_estimators’: [5, 10, 25, 50, 100];
• ‘max_depth’: [5, 10, 15, 20];
• ‘criterion’: [‘gini’].

K-nearest neighbors

• ‘n_neighbors’: [2, 5, 10];
• ‘weights’: [‘uniform’, ‘distance’];
• ‘leaf_size’: [5, 10, 30, 50].

Support vector classifier

• ‘kernel’: [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’];
• ‘C’: [0.1, 1.0, 5.0, 10.0];
• ‘gamma’: [‘scale’, ‘auto’];
• ‘degree’: [2, 3, 4, 5].

Neural Network

• ‘hidden_layer_sizes’: [(3), (5), (10), (3,3), (5,5), (7,7)];
• ‘’solver’: [‘sgd’, ‘adam’];
• ‘learning_rate’: [‘constant’, ‘invscaling’, ‘adaptive’];
• ‘learning_rate_init’: [0.1, 0.01, 0.001].

Logistic Regression—default parameters; XGBoost—default parameters.
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