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Abstract: Diverse phenomena such as positron annihilation in the Milky Way, merging binary neutron
stars, and dark matter can be better understood by studying their gamma ray emission. Despite
their importance, MeV gamma rays have been poorly explored at sensitivities that would allow
for deeper insight into the nature of the gamma emitting objects. In response, a liquid argon time
projection chamber (TPC) gamma ray instrument concept called GammaTPC has been proposed
and promises exploration of the entire sky with a large field of view, large effective area, and high
polarization sensitivity. Optimizing the pointing capability of this instrument is crucial and can be
accomplished by leveraging convolutional neural networks to reconstruct electron recoil paths from
Compton scattering events within the detector. In this investigation, we develop a machine learning
model architecture to accommodate a large data set of high fidelity simulated electron tracks and
reconstruct paths. We create two model architectures: one to predict the electron recoil track origin
and one for the initial scattering direction. We find that these models predict the true origin and
direction with extremely high accuracy, thereby optimizing the observatory’s estimates of the sky
location of gamma ray sources.

Keywords: deep learning; astrophysics; reconstruction; gamma rays

1. Introduction

Soft gamma rays are emitted from many poorly measured astrophysical processes,
motivating exploration of the low MeV region of the astronomical electromagnetic spec-
trum [1]. Firstly, for example, positrons in the Milky Way can be observed from 511 keV
emissions, a product of electron-positron annihilation. However, it is unclear where the
positrons within the interstellar medium originated from, and the quantity and spatial
distribution of the positrons is uncertain as well. Therefore, mapping out the distribution
of the 511 keV line is key to understanding antimatter within our galaxy [2]. Secondly,
we have observed gamma rays from the galactic center in surplus of that expected from
known astrophysical processes. These gamma rays could be due to Weakly Interactive
Massive Particles, or WIMPs, for the WIMP dark matter model predicts a self-annihilation
interaction that results in the production of low MeV gamma rays. It is important to
determine if the galactic center excess is due to physics beyond the Standard Model or
can be attributed to millisecond pulsars [3]. Thirdly, energetic processes such as active
galactic nuclei, supernovae, and merging binary stars emit gamma radiation. The structure
of jets, accretion disks, magnetic fields, and underlying causes for gamma emission can be
understood by studying the polarization of these gamma rays. Neutron star mergers are
accompanied by gamma ray bursts, and localization of these events gives insight to the
dynamics associated with the final stages of the binary system [4].

With such phenomena in mind, soft gamma rays can be viewed as a powerful probe
for research in many areas of astrophysics. However, the low MeV gamma ray band is
a region of the electromagnetic spectrum that is largely unexplored. Instruments aboard
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the Compton Gamma Ray observatory such as COMPTEL and OSSE have investigated
this energy range though suffer low signal to noise and a small effective area. As a
consequence, an all sky gamma ray observatory called GammaTPC has been proposed
for development. This instrument concept promises a larger field of view, better pointing
capability and energy resolution, and high sensitivity to polarization, thus providing a
significant enhancement in sensitivity over previous instruments [5].

GammaTPC utilizes liquid argon Time Projection Chamber (TPC) technology [6] in
order to localize gamma ray sources. Gamma rays will scatter in the liquid argon, creating
energetic recoiling electrons which lose energy by both ionizing and exciting nearby argon
atoms. The excited atoms return to their ground state and emit photons that are promptly
detected by silicon photomultipliers. The liberated charges then drift in an applied electric
field to a 2D array of charge-sensitive pixels to be read out. The distribution of charges
across this 2D array locates them in the X−Y plane. Additionally, the time between the
initial flash of light and the time the charges are detected, combined with the known value
of the electron drift speed, determines the interaction depth, thus giving a 3D reconstruction
of the event. Fine grained X−Y charge readout with pixels enables detailed measurement
of the 3D charge cloud from each gamma ray scatter. Two main challenges associated with
this technology are power consumption and charge diffusion. More power is required for
lower noise charge readout. Furthermore, electrons read out by the pixels are at risk of
being too diffuse and not reaching the charge threshold required for detection. This issue
is resolved with a novel charge readout system. A coarse grid of wires is placed above
the pixel grid. Electrons passing through the wires induce current that powers the pixels
behind the wire mesh, therefore reserving power until readout is required. Furthermore,
the coarseness of the grid allows full measurement of the signal from diffuse charge clouds
that otherwise will lose significant charge to below threshold signals in the pixels.

By measuring the energy from the scattered electrons and light from atomic de-
excitation, we can infer the energy of the incident gamma ray. Furthermore, by measuring
the positions of the first two Compton scatters, we can infer the sky location of the gamma
ray source using the Compton formula, resulting in estimates of the location as a circular
loop in the sky [7]. Though, the axial degeneracy of the location constraint can be lifted if
we can also obtain the initial direction of the scattered electron. If measured perfectly, the
initial scattering direction allows us to reduce the inferred location the gamma ray from
a circle to a point. In practice, the loops are reduced to arcs with non-negligible width,
and the thickness of the width is reflective of the uncertainty in the energy and position in
the kinematic reconstruction. Overlapping arcs from multiple scattering events allow for
localization of the gamma source in which the energy and position uncertainties determine
the point-spread function of the image.

The interaction locations are the minimum pieces of information required to locate
the gamma ray source, though additionally obtaining the scattered electrons’ initial direc-
tions improves the signal to noise ratio and reduces the number of gamma rays needed
for localization. Algorithmic extraction of these interaction parameters from the charge
readout data has been previously performed though is not straightforward. However,
recent advances in the field of machine learning have provided potential for deep learning
to achieve considerably better accuracy and precision over algorithmic techniques. This
is especially important when considering the fact that we aim for sub-millimeter level
accuracy to prevent the error in the kinematic reconstruction of the incident photon di-
rection from being dominated by the interaction location error. Therefore, we employ a
convolutional neural network to estimate the interaction location and the initial scattered
electron direction.

The contributions and outline of our work can be summarized as follows. In Section 1,
we motivate how a proposed instrument called GammaTPC can shed light on physics
associated with the poorly measured MeV sky and requires high accuracy machine learning
models to optimize its pointing capability. The ultimate purpose of our work is to develop
these high performing ML models. Then, in Section 2, we discuss prior and related work
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utilizing physics based and machine learning based estimation and compare and contrast
these to our investigation. Section 3 describes the model architecture we have developed
for GammaTPC as well as the model hyperparameters and the generation and details of the
data set used. Notably, we use very large training data sets generated with highly realistic
simulated scattering events as well as custom code to simulate the effects of detector
readout. Our results are discussed in Section 4 and specifically detail the high accuracy of
the initial direction and initial interaction location model predictions. We also include plots
of the electron tracks overlaid with visualizations of the models’ predictions. Results for
models trained on a broader data set are shown in Section 5, and we conclude and present
paths for future work in Section 6.

2. Related Work

Prior efforts focusing on electron track reconstruction may be divided into two ap-
proaches: physics based estimation and data driven estimation. The reconstruction of
general electron tracks is of seminal importance for the fields of Compton telescopes and
X-ray polarimetry and has been investigated by researchers in both the disciplines.

With respect to physics based estimation, Bellazzini et al. [8] outlined the Momentum
Method for reconstructing the direction of photo-electron emission. Recently, Li et al. [9]
presented an algorithm based on graph theoretic concepts for X-ray polarimetry.
Yoneda et al. [10] have attempted to apply this technique to electron-tracking Compton
cameras. These techniques are inherently limited as they are applicable to strip based
detectors only. In this context, Bernard et al. [11] have outlined the potential accuracy of
time projection chambers for providing a photon direction measurement for Compton
events, along with the polarimetry of linearly polarized radiation.

With respect to data driven estimation, there has been limited prior work carried out in
this context, wherein Machine Learning algorithms have been applied for similar electron
track reconstruction. Ikeda et al. [12] and Takada et al. [13] have utilized a Convolutional
Neural Networks based on the VGG [14] and the U-Net [15] (The U-Net architecture consists
of a contracting section, and an expansive section that also performs concatenations with
the features from the contracting section. This leads to an architecture that resembles
the alphabet “U”, leading to the nomenclature) architectures to predict the scattering
positions and electron recoil directions from track images from PIC anode and cathode
strips. Similarly, Peirson et al. [16], Peirson and Romani [17] and Peirson and Romani [18]
utilized an ensemble of deterministic neural networks corresponding to the ResNet [19]
architecture trained on Monte Carlo event simulations for the IXPE detector.

Our work focuses on inputs of 3-D images, as opposed to the aforementioned strip
based detectors that generated conventional images with a singleton channel as inputs for
the ML model. The complexity of the input leads to ensuing complexity of the problem.
Furthermore, the proposed GammaTPC instrument is a liquid-based detector and thus is
able to reconstruct electrons with energies of O (100 keV) and above. The aforementioned
studies focused on electrons of O (1 keV). The higher energy leads to additional challenges
in the ML task. Additionally, the higher dimensionality of the input (3-D images) obviates
the adoption of established CNN architectures, as in the aforementioned prior works. We
design our own model architecture, as is described in the following section.

3. Methods

The input to the CNN model is a 3D image of the voxelized charge readout from the
detector. We simulate this readout in two steps. First, because GammaTPC is an instrument
concept, real data is not yet available, so we use the PENetration and Energy LOss of Positrons
and Electrons (PENELOPE) [20] code to simulate the energy loss along the tracks created
by scattered electrons (A copy of PENELOPE can be obtained from the Nuclear Energy
Agency at the following link: https://www.oecd-nea.org/tools/abstract/detail/nea-1525/,
accessed on 1 November 2022). PENELOPE provides a detailed simulation of electron
transport through various media (in this case, liquid argon), including elastic and inelastic

https://www.oecd-nea.org/tools/abstract/detail/nea-1525/
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scatters off of atoms, bremsstrahlung, and electron-positron pair production. The output is
a table containing a series of steps through the medium, with each corresponding to one of
the aforementioned interaction types. At each step, the energy deposited is recorded, as
well as any daughter particles, which are also tracked. Chaining the steps together provides
the simulated electron track. In the second step of our simulation pipeline, we use a custom
code that simulates the creation of clouds of ionized electrons from the energy deposited
along the electron track, the diffusion of these clouds as electrons drift to the pixel readouts,
and the readout of the charge collected on the pixels. The drift distance of the charge to the
detector, the readout noise, and pixel threshold are all adjustable parameters in this custom
detector effects and readout code.

As the machine learning model acts as a surrogate for a physics phenomenon, it
needs to mimic the underlying characteristics of the physical process. Based on physical
criteria, the learning algorithm to approximate the mapping should have translational
invariance and subsume locality in the mapping. The translational invariance is desired as
the behavior of scattered electrons is independent of their position in the TPC, at least to the
degree of analysis relevant for this work. Additionally, the locality would enable the model
to consider voxels in spatial proximity to learn the head and direction. As convolutional
layers are equivariant to spatial translations [21,22], they are a judicious choice for this task.
When coupled with pooling layers, they are approximately translation invariant [21–24].
That is, convolution-based feature extraction is not affected by the absolute position of
the feature in the feature map. Additionally, the convolution operation preserves locality
of features conditioned upon the extent of the filter sizes [25]. Based on these criteria for
the inductive biases of the learning algorithm, we utilize a convolutional neural network
to learn a mapping from the raw three-dimensional images of the charge readout due to
Compton scatters in the LArTPC to the location of the electron track head or the initial
direction of the scattered electron.

We include spatial dropout [26,27] and batch normalization [28] layers after each
convolutional layer to reduce overfitting. The feature maps are flattened at the conclusion
of the feature extraction stages that utilize three-dimensional convolutions. The final output
from the fully connected layers is a 3-dimensional prediction for the location of the electron
track head or of the initial direction of the scattered electron. The model architecture and
ancillary hyperparameters were established based on Bayesian Optimization, followed
by subsequent manual fine tuning. The outline of the model architecture utilized in
this investigation is similar to Buuck et al. [29], where a probabilistic analysis of the the
reconstruction was executed. Our head model uses an MSE loss function, though the initial
direction model uses a cosine loss function, for the magnitude of the initial direction vector
is not a quantity relevant to the kinematic reconstruction. Furthermore, we include a flatten
layer for the head and initial direction models instead of a global average pooling layer as
done in their work. A schematic of the model is shown in Figure 1.

The substitution of a global average pooling layer with a flatten layer increases the model
complexity, though this is justified given the size of our data set compared to Buuck et al. [29].
Approximately 100,000 electron tracks were generated with PENELOPE for each of the chosen
energies ranging from 50 to 1000 keV and were split in a 95:5 ratio for training/validation and
testing; the same ratio was used for splitting the training and validation datasets. Individual
models were trained on each of the energies with batch sizes of 64. We used the Adam
optimizer with an initial learning rate of 10−3 and decreased this by a factor of four if no
improvement was made to the validation loss after four consecutive epochs with 100 epochs
in total. Furthermore, we halted training if the learning rate was below 10−8 and the
validation loss did not decrease after 12 consecutive epochs. The typical training time for the
direction and head models in Section 4 was 1.5 h and 30 min, respectively, while the models in
Section 5 took approximately 7.5 h to train. Our training scripts are publically available (https:
//gitlab.com/gammatpc-ml/data-set-and-training-scripts, accessed on 1 November 2020),
and additional code or data is available upon request. Finally, for our readout simulation,

https://gitlab.com/gammatpc-ml/data-set-and-training-scripts
https://gitlab.com/gammatpc-ml/data-set-and-training-scripts
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we use drift distances of 1, 5, and 10 cm for each energy and 200, 300, 400, and 500 µm
pixel pitches.

Figure 1. Diagram of the model architecture used in our investigation. A cosine loss function was
used for the initial direction model and MSE loss for the head model.

4. Model Results for Separated Energy and Drift Distance Data

In this section, we present the results for the head and initial direction models where
we train a separate model for each energy and drift distance. Training the models on the
data set in this manner allows for direct comparison to previous work [29] and highlights
the advantage of the new model and additional data.

4.1. Track Origin Predictions

Figure 2 displays the error across all coordinates for various drift lengths. A bug in the
code simulating the detector response caused some electrons to create tracks in the liquid
argon with no detectable charge cloud, leading to populations of events with anomalously
large Euclidean Distance Errors (greater than 5 mm). We have removed those events before
generating Figure 2. All Aggregated Coordinate Error histograms, when fitted to normal
distributions, have standard deviations different from each other with p-values smaller than
6.8× 10−15. Tracks corresponding to low energy events typically result in localized regions
of charge sometimes less than 1 mm in extent, thus we can obtain small error for the track
origin predictions. Higher energy electrons tend to have both longer and straighter tracks.
Therefore, one might expect that it would be easier to correctly identify the beginning
of a high energy electron track than a shorter, more circuitous low energy electron track.
However, the smaller error for high energy tracks is not observed, and we speculate that
the correlation between the typical error and track energy is present by virtue of the length
scale of the track. Long tracks associated with high energies span distances on the order of
a few mm, thereby allowing incorrect head predictions to produce errors larger than the
incorrect predictions in tracks spanning sub-mm scales.
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Figure 2. Accuracy of the head model for the 200 µm pixel pitch case. Left column: Euclidean
distance between the true and predicted head locations. Right column: Difference between the true
and predicted head coordinate aggregated across all coordinate directions.

We also present a comparison of the error for the head models between the 1, 5, and
10 cm drift length data sets in Figure 3, which demonstrates that the scatters that happen at
greater drift distances—that is, farther from where readout occurs—have worse position
resolution. Because the charges have to drift farther, they also diffuse more, which worsens
the definition of the charge cloud and washes out the shape of the electron track. We
hypothesize that this is what causes the degradation in position resolution with increasing
drift depth. Nonetheless, we find that the desired sub-mm accuracy is achievable for our
model. The summary of our results for all pixel pitches can be found in Table 1.

We can make a comparison to the results achieved by Ikeda et al. [12], although there
are some important differences between the experiments (chiefly their use of gaseous argon
instead of liquid, their lower energy range, and the fact that their strip-based readout
only produces two 2D images, compared to the full 3D readout achieved with Gam-
maTPC). Ikeda et al. [12] show in their manuscript’s Figure 7a median absolute error on
their position measurement between approximately 0.3 and 3.5 mm across their simulated
energy range of 5 to 200 keV (right panel, red line). Comparatively, as shown in Figure 3,
GammaTPC achieves an RMSE on our position measurement better than 0.2 mm in almost
all cases across our simulated energy range of 50 to 1000 keV. Ikeda et al. [12] also show in
their manuscripts’s Figure 7a median angular resolution between approximately 25 and
90◦ (left panel, red line). We obtain an angular resolution between 65 and 90◦ for 300 keV
electrons, depending on depth, and between 1.6 and 2.2◦ for 1000 keV electrons, again
depending on depth. Electrons with energies between 300 keV and 1000 keV have angular
resolutions between these values, and at all energies the best resolution is obtained for
short drift lengths, while the worst is for long drift lengths.
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Figure 3. Comparison of the head model predicting accuracy by energy per drift length. Longer drift
lengths result in origins that are harder to predict due to the diffusion of charge, and hence loss of
information, before readout. Points sizes differ in order to reveal overlapping points.

Table 1. Median Euclidean distance error (mm) for the head model across all energies, fixing one of
the four pixel pitches and three drift distances.

Pixel Pitch (µm)

200 300 400 500

Drift Distance (cm)
1 0.05664 0.05621 0.06626 0.10167

5 0.28113 0.15146 0.12109 0.15662

10 0.51667 0.30343 0.26007 0.22308

4.2. Initial Direction Predictions

In contrast to the origin predictions, it is easier to obtain smaller error for the initial
direction of gamma photons with larger energies. Energetic electron recoil events result in
longer tracks, therefore making the initial direction more well defined. This is exemplified
in Figure 4, where our model demonstrates very strong predictive capability for higher
energies and is conversely not performant for low energy scatters. The model is largely
incapable of producing consistently correct predictions of the initial direction with 300 keV
energies, therefore we omit the 50 keV events in the analysis here, for the model is expected
to perform similarly or more poorly. We have performed a Cramer-von Mises test to
determine the degree to which these distributions deviate from uniform distributions. All
distributions shown in Figure 4 deviate from uniform distributions with p-values < 10−6,
with the exception of 300 keV electrons at 5 cm drift, which has a p-value of 9.58× 10−5

and 300 keV electrons at 10 cm drift, which has a p-value of 0.86. The data in Figure 4 can
also be summarized in Table 2, where we show the median of the error across all energies
per drift distance and pixel pitch.
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the 500 µm pitch case. Left column: Cosine of the angle between the true and predicted initial
electron recoil directions for the initial direction model at drift lengths 1, 5, and 10 cm. Right column:
Magnified view of the left column.

Table 2. Median of the angle (in degrees) between the predicted and true initial direction vectors for
various pixel pitches and drift lengths. Perfect predictions yield δ = 0◦.

Pixel Pitch (µm)

200 300 400 500

Drift Distance (cm)
1 2.0336 2.0443 3.067 3.572

5 24.660 7.4337 5.0245 5.3518

10 72.978 29.078 17.206 11.117

It is also interesting to evaluate the performance of the direction model when it is
interpolating. Scattering events in the detector are not necessarily at the energies the
models have been trained on, therefore we are required to create and train a model such
that it maintains adequate predicting capability on a continuum of energies. Our results
are shown in Figure 5. Here, we have taken the median of the errors across all tracks for
each matrix element in the plot. The direction model maintains performance when tested
on the energies it is trained on. However, it seems to have poor interpolation ability; it
shows suboptimal performance even for scattering events with energies close to those it
was trained on.
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Figure 5. Error for models trained on one energy and drift length and tested on energies from both
the data set and outside it. Each pixel in the grid is the median of the error cos δ for the 5000 tracks in
the test data set.

4.3. Visualization of Selected Electron Tracks

The charge the detector reads out and the models’ predictions of the origin and di-
rection can be found in Figure 6 for selected electron tracks. It is important to note that
the performance of the models is independent of one another despite the fact that the
initial direction and interaction vertex are not. This is exemplified in the 750 keV/10 cm
drift/400 µm pitch track in which a highly accurate head prediction is achieved with a
largely erroneous initial direction. Furthermore, we find that the model has difficulty find-
ing the true initial direction for curled tracks as exemplified in the 300 keV/5 cm/300 µm
track. This aligns with intuition given the fact that the charge is too condensed to resolve the
track and obtain a direction. On the contrary, we achieve low error in the origin prediction
as a consequence of the tight track geometry.

Figure 6. Cont.
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Figure 6. Selected 3D plots of the electron tracks at various energies, drift distances, and pixel pitches.
The color and size of the circles indicates the amount of charge read out at a particular voxel. We
denote ∆r as the euclidean distance between the predicted and target origins, and cos δ as the cosine
of the angle between the predicted and target initial direction vectors.

5. Model Results for Aggregated Energy and Drift Distance Data

In GammaTPC, the energy of the incident photons and drift distances of the electrons
will be variable. An effective head and initial direction model will therefore be able to
maintain accuracy in stochastic conditions. We are then motivated to train a head and
direction model across the three drift lengths and gamut of energies for each pixel pitch
and compare the results to the models trained only on one energy and drift length. None
of the hyperparameters used for the models in the previous section were changed here.

5.1. Track Origin Predictions

We have found that the head model trained across all energies and drift distances
performs slightly worse than its energy- and drift- specific counterparts as shown in Figure 7
with median errors included in the caption. Sub-mm accuracy is still viable for 200 µm
and 400 µm pitches, though we omit plots for the 300 µm and 500 µm pitches because
these models failed to train. The standardized hyperparameters used throughout this
investigation resulted in minimal reduction of the validation loss for the the 300 µm and
500 µm pitch models during training, rendering their predictions unchanged by the input.
Although the correlation between error and energy is not as consistent as with the head
models in Section 4, the overall trend observed here can be explained by the same physical
reasoning. The fact that the 750 keV tracks have less accurate predictions than the 1000 keV
tracks do not have an obvious physical interpretation, but could instead be artifacts of the
model training and hyperparameters. The model has not been fine tuned for each pitch or
drift distance, and this limitation manifests in the form of accuracies that differ from those
in the preceding section.
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Figure 7. Euclidean distance error for the head models trained on data composed of all energies
and drift distances at a particular pitch. The median after combining all energy distributions in the
200 µm column is 0.20114, 0.24877 and 0.33071 mm for the 1, 5 and 10 cm drift distances, respectively.
Likewise, the 400 µm column gives median errors of 0.21661, 0.24439, and 0.31654 mm.

5.2. Initial Direction Predictions

Accuracy for the models trained across all energies and drift distances are shown in
Figure 8. Commonalities with previous models include an improvement in performance
from the 200 µm to 300 µm pitch as seen previously Figure 3, as well as prediction errors
being relatively similar for the direction models as seen before in Figure 4.

Nonetheless, the models are slightly less performant compared to those discussed in
Section 4. It is possible that a more complex model is needed to take full advantage of the
approximately 1.2 million electron tracks that were available for training. Nonetheless, the
models are still able to consistently deliver reasonably precise estimates, especially at small
drift distances and high energies where we can reliably achieve predictions with errors
smaller than 10◦.

The model is evaluated at energies beyond those present in the trained data set, and
the results are displayed in Figure 9 with the vertical axis showing the median of the error
cos δ across all of the test tracks for a particular energy. The relatively better performance
for the trained energies 300, 500, 750 and 1000 keV is expected. While the interpolation
ability of the model is expected to have improved compared to the models in Section 4
due to the broader training data set, we still find no correlation between the prediction
error and the energy difference from an energy used in training. That is, scattering events
with energy levels outside those the model has been trained on, regardless of the energy
difference from a trained energy, yield similar errors.
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Figure 8. Prediction error for direction models trained over all energies and drift distances for a fixed pixel pitch where δ is the the angle between predicted and true
initial electron direction. Combining all energies at a fixed drift length, the median δ is approximately the same across all pixel pitches and is around 10, 50 and
70 degrees for the 1, 5, and 10 cm drift distances.
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Figure 9. Error for initial direction models trained on the 200 µm pitch data across energies 300, 500,
750, and 1000 keV and drift lengths 1, 5, and 10 cm. Models are tested on energies present in both the
training data set (300, 500, 750, 1000 keV) and outside it. We only plot the median of the cosine of the
error cos δ from the 5000 test tracks; larger cos δ implies more accurate predictions.

6. Conclusions and Future Work

We have developed machine learning models to predict the origin and initial direction
of the electron recoil events in the proposed liquid argon gamma ray observatory Gam-
maTPC. The precision of the reconstruction of the electron tracks is a major driver in the
overall ability of the instrument to locate gamma ray sources on the sky. Consequently,
the optimized pointing capability of GammaTPC gives rise to strong discovery potential
for phenomena associated with gamma ray emission in the low MeV range, allowing for
deeper insight on phenomena ranging from black hole jets to WIMP dark matter.

We have found that sub-mm accuracy for the track origin predictions is possible for
the low energy events, especially at small drift lengths. Our initial direction model predicts
the initial direction exceptionally for high energy events. At energies of 500 keV and below,
the direction model is significantly less accurate, and at long drift distances it is largely
incapable of determining the initial direction. We have tested the limits of the head and
initial direction models by training them over a spectrum of energies and drift distances,
finding that the larger dataset mitigates the models’ efficacies. The broadly trained models
are less performant for energies that they are trained on compared to the specialized models,
and they have little ability to interpolate to make predictions on events with energies not in
the training data set.

It is possible to localize gamma ray sources more precisely by quantifying the uncer-
tainty with the estimates from the machine learning models, and we intend to explore this
with post-hoc methods such as the Laplace Approximation [30] in future work. As it stands,
the models only provide point predictions of the initial direction and head location. Quan-
tifying the uncertainty allows us to remove erroneous predictions that don’t contribute to
the source localization. We also look forward to tuning the model hyperparameters so that
it maintains adequate predicting capability when training data consists of mixed energies
and drift lengths.
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