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Abstract: Data augmentation is needed to use Deep Learning methods for the typically small
time series datasets. There is limited literature on the evaluation of the performance of the use of
Generative Adversarial Networks for time series data augmentation. We describe and discuss the
results of a pilot study that extends a recent evaluation study of two families of data augmentation
methods for time series (i.e., transformation-based methods and pattern-mixing methods), and
provide recommendations for future work in this important area of research.
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1. Introduction

The benefits of Artificial Intelligence (Al) algorithms can be fully leveraged only when
the required amount of data needed for the training of these models is available. This creates
a practical problem as data may be costly to obtain, difficult to collect, scarce, they may
raise privacy issues, or take too much time to be gathered while Al-based decisions are
needed in a timely manner. This problem has been exacerbated in recent decades by the
fact that Deep Learning has been powered by the increasing availability of graphic cards
boarding a GPU and the democratization of GPU-powered platforms. This technology
improvement has paved the way for the development of more complex models that require
larger and larger datasets to overcome the risk of overfitting.

Data augmentation methods artificially create synthetic data to enrich the real ones
obtained via observations or experiments. Already used for several years in the field
of computer vision, its use is mainly based on the simple idea of generating multiple
variations (based on rotation, scaling, contrast, etc.) of the images that are used to train
Deep Learning algorithms, and thus improving their robustness and performance. Data
augmentation is providing a practical solution to address the critical issues listed above
by allowing the training of the models for those situations. As a result, the need for
reliable data augmentation methods is particularly strong today, as they would enable
the use of high-dimensional models while mitigating the risk of overfitting. The scope of
applications for data augmentation ranges from clinical trials and scientific experiments to
industrial testing and financial risk management. With today’s computational power, data
augmentation is becoming an essential technique to train Machine Learning algorithms
more efficiently.

As expected, it is not possible to identify a unique data augmentation method that is
suitable and optimal under all practical circumstances. The choice of the data augmentation
method to be used in a specific situation is expected to be a function of at least four main
features:

1.  Type of data: Data may be tabular, images, time series, chemical structures, etc. The
different types of data may require different data augmentation methods specifically
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designed to take into account the particular structure and intricacies of that type
of data.

2. Downstream task: The downstream processing of the augmented data affects the
choice of the data augmentation method. For example, the type of neural network
architecture will influence the choice of the data augmentation method, and also if the
task is a classification task or not.

3. Performance evaluation metrics: In order to select an optimal data augmentation
method, it is necessary to be able to compare its performance against competing
methods by using formally defined performance evaluation metrics. There is a need
for more research studies to address in depth the related topic of comparison of data
augmentation methods.

4. Computation time, latency and determinism constraints: These constraints, regarding
the nature and execution of the method, will affect the choice of the data augmentation
method. Testing is required to identify the optimal data augmentation method for
a given situation. As above, more research is needed regarding these important
operational constraints.

As a side note, we need to mention that the term data augmentation has been previ-
ously introduced in the area of Bayesian Statistics in 1987 by Tanner and Wong [1], where it
refers to the use of auxiliary variables to compute posterior distributions. Although the
use of the same term may be confusing, its exact meaning should be clear from the context,
either Deep Learning or Bayesian Statistics.

The literature on data augmentation for image datasets is very extensive, whereas the
case of multivariate time series data remains much less covered to date. It is the application
of data augmentation methods to time series data that is the focus of this brief report. We
describe the results of a pilot study that has been performed as an extension of the evalua-
tion study described in a recent comprehensive survey on the use of data augmentation
methods for Deep Learning for time series [2]. For more information regarding image data
augmentation for deep learning and time series data augmentation for deep learning the
readers are referred to the recent surveys from [3,4], respectively.

In the field of time series recognition, the datasets are often very small. According
to [2], data augmentation methods for time series and their application to time series
classification with neural networks may be grouped into four different families:

1.  Transformation-based methods
2. Pattern-mixing methods

3.  Generative models

4. Decomposition methods

The comprehensive review [2] includes a thorough evaluation study of the most-
used data augmentation methods for time series data, although the formal evaluation
is focused on the first two families: transformation-based methods and pattern-mixing
methods. To identify an optimal data augmentation method, the approach used by [2] is to
train classification algorithms over both the original and the augmented dataset, and then
evaluate their performance over a test dataset made out of non-augmented data. Although
the evaluation study from [2] involves the comparison of 12 data augmentation methods
for benchmarking purposes, one important recently developed approach is missing, even
though the authors acknowledge its growing importance over the last few years: Generative
Adversarial Networks (GANS).

Introduced in 2014 by [5], GANSs are neural networks jointly trained in order to learn a
non-linear mapping which transforms normally-distributed variables into samples which
mimic the real training data and inherit their statistical properties. The goal of our pilot
study was to expand the evaluation study from [2] by including GANs for time series
data augmentation, along with testing their generative performance for a classification
task relying on the synthetic dataset. It is important to note that the use of GANSs to
generate high-dimensional multivariate time series remains an active research area with
many potential applications.
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2. Materials and Methods
2.1. Datasets

The goal of the evaluation study from [2] was to assess the overall performance of
each data augmentation method included in the study. The study considered a wide range
of time series datasets, specifically those from the public database 2018 UCR Time Series
Classification Archive, available at https://www.cs.ucr.edu/~eamonn/time_series_data_
2018/, accessed on 9 June 2022. As stated above, in this pilot study we explored the use of
GAN s for data augmentation for time series. It is important to note that not all the datasets
from the public repository are suited for GANs training because of the requirements on
the minimum sample size needed to prevent overfitting. The need for external training is
clearly stated in Section 6.3 of [2] as the reason for not including in the evaluation study
data augmentation methods based on generative models, such as those based on GANSs.
On top of that, we did not consider time series obtained via image flattening, as this process
naturally breaks the geometrical structure of the underlying image. It is important to
note that GANs have been extensively studied and used for images, and high-performing
models are available for this specific type of data [6-9]. Based on these considerations,
we have chosen three datasets which belong to three different data types: Sensor, ECG
and Spectro. These data types originate from domains which are most in need for either
data augmentation or data anonymization [10-13], the latter being an important benefit
of synthetic data generation. The main features of the chosen datasets are summarized in
Table 1.

Table 1. Selected datasets from the 2018 UCR Time Series Classification Archive.

Dataset Type Train Test Class Length
FordB (D1) Sensor 3636 810 2 500
ECG5000 (D2) ECG 500 4500 5 140
Strawberry (D3) Spectro 613 370 2 235

2.2. Architecture

For the pilot study, we have decided to use the Recurrent Conditional GANs archi-
tecture [10]. The reasons for this selection are that it is one of the first GANs to generate
continuous sequential data, and that its simple structure ensures fast training, while not be-
ing specifically tailored to a particular type of data and also allowing conditional generation.
We refer the readers to [14] for a thorough review of available generative algorithms.

All trainings have been performed over 10,000 epochs. We define an epoch as being
one generator’s weights update. As the discriminator may be updated more than once per
generator update, this definition is important. Building upon the model proposed in [10],
we implemented an architecture consisting of two discriminators, one which is MultiLayer
Perceptron (MLP)-based and the other which is Long Short Time Memory (LSTM)-based.
The importance of their respective feedback within the generator loss is calibrated via a
dynamic parameter « which evolves over the epochs. At the beginning of the training,
the MLP-based discriminator triggers a much stronger gradient signal for the generator
weights, whereas the LSTM-based discriminator plays a role mostly towards the end of
the training.

The hybrid approach used in the pilot study is motivated by the results regarding the
average classification performance of the models reported in Tables 1-3 from [2], where
the models were trained on the non-augmented datasets. It is clear from those results
that the MLP-based models outperform the LSTM-based models. On the other hand,
LSTM-based models should catch the time series’ patterns missed by the non-recurrent
models, such as the time-to-time conditional probabilities and long-short memory patterns.
The best generative performance was indeed obtained when taking advantage of both
types of discriminators in the order specified above. The trained generators for the three
datasets listed in Table 1 are publicly available at https://storage.googleapis.com/ucrgen/
generators.zip, accessed on 29 July 2022.
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2.3. Experiments

The generative performance of the proposed architecture has been evaluated through
downstream classification tasks [2]. Consistent with the specific datasets selected for the
pilot study, we have used two classifiers: an MLP classifier and an LSTM classifier. We have
selected these two models from those used in [2] as they are the most appropriate for the
chosen datasets. For example, since we did not include image datasets, we did not use VGG
and ResNet architectures for our experiments. Regarding the benchmarks, in Table 2 we
report the performance of the data augmentation methods that have obtained the highest
overall accuracy for the two retained classifiers according to Tables 1-3 from [2] (In [2],
the authors explore the performance of 12 data augmentation algorithms via their average
accuracy over the 128 datasets available in the 2018 UCR Time Series 97 Classification
Archive https:/ /www.cs.ucr.edu/~eamonn/time_series_data_2018/ (accessed on 9 June
2022) as reported by six classification networks.). The accuracy summary statistics (means
and standard deviations) have been calculated over 10 differently-seeded trainings of the
two classifiers.

Table 2. Classification accuracy on the test sets derived from each selected dataset. Results are given
in terms of means and standard deviations over 10 runs of the classification (£ < 0.01). The best
results are presented in bold.

Dataset Classifier None Jittering SPAWNER GAN

D1 MLP 71.27% + 0.06 72.23% =+ 0.04 69.15% £ 0.19 53.85% £ 0.26
LST™M 50.22% =+ 0.09 50.48% =+ 0.10 50.70% =+ 0.11 49.65% + £

D2 MLP 93.96% + & 93.98% £ & 93.40% £ & 94.09% + £
LSTM 92.76% £ 0.01 93.07% =+ 0.02 93.21% + 0.01 58.37% + &€

D3 MLP 89.46% + &£ 85.95% £ & 75.35% + 0.11 83.78% =+ 0.14
LSTM 64.32% + £ 64.32% £ £ 64.32% £ £ 74.30% =+ 0.15

3. Results

Table 2 summarizes the findings of our pilot study. It is important to clarify that our
evaluation of the GANs performance for time series data augmentation is conservative: the
benchmarks have been chosen as the best-performing data augmentation methods for each
of the selected classification algorithms, regardless of the dataset type. It is clear that the
performance of the GAN-based data augmentation methods varies considerably across the
six combinations of a dataset (three options) and a classifier (two options), from the best
performance for the (D3, LSTM) combination to the worst performance for the (D2, LSTM)
combination.

We conjecture that a possible reason for the observed fluctuating performance may be
due to our architecture falling in the well-known mode-collapse, where the discriminator
is being fooled via the repetitive generation of the same, still well-shaped sample [15].
This behavior is clearly evident in Figure 1 where we compare a batch of synthetic time
series (top) against the same number of real samples (bottom) from the dataset D2 (left)
and dataset D3 (right). It may be seen that, while the shape of the synthetic examples
is qualitatively learned by the generator, the intra-variability of the batch of synthetic
data is much smaller that that of the real data, possibly because the generator is basically
reproducing one very similar example over and over again.
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Figure 1. Batch of time series from dataset D2 (left) and dataset D3 (right) using the GAN-based data
augmentation method. (Top) Real data. (Bottom) Synthetic data.

4. Discussion

Based on the results of the pilot study, we conclude that the GAN architecture we have
selected does not consistently improve the accuracy of the final classification task when
compared against the chosen benchmarks.

We start the discussion with some general comments regarding the performance
metrics used in our pilot study, metrics inherited from the evaluation study reported in [2].
Data augmentation methods are supposed to preserve the statistical properties of the
original data by learning to draw samples from the joint distribution of the training dataset.
Downstream classification tasks are not capable of thoroughly evaluating this capacity.
For example, by simply reproducing the same time series per class, we can achieve high
accuracy when performing a classification task, whereas the variability of the data will
not be preserved. The use of more sophisticated statistical metrics is needed to quantify
the degree to which the joint distribution of the original data is reproduced, even though
currently there is no agreement regarding a unique way to fully characterize the statistical
distribution of time series. For example, we could compare time series datasets in terms of
conditional statistical distributions. Well-performing methods in Table 2, such as jittering,
may report poor performance in reproducing these specific summary statistics. Adding
noise to the original data may help a classifier to easily assign the correct class label, but
the variability of the original data will clearly not be preserved.

By cross-comparing Tables 1 and 2, we conclude that the generative performance may
decrease when considering deeper and deeper time series in the training set, implying
that Conditional Recurrent GANSs [10] still miss long term memory effects, which may be
captured by more advanced architectures (e.g., TimeGANSs [16]). In addition, the mode-
collapse issue, conjectured to be a possible reason for the observed performance of the
GAN:-based data augmentation methods, may be addressed by implementing a Wasserstein
loss function during optimization. Wasserstein GANs have indeed been shown to make
training less prone to this problem [15]. Both these possible solutions to the problems
identified during this pilot study will be the subject of future research.

5. Conclusions

In the pilot study, we have generated artificial data starting from a batch of real data.
Upon data augmentation, a classifier was trained over a mixed synthetic-real dataset, and
evaluated on a real test dataset. Following [10], a more rigorous approach would have
required a two step evaluation: training on synthetic, testing on real, along with training
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on real, testing on synthetic. Low variability within the synthetic dataset (e.g., due to
mode-collapse and/or other reasons) would lead to a poor performance when testing on
real data. In the pilot study, such generative defect is hidden by the real highly variable
data. Based on these considerations, it is also very important to formally evaluate the
diversity of the synthetic time series generation [17].

For the datasets we have included in the pilot study, the neural networks deployed for
the classification task show overall poor performance, in some cases the accuracy being close
to the pure randomness level. It was proved in [18] that simpler approaches to such task
may outperform neural networks-based approaches. Because a classifier reporting ~ 50%
accuracy is not informative with regards to the underlying data augmentation efficiency; it
will be useful to complement the above evaluation with more accurate algorithms, such as
Dynamic Time Wrapping and its variations [19,20].

Our pilot study on the use of GAN-based data augmentation for time series had
provided important preliminary information that could be used to design future evaluation
studies. Based on these preliminary results, future studies on this topic should use more
advanced GAN architectures, with Wasserstein loss function, involve a two-step evaluation
process, and provide a formal assessment of the diversity of the synthetic time series
generation.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

GAN  Generative Adversarial Network
MLP  MultiLayer Perceptron

LSTM  Long Short Time Memory
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