
Citation: Tsoulos, I.G. Learning

Functions and Classes Using Rules.

AI 2022, 3, 751–763. https://

doi.org/10.3390/ai3030044

Academic Editors: José Manuel

Ferreira Machado and Kenji Suzuki

Received: 24 July 2022

Accepted: 1 September 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Learning Functions and Classes Using Rules
Ioannis G. Tsoulos

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece; itsoulos@uoi.gr

Abstract: In the current work, a novel method is presented for generating rules for data classification
as well as for regression problems. The proposed method generates simple rules in a high-level
programming language with the help of grammatical evolution. The method does not depend on any
prior knowledge of the dataset; the memory it requires for its execution is constant regardless of the
objective problem, and it can be used to detect any hidden dependencies between the features of the
input problem as well. The proposed method was tested on a extensive range of problems from the
relevant literature, and comparative results against other machine learning techniques are presented
in this manuscript.
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1. Introduction

A variety of common datasets from real-world problems or scientific areas can be
regarded as a classification or regression problem. Such problems may include prob-
lems from the area of physics [1–4], chemistry problems [5–7], problems induced by
economic models [8,9], pollution [10–12], medicine problems [13,14], etc. All the above
problems are in most cases handled by artificial intelligence models such as artificial neural
networks [15,16], radial basis function (RBF) networks [17,18], support vector machines
(SVM) [19], etc. A systematic review of these methods is the e work of Kotsiantis et al. [20].
Additionally, a discussion on how the neural networks perform on regression datasets is
given in [21]. In most cases, these learning models contain a vector of parameters −→w used
to minimize the quantity:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

The set
(−→xi , ti

)
, i = 1, ..., M is the so-called train set, with ti being the actual output

for the pattern −→xi . The model is denoted as a function N(−→x ,−→w ). Equation (1) is usu-
ally minimized using a variety of optimization methods, such as the back propagation
method [22,23], the resilient backpropagation (RPROP) method [24–26], the Quasi Newton
methods [27,28], particle swarm optimization [29–31] , genetic algorithms [32,33], simu-
lated annealing [34,35], etc. However, these techniques suffer from a number of significant
problems, such as

1. The overfitting problem. A major problem with learning techniques is that when
applied to unknown data, also called test data, they produce poor results even if the
learning process was successful. This is because the parameters of the models fit accu-
rately to the training data but fail to fit into unknown data. This problem is presented
with details in the article by Geman et all [36]. This problem is tackled by a list of
methods such as weight sharing [37,38], pruning [39–41], weight decaying [42,43] etc.

2. Long execution time. In most cases, in learning models, the number of parameters
is at least proportional to the dimension of the objective problem and several times,
as for example in artificial neural networks, the number can be multiples of the
dimension. This means that the long execution times of the optimization methods are
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required, especially for large datasets. This problem can be tackled either by using
parallel optimization techniques that exploit modern parallel architectures [44,45] or
by reducing the input dimension with feature selection or construction techniques
from existing ones [46,47].

3. It is difficult to explain the solution. In most cases, the generated machine learning
models produce solutions consisting of numerical series and numerical parameters
derived from optimization methods. For example, an artificial neural network can con-
sist of a sum of products with several terms, especially in large dimensional problems.

In this paper, an innovative technique is presented that constructs rules in a high-level
programming language to estimate the true output in a regression or classification problem.
The construction of the rules is done using grammatical evolution technique [48]. Grammatical
evolution is an evolutionary process that has been applied with success in many areas, such as
music composition [49], economics [50], symbolic regression [51], robot control [52], caching
algorithms [53], and combinatorial optimization [54].

The proposed method has an advantage over other methods from the relevant liter-
ature as it does not depend on an any prior knowledge of the dataset and it can be used
without any change to both regression and classification problems. Furthermore, since
the method uses grammatical evolution, it can discover hidden associations between the
features of the objective problem and furthermore construct rules in a form that can be
understood. Additionally, the proposed method does not require any additional use of
an optimization method as in traditional machine learning models, thus avoiding prob-
lems of numerical accuracy. The proposed method requires a fixed amount of memory
to store the proposed solutions, which do not directly depend on the dimension of the
objective problem .

The rest of this article is organized as follows: in Section 2 the proposed method is
outlined in detail; in Section 3 the used experimental datasets are presented as well as the
comparative results against the proposed method and other methods from the relative
literature; and finally, in Section 4, a list of conclusions from the usage of the proposed
method is presented.

2. Method Description
2.1. Usage of Grammatical Evolution

The grammatical evolution technique is an evolutionary method in which chromo-
somes express production rules from grammar expressed in BNF (Backus–Naur form) [55].
This technique can be used to produce programs in any programming language. BNF
grammar is defined as a set G = (N, T, S, P), where

• N. This constitutes the set of so-called non-terminal symbols.
• T. This set defines the terminal symbols of the grammar. For example, terminal

symbols could be the digits or the functional symbols (exp, log, etc.).
• S is a symbol from the set N, and it is considered as the start symbol of the grammar,

which means that the production initiates from this symbol.
• P is the set of production rules, used to produce new programs in the provided language.

The production rules follow the scheme: A→ a or A→ aB, A, B ∈ N, a ∈ T.

A basic premise for grammatical evolution to start producing rules is to modify the
original grammar and put a sequence number next to each production rule. For example,
consider the enhanced grammar of Figure 1. The numbers in parentheses denote the
sequence numbers for each non-terminal symbol. The number N defines the original
number of features for the provided dataset.

In grammatical evolution, the chromosomes are considered as arrays of integers, and
every element represents a production rule. The production algorithm initiates from the
start symbol and progressively builds the final program by replacing non-terminal symbols
with the right-hand part of the corresponding production rule. The selection of the rule is
performed in two steps:
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• During the first step, the next element from the chromosome is selected. Let us denote
this symbol as V.

• The next production rule is selected according to the scheme

Rule = V mod R,

where R denotes the number of production rules for the current non–terminal symbol.

An example produced by this grammar could be the following:

i f ( x1>2+ s i n ( x3 ) ) value =10+exp ( x2 ) e lse value=x1

<S>::= <ifexpr> value=<expr> else value=<expr> (0)
<ifexpr>::= if(<boolexpr>) value=<expr> (0)

|<ifexpr> else if(<boolexpr>) value=<expr> (1)
<boolexpr>::=<expr> <relop> <expr> (0)

|<boolexpr> <boolop> <boolexpr> (1)
<relop>::= > (0)

|>= (1)
|< (2)
|<= (3)
|= (4)
|!= (5)

<boolop>::= & (0)
| | (1)

<expr> ::= (<expr> <op> <expr>) (0)
| <func> ( <expr> ) (1)
|<terminal> (2)

<op> ::= + (0)
| - (1)
| * (2)
| / (3)

<func> ::= sin (0)
| cos (1)
|exp (2)
|log (3)

<terminal>::=<xlist> (0)
|<digitlist>.<digitlist> (1)

<xlist>::=x1 (0)
| x2 (1)
.........
| xN (N)

<digitlist>::=<digit> (0)
| <digit><digit> (1)
| <digit><digit><digit> (2)

<digit> ::= 0 (0)| 1 (1)
| 2 (2)| 3 (3)
| 4 (4)| 5 (5)
| 6 (6)| 7 (7)
| 8 (8)| 9 (9)

Figure 1. The BNF grammar for the proposed method.

2.2. The Main Algorithm

The main algorithm consists of a series of steps such as:
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1. Initialization step.

(a) Read the training set. The training set consists of M pairs of points (xi, ti),
i = 1 . . . M, where ti being the desired output for pattern xi.

(b) Set NG as the maximum number of allowed generations.
(c) Set NC the total number of chromosomes in the genetic population.
(d) Set ps the selection rate, where ps ∈ [0, 1].
(e) Set pm the mutation rate, where pm ∈ [0, 1].
(f) Initialize the chromosomes of the population by choosing a random number

in the range [0, 255] for every element of each chromosome.
(g) Set iter = 1 as the current number of generations.

2. Genetic Step

(a) For i = 1, . . . , NC do

i. Create by invoking the algorithm of Section 2.1 an artificial program ci
for the chromosome gi.

ii. Apply ci to the training set and subsequently calculate the associated
fitness fi as

fi =
M

∑
j=1

(
ci
(
xj
)
− tj

)2 (2)

(b) EndFor
(c) Execute the selection procedure:

i. The chromosomes are sorted based on the fitness of each chromosome.
ii. The ps×NC best chromosomes are copied intact to the next generation,

while the genetic operators of crossover and mutation are applied to
the rest.

(d) Execute the crossover procedure: The outcome of this procedure is (1− ps)× NC
offsprings, which will be constructed from the population. For every couple
of offsprings, two mating parents are selected using tournament selection.
The offsprings are constructed using one point crossover, which is graphically
demonstrated in Figure 2.

(e) Execute the mutation procedure: a random number r ∈ [0, 1] is produced for
each integer value of every chromosome and this value is altered if r ≤ ps.

3. Set iter = iter + 1
4. If iter ≤ NG goto Genetic Step,
5. Otherwise define as g∗ the chromosome in the population with the lowest fitness

value.
6. Create the corresponding artificial program C∗ through the procedure of Section 2.1

for chromosome g∗

7. Apply C∗ to the test set of the dataset and report the results.

In the proposed genetic algorithm, elitism is used for the best chromosome in the
population, which means that the best solution, if found, will not be lost between the
iterations of the genetic algorithm.
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Figure 2. Example of one-point crossover.

3. Experiments

The software used in the experiments was coded using ANSI C++ and with the
assistance of the QT programming library available from https://www.qt.io (accessed
on 30 August 2022). The software used in the following experiments is available under
the GPL license from https://github.com/itsoulos/GrammaticalRuler/ (accessed on 30
August 2022). Every experiment was reoeated 30 times, and averages were measured.
In every execution, a different seed for the random number generator was used.

In the case of classification datasets, the average percent classification error is shown
in the results tables. Likewise, for regression datasets the mean squared error is reported
in the corresponding result tables. Additionally, the well-known method of 10-fold cross
validation was used for more reliable results.

3.1. Dataset Description

The proposed method is compared against other machine learning techniques on some
datasets, publicly available from some repositories. The main repositories used were:

1. The UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.
html (accessed on 30 August 2022)

2. The Keel repository https://sci2s.ugr.es/keel/[56] (accessed on 30 August 2022)
3. The Statlib repository http://lib.stat.cmu.edu/datasets/ (accessed on 30 August 2022)
4. The Kaggle repository https://www.kaggle.com/ (accessed on 30 August 2022)

The used classification datasets were:

1. Australian dataset [57], the dataset is used for credit card applications.
2. Balance dataset [58], which is used to predict psychological states.
3. Dermatology dataset [59], which is used dermatological deceases.
4. Glass dataset. This dataset is used in glass measurements and it has six distinct classes.
5. Hayes Roth dataset [60]. This dataset is used for concept learning.
6. Heart dataset [61], used to detect the presence of heart disease.
7. HeartAttack dataset, a dataset downloaded from https://www.kaggle.com/ (ac-

cessed on 30 August 2022), used to predict the chance of heart attack.
8. HouseVotes dataset [62], related to the votes in the U.S. House of Representatives

Congressmen.
9. Liverdisorder dataset [63], used for liver disorders detection.
10. Ionosphere dataset, a commonly used meteorological dataset, found in a variety of

research papers [64,65].
11. Mammographic dataset [66], which is a medical dataset.
12. PageBlocks dataset, which is used in document analysis.
13. Parkinsons dataset [67], used to detect Parkinson’s disease (PD).
14. Pima dataset [68], used to detect the presence of diabetes.
15. PopFailures dataset [69], which contains meteorological data.
16. Regions2 dataset, a medical dataset used to detect the hepatitis C in some patients [70].
17. Saheart dataset [71], used to detect the presence of heart disease.
18. Sonar dataset [72].

https://www.qt.io
https://github.com/itsoulos/GrammaticalRuler/
http://www.ics.uci.edu/~mlearn/MLRepository.html 
http://www.ics.uci.edu/~mlearn/MLRepository.html 
https://sci2s.ugr.es/keel/
http://lib.stat.cmu.edu/datasets/
https://www.kaggle.com/
https://www.kaggle.com/
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19. Student dataset [73], used to predict student’s knowledge level.
20. Wine: dataset, a dataset used in chemical analysis of wines [74,75].
21. Wdbc dataset [76], a medical dataset used to detect breast tumors.
22. Eeg dataset. This is a medical dataset described in [77,78]. This dataset has four

variants in the conducted experiments: Z_F_S, Z_O_N_F_S, ZONF_S, and ZO_NF_S.
23. Zoo dataset [79]. In this dataset, the goal is to categorize animals into seven classes.

The regression datasets used here are:

1. Abalone dataset [80], used to predict the age of abalone from different physical
measurements.

2. Airfoil dataset, an aerodynamic dataset obtained by the NASA [81].
3. Baseball dataset, which used to estimate the income of baseball players.
4. BK dataset, used in basketball games.
5. BL dataset, a civil engineering dataset.
6. Concrete dataset, which is a civil engineering dataset [82].
7. Dee dataset. This data set is used to predict prices of electricity.
8. Diabetes dataset, a medical dataset.
9. FA dataset, a data related to body fat.
10. Housing dataset, related to housing prices [83].
11. MB dataset, available from Smoothing Methods in Statistics [84].
12. MORTGAGE dataset, an economic dataset.
13. NT dataset [85], which is related to the body temperature measurements.
14. PY dataset [86], used to estimate Quantitative Structure Activity Relationships (QSARs).
15. Quake dataset. It can be used to predict the magnitude of earthquake tremors.
16. Treasure dataset, which contains economic data information of USA.
17. Wankara dataset, which is a meteorological dataset.

3.2. Experimental Results

The parameters for the current method are shown in Table 1. The results fro the
classification datasets are outlined in Table 2 and for regression datasets in Table 3. An extra
line has been added to the scoreboards at the end titled AVERAGE. This line illustrates the
average of the values for the data sets so that comparison between the different learning
techniques can be made easier. The definition of the columns names is:

1. The column RBF represents the results obtained from an RBF network with 10 parameters.
2. The column MLP represents the results obtained from an artificial neural network

with 10 sigmoidal nodes. The neural network is trained by a genetic algorithm with
500 chromosomes. At the end of the genetic algorithm, a BFGS method [87] was
utilized to enhance the obtained result.

3. The column SGD represents the results obtained by the same artificial neural network
trained with the incorporation of the stochastic gradient descent method [88].

4. The column LEVE represents the results from the usage of the well-known local search
procedure Levenberg–Marquardt [89] to train the same artificial neural network.

5. The column PROPOSED represents the results for the proposed method.

To justify the incorporation of 10 weights in the RBF network and in the artificial
neural network, they were trained with 5, 10, 15, and 20 weights for all classification data,
and the results are shown graphically in the Figure 3. The neural network was trained
using the BFGS local search procedure. In the graph, the average classification error for
all datasets is shown. As can be seen in both neural networks, 10–15 processing nodes are
enough to achieve good results.

Judging from the obtained results, it seems that the proposed method on average
outperforms the other machine learning methods. In classification problems, there is a
gain of 22–30%, and in regression problems the gain increases to 50–70%. Furthermore,
the proposed method does not demand any knowledge for the structure of the input dataset,
and hence the memory space it uses is fixed and independent of the objective problem.
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The results produced by the proposed method are in an understandable form in which
possible dependencies between the characteristics of the objective problem can be detected.
The generated result of the method could, for example, be used as a function in some high-
level programming language such as the C programming language. An example program
for the Wine dataset is illustrated in Figure 4. A similar constructed program for the housing
regression dataset is shown in Figure 5. The proposed method constructs simple rules for
classifying or learning functions while at the same time selecting features, i.e., keeping
from the initial features of the problem those that have greater weight in learning.

Additionally, an additional experiment was performed to examine the impact of
altering the maximum number of generations on the accuracy and the efficiency of the
method (parameter NG). The value for this parameter was changed from 500 to 2000,
and the results for the classification datasets are shown in Table 4 and for regression
datasets in Table 5. These experiments show the dynamics of the proposed method and
its accuracy since even for a small number of generations it shows remarkable results.
Additionally, through them is seen the need for the use of intelligent termination rules that
will terminate the proposed technique in time without having to exhaust all generations of
the genetic algorithm.

Figure 3. Comparison of average classification error for RBF and artificial neural network for different
number of weights.

Table 1. Experimental parameters.

PARAMETER VALUE

NC 500
NG 2000
ps 0.1
pm 0.5

Table 2. Experiemental results for classification datasets.

DATASET RBF MLP SGD LEVE PROPOSED

AUSTRALIAN 34.89% 32.21% 42.92% 22.17% 14.84%
BALANCE 33.42% 8.97% 6.16% 14.10% 10.40%
DERMATOLOGY 62.34% 30.58% 45.52% 50.98% 29.40%
GLASS 50.16% 60.25% 51.41% 61.68% 55.19%
HAYES ROTH 64.36% 56.18% 60.23% 57.97% 32.08%
HEART 31.20% 28.34% 43.57% 27.57% 19.70%
HEARTATTACK 32.83% 31.54% 36.48% 21.20% 22.07%
HOUSEVOTES 5.99% 6.62% 3.48% 8.64% 3.00%
IONOSPHERE 16.22% 15.14% 10.14% 13.10% 11.11%
LIVERDISORDER 30.84% 31.11% 33.69% 29.40% 32.32%
MAMMOGRAPHIC 21.38% 19.88% 21.01% 17.08% 17.54%
PARKINSONS 17.41% 18.05% 32.91% 18.67% 13.11%
PIMA 25.75% 32.19% 35.32% 24.53% 24.90%
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Table 2. Cont.

DATASET RBF MLP SGD LEVE PROPOSED

POPFAILURES 7.04% 5.94% 3.43% 5.24% 5.33%
REGIONS2 37.49% 29.39% 41.29% 37.77% 26.87%
SAHEART 32.19% 34.86% 34.70% 29.78% 30.97%
SONAR 27.85% 26.97% 19.60% 27.20% 28.38%
STUDENT 5.74% 7.23% 3.43% 5.21% 5.47%
WDBC 7.27% 8.56% 17.95% 7.98% 5.66%
WINE 31.41% 19.20% 29.08% 34.69% 11.35%
Z_F_S 13.16% 10.73% 28.58% 14.32% 7.97%
ZO_NF_S 9.02% 8.41% 29.00% 9.73% 8.20%
ZONF_S 4.03% 2.60% 18.45% 3.59% 1.98%
Z_O_N_F_S 48.71% 65.45% 60.09% 61.04% 45.98%
ZOO 21.77% 16.67% 5.00% 45.70% 9.70%
AVERAGE 26.90% 24.28% 28.54% 25.97% 18.94%

Table 3. Experiments for regression datasets.

DATASET RBF MLP SGD LEVE PROPOSED

ABALONE 7.32 7.17 4.55 4.94 5.05
AIRFOIL 0.05 0.003 0.004 0.002 0.002
BASEBALL 78.89 103.60 146.46 112.75 51.18
BK 0.02 0.03 0.02 0.02 0.02
BL 0.01 5.74 0.002 0.09 0.01
CONCRETE 0.01 0.01 0.005 0.005 0.009
DEE 0.17 1.01 0.93 0.65 0.24
DIABETES 0.49 19.86 0.38 2.72 0.67
HOUSING 57.68 43.26 81.45 89.44 23.35
FA 0.01 1.95 0.02 0.02 0.01
MB 1.91 3.39 0.06 0.06 0.06
MORTGAGE 1.45 2.41 10.10 8.64 0.09
NT 8.15 0.05 0.01 0.06 0.08
PY 0.02 0.10 0.02 0.06 0.02
QUAKE 0.07 0.04 0.04 0.04 0.04
TREASURY 2.02 2.93 11.60 10.35 0.10
WANKARA 0.001 0.012 0.0002 0.0002 0.0004
AVERAGE 9.31 11.27 15.04 13.52 4.76

Table 4. Experiments with the number of generations for the classification datasets.

DATASET NG = 500 NG = 1000 NG = 2000

AUSTRALIAN 14.77% 14.89% 14.84%
BALANCE 20.14% 15.47% 10.40%
DERMATOLOGY 39.46% 35.06% 29.40%
GLASS 57.10% 55.38% 55.19%
HAYES ROTH 32.23% 30.92% 32.08%
HEART 19.30% 19.33% 19.70%
HEARTATTACK 23.80% 22.57% 22.07%
HOUSEVOTES 4.13% 4.17% 3.00%
IONOSPHERE 12.83% 11.68% 11.11%
LIVERDISORDER 34.06% 33.59% 32.32%
MAMMOGRAPHIC 17.95% 17.81% 17.54%
PARKINSONS 13.63% 14.00% 13.11%
PIMA 26.64% 25.84% 24.90%
POPFAILURES 5.98% 5.54% 5.33%
REGIONS2 29.47% 28.84% 26.87%
SAHEART 29.50% 29.59% 30.97%
SONAR 26.95% 26.45% 28.38%
STUDENT 6.15% 5.80% 5.47%
WDBC 6.27% 5.97% 5.66%
WINE 14.94% 13.06% 11.35%
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Table 4. Cont.

DATASET NG = 500 NG = 1000 NG = 2000

Z_F_S 9.80% 8.87% 7.97%
ZO_NF_S 10.88% 9.82% 8.20%
ZONF_S 2.46% 2.58% 1.98%
Z_O_N_F_S 50.14% 48.02% 45.98%
ZOO 14.90% 11.70% 9.70%
AVERAGE 20.94% 19.88% 18.94%

i f ( x9<x8 ) value=exp ( log ( s i n ( s i n ( x7 +( x1 ) ) ) ) )
e lse value=cos ( log ( x12 ) ) + ( x10 )/ x5/x7

Figure 4. Example of constructed program for the wine dataset.

Table 5. Experiments with the number of generations using the proposed method for the regression
datasets.

DATASET NG = 500 NG = 1000 NG = 2000

ABALONE 5.42 5.30 5.05
AIRFOIL 0.003 0.002 0.002
BASEBALL 52.81 51.67 51.18
BK 0.02 0.02 0.02
BL 0.02 0.02 0.01
CONCRETE 0.01 0.01 0.009
DEE 0.30 0.27 0.24
DIABETES 0.45 0.46 0.67
HOUSING 25.51 23.97 23.35
FA 0.01 0.03 0.01
MB 0.05 0.05 0.06
MORTGAGE 0.13 0.11 0.09
NT 0.01 0.01 0.08
PY 0.02 0.02 0.02
QUAKE 0.04 0.04 0.04
TREASURY 0.12 0.11 0.10
WANKARA 0.0004 0.0004 0.0004
AVERAGE 4.99 4.83 4.76

i f ( exp ( x6 ) <( x7 ) ) value=x3
e lse
value=log ( x6 ) * x6+x6+x6/log10 ( x13 ) −( x13 / ( 4 . 0 0 ) ) * s i n ( log ( x10 * 3 . 3 / exp ( ( x4 ) ) ) )

Figure 5. Example program for the housing dataset.

4. Conclusions

An innovative rule-generation method was presented in this work. The method can
be applied in both classification and regression datasets. The proposed method constructs
rules in a high-level programming language, similar to the C programming language.
The method has no set of parameters to be estimated, such as the weights of an artificial
neural network, and the only memory required is for the genetic algorithm’s chromosomes.
This means that the memory required to run the method is at the same levels regardless
of the size of the input problem. In addition, it can be used to indirectly select features
from input features and to find dependencies between existing features. Furthermore,
the results obtained are quite encouraging. The method is freely available and requires
the existence of the C++ language as well as the public available QT programming library.
Future extensions of the method may include



AI 2022, 3 760

1. The usage of more advanced stopping rules for the genetic algorithm.
2. The usage of parallel programming techniques to speed up the genetic algorithm.
3. Automatic function generation by grammatical evolution.
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