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Abstract: Lung cancer (LC) is the most common cause of cancer-related deaths in the UK due to
delayed diagnosis. The existing literature establishes a variety of factors which contribute to this,
including the misjudgement of anatomical structure by doctors and radiologists. This study set out to
develop a solution which utilises multiple modalities in order to detect the presence of LC. A review
of the existing literature established failings within methods to exploit rich intermediate feature
representations, such that it can capture complex multimodal associations between heterogenous
data sources. The methodological approach involved the development of a novel machine learning
(ML) model to facilitate quantitative analysis. The proposed solution, named EMM-LC Fusion,
extracts intermediate features from a pre-trained modified AlignedXception model and concatenates
these with linearly inflated features of Clinical Data Elements (CDE). The implementation was
evaluated and compared against existing literature using F1 score, average precision (AP), and area
under curve (AUC) as metrics. The findings presented in this study show a statistically significant
improvement (p < 0.05) upon the previous fusion method, with an increase in F-Score from 0.402
to 0.508. The significance of this establishes that the extraction of intermediate features produces a
fertile environment for the detection of intermodal relationships for the task of LC classification. This
research also provides an architecture to facilitate the future implementation of alternative biomarkers
for lung cancer, one of the acknowledged limitations of this study.

Keywords: deep learning; lung cancer; machine learning; multimodal fusion

1. Introduction

It has been recognised that lung cancer (LC) is one of the most common causes of
cancer related deaths in the UK, and that it also accounts for 12.4% of all diagnosed cancers
worldwide [1,2]. The diagnosis of LC commonly follows the identification of malignant
nodule(s) within a low-dose CT scan [3]. However, only approximately 16.2% of people
survive for more than 5 years after diagnosis [1]. Therefore, detecting malignant tumours
within the lung parenchyma or bronchi in a cancer’s early stages can increase the proba-
bility of effective treatment [2,4,5]. The pathophysiology of lung cancer is yet to be fully
understood; however, academia within healthcare hypothesise that a continued exposure
to carcinogens, such as cigarette smoke, leads to genetic mutations and impacts protein
synthesis, ultimately causing LC [2]. The symptoms of this disease can include a persistent
cough, weight loss, dyspnea, and chest pain; a patient presenting with these symptoms
would be referred for a computed tomography (CT) scan to provide a diagnosis [6].

As medical opinion is still highly regarded, the emergence of machine learning (ML)
and new techniques must work in conjunction with radiologists and doctors in order to
enhance productivity and precision [7]. The combination of modalities, such as images
and textual information, lends itself to the medical field. This study presents a fusion
architecture designed to exploit the intermediate and intermodal relationships of CT scans
and clinical data elements (CDEs), which include symptoms, clinician observations, and
cancer history, in order to provide a more accurate classification of LC.
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Current Methods

The traditional pathway for LC diagnosis combines a multitude of screening tech-
niques including chest X-Ray scans, CT scans, and clinical biomarkers e.g., family history
and smoking habits. Ref. [8] described three causes for the misdiagnosis of LC, namely
observer error, tumour characteristics, and technical considerations. Indeed, 90% of missed
LC cases occur from chest X-ray scans [8]. This highlights a fundamental problem with
the current diagnostic methods for detecting LC. However, there is minimal discussion
pertaining to the future direction of LC diagnosis regarding emerging technologies, such
as ML. More recently, this discussion was extended with regard to ML, but [5] expressed
similar views upon the current limitations; marking cancerous cells is difficult due to the
variance of intensity in CT scans and misjudgement of anatomical structure by doctors and
radiologists. Following these studies, and providing an impetus for future research, [9]
commented upon the use of emerging biomarkers, such as volatile organic compounds,
sputum, metabolomics, and genetics, in conjunction with the application of ML.

2. Literature Review
2.1. Machine Learning

Machine learning has been defined as “the extraction of knowledge from data” [7].
Within healthcare, various algorithms already outperform doctors and radiologists [10].
However, [11] addressed a number of ethical considerations and, although this study
establishes a place for ML in healthcare, it also acknowledges some of the limitations that
are present. Nevertheless, the discussion of these challenges lacks depth regarding causes
and/or solutions. More recently, [12] extended this discussion, articulating the significance
of unconscious bias, overreliance, and interpretability. Ultimately, ML solutions must be
developed with respect to these limitations, as acknowledged within the evaluation of the
findings presented in this study.

2.1.1. Deep Learning

Deep learning (DL) algorithms learn feature representations with multiple levels
of abstraction [13]. Addressing this technology from the perspective of healthcare, the
application ranges from the diagnosis of Alzheimer’s to the prognosis of COVID-19 [14].
Many solutions adopt pre-defined networks and, in some cases, pre-trained weights to
encourage faster convergence. Ref. [15] observed that tuning pre-trained weights can be
very effective, allowing the network to adapt to the classification problem. This highlights
the potential for utilising a pre-trained network for the task of LC classification. However,
it does not acknowledge the potential limitations of this method. Ref. [16] articulated that
their method was more effective when trained from scratch as opposed to fine-tuning
VGG16 weights, as the gap between natural and pathological images was too large. This
has been considered during the development of this study and, thus, pre-trained weights
were only frozen where the distribution between training datasets were equal.

Ref. [17] stated that pre-processing methods improve upon the accuracy of health-
care predictions. This implies that pre-processing methods will improve LC classification.
However, their study only investigated the effect of this on Type II diabetes and, thus,
the assumption cannot be made that this will apply to LC. Providing a more suitable
analysis, [18] proposed a DL neural network which utilised pre-processing steps to reduce
the noise and dimensionality of the data, which subsequently improved the results. The
critical comparison of these studies underlines the general consensus that applying con-
sidered pre-processing steps serves for a better feature representation and, thus, a more
accurate model.

Ultimately, [19] established a specific set of pre-processing steps for the task of malig-
nant nodule detection in CT imaging. This method was recognised by many scholars due
to the exceptional results which it produced. However, for some of these steps, minimal
justification was provided, specifically a number of arbitrary values which determine the
inclusive nature of the applied mask. As a result, these steps may lack repeatability for
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alternative LC datasets whereby the distribution differs from that of the data used by [19].
Despite this, [20] reinforces this implementation, albeit on the same dataset. These steps
have been used within the data pipeline of the proposed solution presented in Section 3.
However, the implementation has been discussed with respect to the lack of justification
provided by [19].

Following the natural progression of data manipulation, [19] also implemented a
number of data augmentation techniques specific to malignant nodule detection in LC.
Included within these steps was rotational and horizontal flip augmentation, thus, preserv-
ing the distribution of the data and improving model generalisation. Evidence presented
by [21] confirms that over 60% of prior medical studies implemented basic augmentation
techniques, thus, validating the decision to include the techniques proposed by [19] within
the developed solution.

When screening at-risk patients for LC, CT is considered as one of the key methods [22].
As a result, convolution neural networks (CNNs) have been extensively researched in
regard to the feature extraction of medical images [23]. In 2018, [24] achieved a sensitivity
and specificity of 0.87 and 0.991, respectively, using a deep convolution neural network
to detect LC nodules in CT scan images from the KDSB17 dataset. Acknowledged as
a limitation, their method downsized the input images to 128 × 128 from 512 × 512
due to hardware constraints, which could have led to the loss of important features [24].
However, [25] extended this approach by implementing transfer learning with AlexNet, a
pre-trained variation of a CNN, achieving an accuracy of 96%. Despite this, the authors did
not address what data they used, which negatively affects the validity and repeatability of
this study. However, aligning with their predominant use, this study will adopt a CNN
architecture for the feature extraction of CT scan images.

2.1.2. Multimodal Learning

Modality has been defined as the way in which something happens or is experi-
enced [26]. Multiple modalities are inherently present within the realm of medicine [27]
and, thus, multimodal learning can be highly effective within DL and healthcare, improv-
ing the accuracy, sensitivity, and specificity of some classification problems [28,29]. This
establishes that the utilisation of multimodality can result in robust and accurate predic-
tions. As seen within the current diagnosis pathway, the method of diagnosis includes
the type, size and location, and overall clinical status of the patient [30]. However, schol-
ars have commented upon the difficulty of exploiting Supplementary Data as opposed
to just complementary data within DL multimodal models [26]. In contrast, [31] iden-
tified that the utilisation of multiple modalities provides superior results regarding the
effect of Supplementary Data; a characteristic which is sought to be applied to the task of
LC classification.

The abundance of fusion techniques has accelerated the growth of multimodal ML.
Such techniques include joint and co-ordinated representations, as in [26]. Ref. [32] pro-
vided a critical comparison between these two techniques and presented equal arguments
for both approaches. However, this balanced discussion is not reflected in the literature, as a
consequence of the lack of ability to interpret more than two modalities within coordinated
representations. In a more recent study, [33] presented a multimodal architecture, projecting
intermediate features into a joint space for classification. This architecture enriched the
feature representations with unimodal models including a CNN and stacked denoising
autoencoders. This outperformed other methods, but only for the task of Alzheimer’s
disease (AD) classification. Thus, by taking inspiration from this approach, the model
presented in this paper adopts similar steps.

In respect to LC, several modalities have been identified as good indicators, includ-
ing CT/PET/MRI scans [22], clinical/metabolomic biomarkers [34], and volatile organic
compounds [35]. However, current screening trials, such as NLST, oversimplify LC risk
prediction, reducing the cost efficacy due to the primary use of low-dose CT scans. It has
been recognised that the pre-test probability can be improved if other clinical biomarkers,
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such as cancer history, history of other diseases, and asbestos exposure, are used [36]. This
provides evidence on the suitability of multimodal learning for LC classification. However,
in contrast to AD, there is a lack of multimodal datasets suitable for the inclusion of these
biomarkers. Ref. [20] utilised the NLST and VLSP datasets and applied a co-learning
approach, achieving an AUC (area under curve) of 0.91. However, it was articulated that
their approach could be improved with additional CDEs, thus, providing an impetus for
the implementation of a novel dataset.

The Lung Cancer Screening (LUCAS) dataset, published in 2020, provides 830 samples,
including 76 CDEs and CT scans for each patient. This dataset was also presented alongside
a benchmark ML architecture with an F1 and AUC score of 0.25 and 0.702, respectively [37].
More recently, the SAMA model improved this to an F1 score of 0.341 with a standard
deviation of 0.058 [38]. The additional CDE data, despite the smaller sample size, provides
a solution to the aforementioned limitation expressed by [20]. However, the data presented
by [37] lacked clarity regarding the categorical nature of the CDEs. Despite the critical
comparison against more established datasets, [37] offers an alternative dataset to provide
an incentive for the development of multimodal ML for LC classification.

While the aforementioned approach proposed by [33] yielded good results for AD
classification, the implementation for LC must be further validated. Ref. [39] identified
that simple concatenation of the output features of unimodal models may lack the depth
needed to exploit intermodal interactions. This implies that the implementation presented
by [33] may fail to exploit the full potential of multiple modalities. In contrast, [16] extracts
intermediate features from a pre-trained CNN model. It was identified that extracting
these multi-level features from various layers within a CNN provided a richer feature
representation and higher AUC than those purely extracted from the last fully connected
layer. This richer fusion technique was more effective at exploiting the complex multimodal
associations within heterogenous data, and increased the accuracy from 83.6 to 91.1 [16].
The method presented by [16] provides an approach which can be applied to the task of LC
classification, as demonstrated in the subsequent sections of this study.

Although the argument presented by [16] highlights the potential benefits of extracting
a richer feature representation from the CT scan, there is a requirement to learn a good
feature representation in every modality before information fusion. This establishes a need
to increase the dimensionality of the CDEs. Ref. [16] used a denoising autoencoder to
achieve this, with an architecture in which the dimension of the encoded layer is greater
than the dimension of the input layer. This further questions the validity of the approach
used by [33], as the down-sampling from successive layers within a CNN is also a process
of information loss [16]. Acknowledging the approaches of both [16] and [33], the solution
presented in this study aimed to improve the feature representation of each modality, prior
to fusion, for the task of LC classification.

2.2. Summary

Despite the recent successes of multimodal fusion as presented by various authors, the
literature review highlights several shortcomings pertaining to the specific features which
are utilised for the task of LC classification. It can be observed that current solutions for the
task of LC classification only utilise the last layer(s) of a pre-trained feature extractor prior
to multimodal fusion. Acknowledging works from other diseases, this approach lacks the
depth required to identify intermodal relationships [39]. From an architectural perspective,
the specific contribution that this paper aims to provide addresses this gap, concatenating
multi-level feature representations from pre-trained networks for the task of multimodal
fusion, taking inspiration from works presented by [16].

Further motivating this study, the review of relevant literature brought to light the
scarcity of papers which utilise the multimodal dataset presented by [37], whereby a larger
foundation of work would support the argument for adopting multimodal learning towards
LC classification with the intention of improving existing solutions, such as [19].
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3. Materials and Methods
3.1. Research Strategy

The research strategy and selection criteria applied to Section 2 was refined to present
the most relevant papers for discussion. Google Scholar and several other repositories
including ResearchGate, IEEE, Arxiv, ScienceDirect, and PubMed were used to search for
academic literature around the topics of medicine and machine learning, utilising com-
binations of the following keywords: “Lung Cancer”, “Diagnosis”, “Machine Learning”,
“Classification”, “Multimodal”, and “Fusion”. Subsequent literature was constrained by
several variables, namely validity, relevance, and accessibility. The outstanding papers were
then filtered using the inclusion and exclusion criterion described in Table 1 to formulate a
critical discussion which facilitated the process of identifying a gap in the literature.

Table 1. Literature inclusion and exclusion criterion.

Include Exclude

Deep learning papers published since 2012 Exclude all papers published before 2002

Peer-reviewed Studies Any thesis lower than master’s

Multimodal solutions for other problems Papers written in a language other than English

3.2. Development

The development of this model explores an alternative method to improve the classifi-
cation of LC diagnosis by combining techniques identified within the literature review. This
section details the tools, datasets and model architecture which have been implemented,
providing where needed the justification for each decision and reasons for why alternative
methods were not adopted.

3.2.1. Tools/Frameworks

Table 2 describes the tools that have been used throughout the development of this
project. Supporting future iterations and the reproducibility of this study, their respective
versions have also been provided. Despite many researchers regarding the differences
between PyTorch and TensorFlow as personal preference, PyTorch was used, as it facilitated
faster and more intuitively pythonic development, an observation also made by [40].

Table 2. Development tools.

Tool Version Use

Language Python 3.9 Develop ML pipeline

Libraries

Nilearn 0.9.0 NifTI image handling

Pandas 1.4.0 Dataset handling and sanitization

TorchIO 0.18.76 Data augmentation

Pytorch 1.11.0 ML network layers

CUDA 11.3 GPU accessibility

Scikit-learn 1.0.2 Evaluative functions

3.2.2. Dataset

To facilitate parallel co-learning and to align with the proposed model architecture,
heterogeneous data pairings were required. Table 3 lists five common datasets that have
been used to develop ML solutions for LC diagnosis. A specific selection criteria was
developed to aid this process including the type of data that was available, the number of
samples, and its accessibility.
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Table 3. Comparison of datasets.

Dataset Accessibility CT Scans Clinical Data Sample Size Appearance in
Literature *

NLST 1 1 1 26254 1

KDSB17 0 1 0 1397 1

UCI 1 1 0 32 1

LUCAS 1 1 1 830 0

MCL 1 0 1 61 1
* Mentioned or referenced by at least 10 other relevant studies as of January 2022.

In contrast to some of the more prevalent datasets identified within the literature
review, the LUCAS dataset provided greater compatibility for the multimodal nature of this
research problem. However, there were several limitations which impacted the adoption of
this dataset, including the sample size and distribution, characteristics which could cause
overfitting and lead to questions about the generalisability of the results. Despite these
limitations, there are few studies which develop upon the benchmark network proposed
by the authors and, thus, a stimulus to contribute towards the literature is provided.
Notwithstanding this, the aforementioned limitations have been acknowledged within the
analysis of the results.

Pre-Processing and Data Augmentation

Ref. [20] and previously [41] mirrored the pre-processing steps defined by [19] and,
thus, established the validity of this approach and justified its application within this
solution. Interestingly, [37] omitted these pre-processing steps within their benchmark
model, potentially limiting the performance of their solution. Consequently, applying these
aforementioned steps within the ML pipeline provides an improvement upon previous
classification tasks on the LUCAS dataset.

Addressing the aforementioned challenge of overfitting, data augmentation should
alleviate this and improve generalisation [42]. The implemented steps aimed to reflect the
distribution of the original data, utilising random flip and rotation, also aligning with the
implementation presented by [19]

3.2.3. Model

Established by [16], multi-layer feature extraction can provide richer feature repre-
sentations of an input image. To facilitate this and to improve upon previous works,
this solution implemented three models, utilising a modular training scheme to extract
richer feature representations and to improve the fusion technique previously observed
throughout literature. The three models are listed as follows:

1. A Unimodal 3D-CNN classification of LC in CT scans (Modified AlignedXception);
2. A DAE for dimensionality increase in CDEs;
3. A feature fusion network, combining stages 1 and 2.

The two backbone models, including the DAE and modified AlignedXception network,
are pre-trained on the same train data, and the respective inputs are forwarded to the feature
fusion network. Figure 1 details the overall architecture of this model.
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Denoising Auto Encoder Network

As previously discussed, the motivation for implementing the DAE was to increase
the dimensionality and, thus, the significance of CDEs during fusion. This approach was
adopted from [16], as it was observed to improve the performance of the fusion model.
Replicating the architecture presented by [16] and encouraging the model to learn more
generalised representations of the data, noise is added to the input during training using a
dropout layer where p = 0.2 (Figure 2); this incentivises the model to be robust to missing
data and prevents the model from learning an identity function [16]. However, during
inference, all data points are fed into the DAE. Interestingly, there is a lack of work in the
literature investigating the efficacy of inflating the dimensionality of data using DAEs to
improve the fusion of multiple modalities; this observation was also made by [16].
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To stimulate a discussion upon the optimal architecture of the DAE for this solution, a
number of models were developed varying the factor of inflation, where f is the number of
features and n is the degree of inflation, such that inflation = f*n. Moreover, an additional
model, omitting the DAE, is also implemented to evaluate its true effect on the performance
of the model. The results of this are discussed in Section 5.
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AlignedXception Model

Although this study implements the approach presented by [37] as a starting point,
their original paper lacked depth and clarity regarding the justification for implementing
a modified AlignedXception model. Thus, it was important to understand how this
model compares to other architectures, such as Inception and VGG, and whether a more
appropriate model could have been used.

Evaluating their novel architecture, [43] provided several pieces of evidence which
motivated the keeping of this model. Interestingly, it was established that the AlignedXcep-
tion model could outperform InceptionV3, VGG-16, and ResNet-152 while using a similar
number of parameters. This indicates that each layer was able to learn a more effective
feature representation and, thus, lends itself to the task of enhanced feature extraction.
Additionally, the authors compared the schematic architecture to VGG16 and observed that
in some respects they are similar, which aligns with previous studies for using VGG16 as
a feature extractor, such as in [16,43]. Figure 3 provides the schematic of the developed
AlignedXception architecture.
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3.3. Evaluation

To facilitate a comprehensive comparison to existing works, this study evaluates a
range of model architectures. This included a baseline model replicating the implemen-
tation developed by [37] (control), an enhanced CT feature representation with simple
linear inflation of CDE (EMM-LC), and an enhanced CT feature representation with DAE
enriched CDE (EMM-LC DAE). It is important to acknowledge that the justification for
re-implementing the approach presented by [37] is to identify how it performs compared
to other solutions on exactly the same hardware in order to reinforce a valid comparison.

A lack of consistency within the evaluation metrics used between studies posed a
challenge towards understanding how this novel approach compares. Therefore, to limit
the subjective interpretability of these results, this study implements the evaluation metrics
used by [37], which includes F1-Score and AUC in addition to average precision (AP) which
was used by [38]. By implementing these metrics, subsequent comparative analysis can
better substantiate claims that this method is superior, mitigating ambiguity within this
study. To support this discussion and to expand on these results, an independent sample
t-test is utilised to identify if any statistically significant improvements have been made.

In addition to the aforementioned evaluation metrics, sensitivity, specificity, and ac-
curacy have also been implemented, as listed in Table 4. This was necessary in order to
stimulate a critical discussion upon its implementation within current healthcare tech-
nologies, which commonly use these metrics, and whether it improves upon traditional
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diagnostic techniques. However, it must be acknowledged that accuracy will not inde-
pendently form an argument for the adoption of this technique, as it lacks clarity and is
significantly affected by the uneven distribution of positive and negative samples. Table 4
highlights this, whereby accuracy is the only metric to combine all values, obscuring specific
performance insight.

Table 4. Evaluation metric equations.

Evaluation Metric Formulae

Sensitivity
TP

(TP + FN)

Specificity
TN

(TN + FP)

Accuracy
TP + TN

(TP + TN + FP + FN)

F1 score
TP

TP +
1
2
(FP + FN)

TP, true positive; FP, false positive; TN, true negative; FN, false negative.

3.4. Summary

The focus of this methodology was to articulate the design implementation of the
network architecture and to provide information to support the repeatability of this study.
Crucially, it offers justification for the decisions made in regard to its development, and
acknowledges ways in which limitations, regarding the evaluation, were mitigated.

4. Implementation
4.1. Pre-Processing
4.1.1. CT Scans

The pre-processing steps defined by [19] are considered by numerous scholars to be
a standard technique for pre-processing CT scans for the task of LC detection. Despite
the overwhelming adoption of these steps, some aspects lacked clarity, as discussed in
Section 2. This ambiguity produced inaccurate results.

To address this limitation, several arbitrary values were altered within the pre-processing
to improve the mask extraction of the image. Figure 4 provides evidence to highlight this
improvement. Details of these changes have been omitted from the main body of work as
it is not the primary focus of this study. By reducing the threshold of certain values, it must
be assumed that the number of distracting features increased, a characteristic sought to be
mitigated by [19]. The effect of these changes has been addressed in Section 6.

Irrespective of the improvements observed in Figure 4, a total of six scans failed,
resulting in either one lung or no lungs being extracted from the scan. It was identified that
the original image of these scans differed from the normal distribution, indicating that the
scan was taken incorrectly or that there was a technical fault in the scanning procedure.
This aligns with the observation made by [8] that errors can be attributed to image quality
and or patient positioning/movement during a scan. To mitigate the impact that this had
on the training procedure, any scans which failed the above process were removed from the
training data in order to prevent the model learning poor features representations. Figure 5
illustrates the pre-processing of a single scan.
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4.1.2. Clinical Data Elements

The adoption of the multivariate dataset proposed by [37] presented a number of
challenges which may have contributed to previously low performance metrics. Figure 6
depicts the correlation matrix between all attributes, several of which had no inputs,
visually indicated by the missing correlation data which were removed from the dataset.
As discussed in Section 2, some data was categorical but was not clarified within the paper
and, thus, all values were clipped between 0 and 1.

4.2. Data Augmentation

As discussed in Section 3, the acquired dataset is small and, thus, vulnerable to
overfitting. In order to mitigate this and to better generalise to the validation set, data
augmentation was applied. Figure 7 illustrates the transformations applied using TorchIO
for the 3D tensor manipulations. Specific augmentation techniques included horizontal
flip, where p = 0.5, ±20◦ affine transformation, and resizing to 1283, aligning with the basic
augmentation implemented by [19].
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To conclude the augmentation steps and to align with the approach presented by [37],
weighted sampling was implemented to balance the distribution of classes. However, the
limitations of this method were not acknowledged by [37]. Ref. [42] stated that oversam-
pling a minority class can lead to overfitting. During development, this was observed.
However, this limitation was alleviated when combined with the other previously discussed
augmentation techniques.

4.3. Training

The networks were trained on Google Colab Pro, utilising a high-end graphics process-
ing unit (GPU) and storage; the hardware is detailed in Table 5. Several techniques were
implemented in order to reduce training time, prevent overfitting, and enable repeatability,
which involved using deterministic methods, larger batch sizes, simulated annealing, and
reduced learning rate on plateau; these techniques were mostly employed by [37].

Due to time constraints, it was not feasible to conduct statistical tests for every change
made during development in order to justify design choices. Therefore, to validate any
improvements made, deterministic methods were invoked. These values aimed to miti-
gate some indeterministic aspects of the learning phase which could potentially lead to
varying results. This validates the improvements observed during testing. However, it
must be acknowledged that these methods are not full proof, and some variability can
still be sourced between GPU and central processing unit (CPU) extensions or different
platforms [44]. For tests which determined the efficacy of the overall approach, such as for
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the simple multimodal (SMM) and enhanced multimodal 75k (EMM 75k) model, tests for
statistical significance were calculated, utilising indeterministic methods.

Table 5. Hardware.

Component Type

GPU Tesla P100-PCIE-16 GB

CPU Intel(R) Xeon(R) CPU @ 2.30 GHz

RAM 32 GB

Storage Google Drive 100 GB

4.4. Modified AlignedXception Model
4.4.1. Architectural Changes

The complexity of the architecture proposed by [37] was reduced to decrease training
time and support smaller input sizes. From a hardware perspective, this freed up memory
and consequently facilitated the use of batch normalisation, a technique that required
sufficiently large batch size in order to reduce model error [45]. Table 6 details all the
architectural changes made.

Table 6. AlignedXception architectural changes.

Change Original Proposed

Batch size 13 32

Image size 2563 1283

AlignedXception output features 512 × 4 × 4 × 4 256 × 2 × 2 × 2

Convolution input channels 32, 64, 128, 256, 256, 512 16, 32, 64, 128, 128, 256

Acknowledging these changes, a baseline model was re-implemented in order to pro-
vide grounds upon which an argument can be formed and, thus, to draw a direct compari-
son between the new fusion method and previous architectures in the same environment.
This baseline model, referred to as SMM, mirrors the fusion method proposed by [37] and
adopts the aforementioned architectural changes and data pre-processing/augmentation
described in Sections 4.1 and 4.2. As a result, any significant difference against the new
method can be directly attributed to the change in fusion technique.

4.4.2. Feature Extraction

The extended part of this architecture which distinguishes it from previous multimodal
techniques on this dataset is the explicit extraction of intermediate features from pre-
trained networks. The intermediate features are returned in the forward pass of the
pre-trained network, consisting of 65,536, 8192, and 2048 features, respectively. Following
this extraction, they are concatenated with the features obtained from the CDEs.

4.5. Denoising Autoencoder Model

Providing clarity to this implementation, all aspects described by [16] were included
within this solution, including the specific values for dropout layers and L1 regularisation as
to prevent the model from learning an identity function. Equation (1) provides clarification
for the mean squared error (MSE) loss function with L1 regularisation.

L(w) =
1
N

N

∑
i=1

( f (xi; w)− yi)
2λ||w1|| (1)

Equation (1). MSE Loss with L1 Regularisation.
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Despite this clarity, there was ambiguity in regard to the training parameters, such
as the learning rate or accepted performance metrics. However, finding better hyperpa-
rameters was outside the scope of this paper, and so it was approximated. The training
configuration for this model has been provided in Table 7. Each model was trained for
200 epochs.

Table 7. DAE hyperparameters.

Hyperparameter Value

Learning rate 0.001

Batch size 32

Lambda L1 regularization 0.001

Epoch 200

Aligning with the training methodology presented by [16] the CNN and DAE model
were pre-trained for the use of intermediate feature extraction by freezing their weights.
Despite [15] articulating the efficacy of tuning weights, the same training data was used for
both models and, as a result, the weights were frozen, as both training datasets had equal
distribution. To facilitate this, the back propagation of the gradient required to update the
weights was not passed through the pre-trained models. In addition, BN and dropout were
disabled by setting the pre-trained models to evaluation mode.

4.6. Summary

Facilitating the validity and repeatability of this study, all aspects of the implementa-
tion have been discussed, including the data augmentation, training environments, and
hyperparameters. In addition, further clarity has been provided within Appendix A in
regard to the implementation of the pre-processing steps.

5. Results

The purpose of this study was to identify and develop a method to better exploit
intermediate features for the task of multimodal fusion in LC classification by focusing
efforts on improving upon the implementation proposed by [37]. In order to contribute to
the implementation of this approach and to validate the findings of this study, additional
evaluation metrics were implemented, consisting of F1 score, AUC, and AP, as well as
sensitivity and specificity. This provided a clearer understanding into the performance of
the proposed solution from both a ML and medical perspective.

5.1. The Efficacy of Pre-Processing and Augmentation

Implementing a simple feature concatenation method in conjunction with the im-
proved data pre-processing and augmentation methods yielded an average F1 score of
0.402, as shown in Table 8. In comparison to the original benchmark model proposed
by [37] which achieved 0.25, the mean F1 score of the SMM is an improvement of 60.8%.
Improvements are also noted in AUC and AP.

Table 8. Descriptive statistics of SMM.

Model F1 AUC AP

Mean Std Mean Std Mean Std

LUCAS 0.25 – 0.702 – – –

SAMA 0.341 0.058 – – 0.251 0.061

SMM 0.402 0.04 0.843 0.036 0.419 0.074
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The evaluation of the SMM model was taken from five independently trained models
to provide validity to these results. The standard deviation has also been provided within
Table 8 to support subsequent t-tests to observe any statistically significant improvements
that differing fusion methods provide. This model acts as a baseline to compare subsequent
developments.

5.2. The Effect of Utilising Intermediate Features

As highlighted in Section 2, some scholars expressed the importance of improving
the fusion method in order to better exploit intermodal relationships [39]. To explore this
concept, intermediate features were extracted from a pre-trained modified AlignedXception
model and concatenated with the simple linear features of the CDEs. In total, two additional
tests were conducted, varying the number of extracted features. Five repeat tests were
conducted for the EMM-LC 75k model to validate the results. The mean and standard
deviation have been provided in Table 9.

Table 9. CT scan feature extraction, along with the SMM and EMM-LC 75K averaged results from
five independent tests, presenting mean and std.

Model Name CT Features F1 AUC AP

Mean Std Mean Std Mean Std

SMM-LC 2048 0.402 0.040 0.843 0.036 0.419 0.074

EMM-LC 10k 10,240 0.400 0.876 0.876

EMM-LC 75k 75776 0.508 0.031 0.847 0.011 0.53 0.069

The mean F1 score of 0.508 with a standard deviation of 0.031 significantly improves
upon the original SMM fusion method by 26.37%. Figure 8 displays these results, highlight-
ing that the intermediate pre-trained features improve the performance of the multimodal
fusion network. In order to identify the statistical significance of this result, a paired t-test
with equal variances was applied. This yielded a p-value of 0.0007, confirming the statistical
significance to 99.93% confidence.

AI 2022, 3, FOR PEER REVIEW 14 
 

Table 8. Descriptive statistics of SMM. 

Model F1 AUC AP 

 Mean Std Mean Std Mean Std 

LUCAS 0.25 -- 0.702 -- -- -- 

SAMA 0.341 0.058 -- -- 0.251 0.061 

SMM 0.402 0.04 0.843 0.036 0.419 0.074 

The evaluation of the SMM model was taken from five independently trained models 

to provide validity to these results. The standard deviation has also been provided within 

Table 8 to support subsequent t-tests to observe any statistically significant improvements 

that differing fusion methods provide. This model acts as a baseline to compare subse-

quent developments.  

5.2. The effect of utilising intermediate features 

As highlighted in Section 2, some scholars expressed the importance of improving 

the fusion method in order to better exploit intermodal relationships [39]. To explore this 

concept, intermediate features were extracted from a pre-trained modified AlignedXcep-

tion model and concatenated with the simple linear features of the CDEs. In total, two 

additional tests were conducted, varying the number of extracted features. Five repeat 

tests were conducted for the EMM-LC 75k model to validate the results. The mean and 

standard deviation have been provided in Table 9. 

Table 9. CT scan feature extraction, along with the SMM and EMM-LC 75K averaged results from 

five independent tests, presenting mean and std. 

Model Name CT Features F1 AUC AP 

  Mean Std Mean Std Mean Std 

SMM-LC 2048 0.402  0.040 0.843 0.036 0.419 0.074 

EMM-LC 10k 10,240 0.400 0.876 0.876 

EMM-LC 75k 75776 0.508  0.031 0.847  0.011 0.53  0.069 

The mean F1 score of 0.508 with a standard deviation of 0.031 significantly improves 

upon the original SMM fusion method by 26.37%. Figure 8 displays these results, high-

lighting that the intermediate pre-trained features improve the performance of the multi-

modal fusion network. In order to identify the statistical significance of this result, a paired 

t-test with equal variances was applied. This yielded a p-value of 0.0007, confirming the 

statistical significance to 99.93% confidence. 

 

Figure 8. Box plot comparison of SMM and EMM fusion models. 
Figure 8. Box plot comparison of SMM and EMM fusion models.

In order to facilitate a critical discussion of the results obtained from both an ML and
medical perspective, the specificity and sensitivity were calculated, observing 0.9615 and
0.5385, respectively, for the best EMM-LC 75k model.
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5.3. Enriching CDEs with a DAE

Three tests were performed to provide a comprehensive analysis upon the effect of
enriching the CDEs with a DAE, taking inspiration from the implementation provided
by [16]. Although this study already investigated the efficacy of this approach at differing
levels of inflation, it was a pre-requisite to re-implement these tests, as the complexity of
data was increased to accommodate the added dimensionality of CT scans. Table 10 details
the tests conducted.

Table 10. Description of tests to validate the implementation of DAE. Tests were implemented in
conjunction with the same architecture as the EMM-LC 75K model.

CDE Description CDE Features Total Number of
Features Concatenated

DAE inflation (×10) 740 76,516

DAE inflation (×20) 1480 77,256

DAE inflation (×30) 2220 77,996

Contradicting earlier studies, the implementation of the DAE to enrich the CDEs
negatively affected the performance of the model, as highlighted in Figure 9. In addition,
there was no significant improvement between the degrees of inflation. In an attempt
to improve these results, regularisation techniques were reduced with the intention of
preserving data whilst encouraging a rich feature representation. However, this did not
have any noticeable impact on the results.
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5.4. Summary

The results presented within this section prove with statistical significance that by
enhancing the feature representation of the CT scan, the performance of the model can
be improved. Figure 10 highlights a number of studies implementing solutions towards
the same dataset. Notwithstanding the visible improvement, this was achieved with
reduced model complexity and half the original image size. However, contradicting the
implementation proposed by [16], using a DAE to enrich the CDEs had a negative impact
on the performance of the model.
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6. Discussion

The objective of this study was to identify current ML solutions for LC diagnosis and
to improve these by developing an architecture which utilises intermediate pre-trained
features within the fusion of multiple modalities. The tests conducted aimed to provide
empirical evidence to support the claim that the proposed fusion method is superior to
existing techniques.

6.1. Main Findings

It was found that by utilising the pre-processing steps defined by [19], see Appendix A
for detail, and BN, in addition to reducing the model complexity, the model could outper-
form previous benchmark models on the same validation set by 60.8% (Section 5.1). As
part of the main focus of this study, it was also established that by increasing the number of
intermediate features extracted from the pre-trained AlignedXception network, the model
was able to better distinguish between cancerous and non-cancerous patients. The statisti-
cally significant improvement of 26.37% (Section 5.2) validated the new fusion architecture
presented in this study. Interestingly, however, and contrary to the pre-existing litera-
ture, utilising a DAE to enrich the features of the CDEs negatively affected the predictive
capabilities of the model.

6.2. Simple Multimodal Fusion

In order to draw a fair comparison between methods, a simple multimodal fusion
architecture was re-implemented under the same conditions as the EMM-LC model. To
improve upon this implementation, despite it not being the main focus of this study, the
pre-processing, architectural changes, and training parameters increased the F1 score from
0.25 to 0.402 (Section 5.1). Although these results cannot be compared like for like, it
is extremely indicative that these techniques improve upon previous literature. These
results supported the initial hypothesis that justified the reasoning for utilising these
techniques. Clarifying the cause for these improvements, [19] articulated that the pre-
processing techniques removed distracting features; however, there is little evidence to
establish the actual numerical improvement despite the prevalent adoption from other
scholars. Batch size has a greater impact on the efficacy of batch normalisation (BN)
compared to instance normalisation (IN). Ref. [45] clarified that IN has limited success
in visual recognition tasks. Originally, instance normalisation was implemented, but the
results observed when implementing BN align with the findings presented by [45].

Figure 11 shows the statistical improvements that this implementation provides re-
garding the observed F1 score, which were 0.25 and 0.402 for the LUCAS and SMM-LC
model, respectively. It must be acknowledged that this method also exceeds in other quan-
titative measures, such as inference time, due to the decreased computational complexity
from reducing the input image; however, the evaluation of this is outside the scope of
this paper.



AI 2022, 3 675

6.3. EMM-LC Fusion

The findings presented within this study provide a clear indication that by utilising an
enhanced feature representation, the performance of the model can be improved signifi-
cantly and, thus, satisfies one of the main objectives of this study. However, it is important
to acknowledge how these findings contribute to the existing literature. The inspiration
for this approach originated from the implementation presented by [16], a ‘Richer fusion
network’, in which a multilevel feature representation provides a fertile environment for
full multimodal fusion. Other scholars, particularly within the realm of semantic image
segmentation, have also adopted similar approaches on account of the ability for CNNs to
learn good feature representations from unstructured data [16]. However, for the task of
LC classification, there was insufficient evidence to confirm that this approach has been
used, thus, providing a valid contribution to the existing literature.
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Notwithstanding the distinction in applications, the findings with regard to the multi-
level feature representation aligns with [16] and improves upon the existing benchmark
model developed by [37], as seen in Figure 12. Visually, this graph indicates that the
architecture may further benefit from additional features. However, the existing literature
suggests that by utilising all feature maps, no significant improvement is observed, and
computational cost is greatly increased [16]. Therefore, this validates the implementation
presented within this study.

The significance of the proposed architecture must be considered from a medical per-
spective in order to provide a realistic interpretation of the results. Presented in Section 5.2,
the specificity and sensitivity metrics provide an in-depth understanding of the ability to
detect and classify true positives and true negatives. The values show the efficacy of detect-
ing negative samples with a specificity of 0.9615. However, a sensitivity of 0.5385 highlights
the challenge of detecting positive samples.

6.4. EMM-LC DAE Fusion

Despite the significant improvements that this new fusion method provides, the
argument presented by [16] suggests that the large imbalance of features would limit the
performance potential of the model by overwhelming the low-dimensional clinical data by
the high-dimensional CT data. However, implementing the DAE to enrich the CDEs did
not yield the expected improvements.
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The previous literature provides a strong indication that the decline in performance is
a reflection on the choice of CDEs, as opposed to an architectural flaw. Ref. [46] articulated
that the proliferation of data that is unrelated to the question of interest hinders the ability to
detect real relationships and patterns. This signifies that the amplification of dimensionality
inadvertently increases the number of redundant features. In relation to this solution,
the implementation of the DAE increases the significance of variables which have little
relevance to the task of LC classification, thus, worsening the performance of the model.
The significance of these findings challenge the novel implementation proposed by [16] but
do not negate it; the limitation stems from the data, not the approach. However, the existing
literature, or lack thereof, regarding this method does also contribute to the argument that
it is not an appropriate feature inflation method.

6.5. Summary

This section interprets and synthesises the findings presented in this study with respect
to the existing literature. Moreover, this discussion establishes the contribution that these
results provide and, crucially, identifies the cause for contradictory findings with respect to
the relevant literature to support these claims. It also introduces some of the limitations in
regard to the findings presented.

7. Limitations

The most prevalent limitation within this study stems from the quality of the data,
a constraint that caused the conflicting results reported in previous literature. Figure 13
draws attention to this by illustrating the correlation between the 74 CDEs and LC. It
has already been highlighted that features which do not positively contribute to the task
in question prevent relationships and patterns from being learned [46]. Therefore, the
implementation of the DAE would increase the significance of redundant features, thus,
impairing the distinguishing capabilities of the multimodal model.

This indicates that the utilisation of alternative biomarkers may better anticipate
the diagnosis of malignant tumours and ultimately limit the number of diagnostic pro-
cedures on benign nodules [9]. It has been well established that the use of biomarkers
improves the performance of multimodal models, but this study clearly identifies that
the way in which these are incorporated has a significant impact on the identification of
intermodal relationships.

Continuing the discussion pertaining to the data used, the number of samples and the
respective validation methods also presented challenges concerning the generalisability of
the results. In total, the test data consisted of 170 samples, 13 of which were cancerous. The
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limited number of samples implies a statistical uncertainty with respect to the average test
error [47]. Therefore, future work should evaluate this model using k-fold cross-validation,
a method that was omitted due to time constraints. This approach would add credibility
and generalisability to these results by taking the average test error across k-trials [47].

The literature suggests that the current method of image resampling, namely reducing
the image size to 1283, may have a tangible impact on the detective capabilities of the model,
specifically for samples where the tumour is relatively small. Ref. [48] articulated that the
method of resampling, utilising nearest neighbour interpolation, results in a serious loss
of quality and thus, obscures small nodules. Although other sampling methods, such as
linear interpolation may mitigate this limitation, ultimately, using the original dimensions
would preserve all of the potentially significant features. It is recommended that future
works investigate this in order to understand the potential impact that this has on the
corresponding model.
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With respect to the application of this approach in healthcare, this method lacks
interpretability, the transparency of reasoning. Ref. [49] articulated that localised knowledge
of a malignant nodule is required to fully harness the potential of novel biomarkers.
However, acknowledging this limitation, and aligning with existing perceptions of ML in
healthcare, new techniques should work in parallel with doctors and radiologists to enhance
productivity and precision [7]. The significance of this recognises that despite a specificity
and sensitivity of 0.9615 and 0.5385, respectively, the benefits of this approach become
evident when used in conjunction with medical professionals. Work should continue to
develop this and to improve the detection of LC, as it has been established that early
treatment offers encouraging prognosis with a survival rate of 5 years at 71% [50].

8. Future Work

In order to develop this approach and improve its suitability within a clinical setting,
several points must be further investigated with respect to the interpretability of the model,
and the application of suitable biomarkers. A recommended pathway for the continua-
tion of this proposed solution entails the implementation of class activation maps [51],
preservation of scan resolution, and the addition of alternative biomarkers.



AI 2022, 3 678

For the purpose of interpretability, the future direction of this architecture should facil-
itate the application of class activation maps in order to visualise significant relationships
and patterns within CT scans. This would align with [46] with respect to the requirement
for localised knowledge in order to fully harness the potential of novel biomarkers. It
also raises an important consideration towards the efficacy of using whole scans prior to
feature fusion. As previously discussed, data unrelated to the question of interest hinders
the ability to detect real relationships and patterns [43]. Therefore, the identification and
extraction of regions of interest, prior to feature fusion, proposes a natural progression for
this architecture, in addition to the preservation of scan resolution to retain all significant
features. Several key takeaways must be acknowledged from this paper and adopted into
existing solutions, as it has been proved that multimodal learning, using enhanced feature
representations, improves the accuracy of lung cancer classification.

9. Conclusions

This study set out to critically examine existing research within the field of multimodal
deep learning and identify ways in which current methods for LC classification could be
improved. The findings clearly indicated that there was a lack of consideration for the
potential that intermediate, multimodal features may provide towards identifying LC in CT
scans. Subsequent to the literature review, this paper aimed to contribute towards existing
works by proposing an enhanced multimodal fusion method, named EMM-LC Fusion,
which utilised intermediate, pre-trained features to improve the existing benchmark model
applied to the LUCAS dataset.

The experiments confirmed that the extraction of multi-level features, for the purpose
of multimodal fusion, improved the ability of the model to identify intermodal relationships,
distinguishing true positive and true negative samples. The improvement in mean F1 score
of 26.37% when using the EMM-LC fusion model is supported by the statistical significance
of the results (p < 0.05). These findings complement earlier studies which have adopted
this approach for other diseases, such as breast cancer [16], and AD [33]. This adds to the
growing body of work which promotes the use of multiple modalities for disease diagnosis.

Although this study successfully demonstrated that enhancing feature representations
of CT scans before fusion improves performance, the results obtained from applying a
DAE to the CDE conflicted with findings presented by earlier studies [16]. This questions
the rationality of utilising a DAE to enrich CDEs, as it was observed to exacerbate the
performance of the model when compared to simple linear inflation. Upon the basis that
these conflicting results do not invalidate this approach, a natural progression of this work
is to incorporate and analyse alternative biomarkers for LC and to evaluate whether this
provides any significant improvements. Ultimately, this study lays the groundwork for
future research in the use of multimodal biomarkers for the task of LC diagnosis.

Supplementary Materials: All code is available at: https://github.com/jb4rr/EMM-LC-Fusion.
Variations of this code are accessible under different branches.
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Appendix A

Table A1. LUCAS Clinical data elements.

Pneumonia Asthma dyspnoea

Bronchitis Emphysema Atelectasis

Smoker Dry_cough Other_respiratory_history

Cancer_history Other_medical_history Adenomegaly

Chest_pain Pleural_effusion Presence_of_lung_nodules

Right_upper_lobe_nod Right_middle_lobe_nod Right_lower_lobe_nod

Left_upper_lobe_nod Left_lower_lobe_nod Lingula_nod

Unspecified_location_nod x < 3 mm_nod 3 mm ≤ x < 6 mm_nod

6 mm ≤ x < 10 mm_nod 10 mm ≤ x < 30 mm_nod x > 30 mm_nod

Unspecified_size_nod Round_nod Oval_nod

Unspecified_shape_nod Benign_nod Malignant_nod

Unspecified_category_nod Solid_nod Soft_tissue_nod

Ground_glass_nod Unspecified_density_nod Presence_of_lung_mass

Right_upper_lobe_mass Right_middle_lobe_mass Right_lower_lobe_mass

Left_upper_lobe_mass Left_lower_lobe_mass Lingula_mass

Unspecified_location_mass x < 3 mm_mass 3 mm ≤ x < 6 mm_mass

6 mm ≤ x < 10 mm_mass 10 mm ≤ x < 30 mm_mass x > 30 mm_mass

Unspecified_size_mass Round_mass Oval_mass

Unspecified_shape_mass Benign_mass Malignant_mass
Unspecified_category_mass Solid_mass Soft_tissue_mass

Ground_glass_mass Unspecified_density_mass Granuloma

Benign_gra Malignant_gra Unspecified_category_gra

Opacity Benign_opa Malignant_opa

Unspecified_category_opa Lung_consolidation Benign_cons

Malignant_cons Unspecified_category_cons Tree_in_bud

Appendix A.1. Pre-Processing Steps

Although the analysis of the implemented pre-processing steps is outside the scope
of this paper, it is important to acknowledge the changes made so that the repeatability
of this study is not negatively affected. Table A2 details the changes made within the
pre-processing steps defined by [19]. The following discussion presents the complete set of
techniques that were employed to pre-process the CT scans.

Table A2. Pre-processing threshold value changes.

Threshold Name Previous Value Proposed Value

Vol_limit [0.68, 7.5] [0.0, 7.5]

Intensity_th −600 −500

bg_patch_size 10 1

Eccen_th (binarize_per_slice) 0.99 0.999

area_th (binarize_per_slice) 30 5

Area_th (all_slice_analysis) 6 × 103 3 × 103
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To reduce the computational complexity required to process the image, the scan is
halved in size using a nilearn affine transform. Following this, a binary mask is extracted
using the following steps:

1. Remove top slices;
2. Apply Gaussian filter (stdv = 1 px);
3. Binarize filter with a threshold of −500;
4. Remove all 2D components which are smaller than 5 mm2 or have an eccentricity

greater than 0.999;
5. Remove 3D volumes of more than 7.5 litres;
6. Remove components with average minimum distance of 62 mm from the centre;
7. Compute convex hull of image.

The values within the scan are clipped between −1200 and 600, and values outside of
the mask are padded with the value of 170, the luminance of common tissue [19].

Appendix A.2. Tests

Table A3. Lowered regularisation for DAE.

Run Number F1 AUC AP

N10 0.296 0.694 0.231

N20 0.333 0.66 0.151

N30 0.324 0.668 0.186
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